Skip to main content
Log in

Dynamic-Gain-Based Adaptive Fuzzy Control for Uncertain Delayed Non-triangular Switched Nonlinear Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This work studies the adaptive issue of nonlinear switched system with state delays. Different from the reported works, the research is more challenging since the system is in non-triangular form and has multiple uncertainties such as unmodeled dynamic, unknown parameters, and unknown coefficients. By presenting a dynamic-gain-based adaptive fuzzy regulation strategy, and constructing a novel Lyapunov–Krasovskii (L–K) functional, a new robust adaptive controller is successfully designed. The raised strategy is validated using a simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Khalil, H.K., Grizzle, J.W.: Nonlinear Systems. Prentice hall, Upper Saddle River (2002)

    Google Scholar 

  2. Feng, S.S., Sun, Z.Y., Zhou, C.Q., et al.: Output tracking control via neural networks for high-order stochastic nonlinear systems with dynamic uncertainties. Int. J. Fuzzy Syst. 23(3), 716–726 (2021)

    Article  Google Scholar 

  3. Kanellakopoulos, I., Kokotovic, P.V., Morse, A.S.: Systematic design of adaptive controllers for feedback linearizable systems. In: American Control Conference, pp. 649–654 (1991)

  4. Li, Y., Tong, S., Liu, L., Feng, G.: Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, Y., Liu, Y., Tong, S.: Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3051030

    Article  Google Scholar 

  6. Bai, W., Li, T., Long, Y., Chen, C.P.: Event-triggered multigradient recursive reinforcement learning tracking control for multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3094901

    Article  Google Scholar 

  7. Li, T., Bai, W., Liu, Q., Chen, C.P.: Distributed fault-tolerant containment control protocols for the discrete-time multiagent systems via reinforcement learning method. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3121403

    Article  Google Scholar 

  8. Zhao, X., Kao, Y., Niu, B., et al.: Control Synthesis of Switched Systems. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  9. Sun, Z., Ge, S.S.: Stability Theory of Switched Dynamical Systems. Springer, New York (2011)

    Book  MATH  Google Scholar 

  10. Ma, R., Zhao, J., Dimirovski, G.M.: Backstepping design for global robust stabilisation of switched nonlinear systems in lower triangular form. Int. J. Syst. Sci. 44(4), 615–624 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xue, L., Liu, Z., Zhang, W.: Decentralized tracking control for a class of stochastic high-order time-delay nonlinear systems under arbitrary switchings. J. Frankl. Inst. 357(2), 887–905 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhao, X., Shi, P., Zheng, X., et al.: Intelligent tracking control for a class of uncertain high-order nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1976–1982 (2015)

    Article  MathSciNet  Google Scholar 

  13. Liu, Q., Zhang, X., Li, H.: Global regulation for feedforward systems with both discrete delays and distributed delays. Automatica 113, 108753 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiao, X., Shen, T.: Adaptive feedback control of nonlinear time-delay systems: the LaSalle-Razumikhin-based approach. IEEE Trans. Autom. Control 50(11), 1909–1913 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, T., Luo, X., Li, W.: Razumikhin-type approach on state feedback of stochastic high-order nonlinear systems with time-varying delay. Int. J. Robust Nonlinear Control 27(16), 3124–3134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, X., Lin, W., Lin, Y.: Iterative changing supply rates, dynamic state feedback, and adaptive stabilization of time-delay systems. IEEE Trans. Autom. Control 64(2), 751–758 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Sun, Z.Y., Yang, S.H., Li, T.: Global adaptive stabilization for high-order uncertain time-varying nonlinear systems with time-delays. Int. J. Robust Nonlinear Control 27(13), 2198–2217 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, H., Sun, H., Hou, L.: Adaptive fuzzy PI output feedback control for a class of switched nonlinear systems with unmodeled dynamics and dead-zone output. Int. J. Fuzzy Syst. 24(1), 728–751 (2022)

    Article  Google Scholar 

  19. Wu, W., Tong, S.: Robust adaptive fuzzy control for non-strict feedback switched nonlinear systems with unmodeled dynamics. Int. J. Syst. Sci. 52(2), 307–320 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qian, C.: A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems. In: American Control Conference, pp. 4708–4715 (2005)

  21. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant nos. 61903239 and 62173208), Project funded by China Postdoctoral Science Foundation (Grant number: 2022M712089), Natural Science Foundation of Shandong Province for Key Projects under Grant ZR2020KA010 and "Guangyue Young Scholar Innovation Team" of Liaocheng University under Grant LCUGYTD2022-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Guo Liu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in this paper.

Appendix

Appendix

Proof of (21)

According to (19), we get

$$\begin{aligned}&\Bigg (\frac{1}{\alpha _k\delta _{k-1}}+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}}L_{k,\sigma (t)}\nonumber \\= & {} \Bigg (\frac{1}{\alpha _k\delta _{k-1}}+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}} \Bigg ({\bar{\theta }}\sum ^m_{j=1}|\zeta _j|^{r_k+\omega }\nonumber \\&+{\bar{\theta }}\sum _{j=1}^{k-1}\Bigg |\frac{\partial x_k^*}{\partial x_j}\Bigg | \sum ^m_{l=1}|\zeta _l|^{r_j+\omega } \Bigg ). \end{aligned}$$
(33)

Using Lemma 1, we have

$$\begin{aligned}&\Bigg (\frac{1}{\alpha _k\delta _{k-1}}+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}}{\bar{\theta }}\sum ^m_{j=1}|\zeta _j|^{r_k+\omega }\nonumber \\&\le \frac{\kappa _1}{2(n+1)} \sum ^m_{j=1}|\zeta _j|^{2r_n}+\Theta _k\phi _{k1}z_k^{\frac{2r_n}{r_k}}, \end{aligned}$$
(34)

where \(\phi _{k1}=m2^{\frac{r_{k+1}}{2r_n-r_{k+1}}}\frac{2r_n-r_{k+1}}{r_n} \Bigg (\frac{r_{k+1}(n+1)}{r_n\kappa _1}\Bigg )^{\frac{r_{k+1}}{2r_n-r_{k+1}}}\). Similarly, we have

$$\begin{aligned}&\Bigg (\frac{1}{\alpha _k\delta _{k-1}}+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}} {\bar{\theta }}\sum _{j=1}^{k-1}\Bigg |\frac{\partial x_k^*}{\partial x_j}\Bigg | \sum ^m_{l=1}|\zeta _l|^{r_j+\omega }\nonumber \\&\le \frac{\kappa _1}{2(n+1)}\sum ^m_{l=1}|\zeta _l|^{2r_n} +\Theta _k\phi _{k2}z_k^{\frac{2r_n}{r_k}} +\frac{C_{k1}}{\epsilon _k}, \end{aligned}$$
(35)

where \(\phi _{k2}\) is a smooth function, \(C_{k1}\) and \(\epsilon _k\) are positive constants. Then, using (34) and (35), we obtain

$$\begin{aligned}&\Bigg (\frac{1}{\alpha _k\delta _{k-1}}+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}}L_{k,\sigma (t)}\nonumber \\&\le \Theta _k\varphi _{k2}(\epsilon _k,{\bar{\eta }}_{j-2},{\bar{x}}_k,\bar{\hat{\Theta }}_{k-1})z_k^{\frac{2r_n}{r_k}}\nonumber \\&+\frac{\kappa _1}{n+1}\sum _{j=1}^{m}\zeta ^{2r_n}_j+\frac{C_{k1}}{\epsilon _k}, \end{aligned}$$
(36)

where \(\varphi _{k2}=\phi _{k1}+\phi _{k2}\). This completes the proof. \(\square\)

Proof of (22)

By (19), we have

$$\begin{aligned}&\Bigg (\frac{1}{\alpha _k\delta _{k-1}}\nonumber \\&+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}}\bar{L}_k\nonumber \\&\le \frac{1}{\alpha _k} |z_k|^{\frac{2r_n-r_{k+1}}{r_k}} \Bigg ({\bar{H}}_{k,\sigma (t)}(x) + \Bigg (\frac{1}{\alpha _k\delta _{k-1}}\nonumber \\&+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}}\Bigg (\sum _{j=1}^{k-1}\Bigg (\Bigg |\frac{\partial x_k^*}{\partial x_j}\Bigg | {\bar{H}}_{j,\sigma }(x)\nonumber \\&+\Bigg |\frac{\partial x_{k}^{*}}{\partial \hat{\Theta }_j} \dot{\hat{\Theta }}_j\Bigg | +\Bigg |\frac{\partial x_k^*}{\partial x_j}\Bigg ||D_{j,\sigma }x_{j+1}|\Bigg )\Bigg ). \end{aligned}$$
(37)

Defining \({{\tilde{H}}}_j(x)=\max _{1\le l\le S}\{{\bar{H}}_{j, l}(x)\}, 1\le j\le k\), by Lemma 2.2 in [19], in a compact set, we can find a fuzzy system \(\Phi _j^{\top }S_j\) such that \({{\tilde{H}}}_j(x)=\Phi _j^{\top }S_j+\varsigma _j\), where \(|\varsigma _j|\le \iota _j\) is the error. It follows that

$$\begin{aligned} \frac{1}{\alpha _k} |z_k|^{\frac{2r_n-r_{k+1}}{r_k}}{\bar{H}}_{k,\sigma (t)}(x)\le & {} \frac{1}{\alpha _k} |z_k|^{\frac{2r_n-r_{k+1}}{r_k}}|\Phi _k^\top S_k+\varsigma _k| \nonumber \\\le & {} \frac{1}{\epsilon _k}+\frac{1}{\epsilon _k}\iota _k^{\frac{2r_n}{r_{k+1}}} +\Theta _k{{\bar{\varphi }}}_{k1}z_k^{\frac{2r_n}{r_k}}, \end{aligned}$$
(38)

where \({{\bar{\varphi }}}_{k1}=\frac{2r_n-r_{k+1}}{r_n} \big (\frac{r_{k+1}\epsilon _k}{r_n}\big )^{\frac{r_{k+1}}{2r_n-r_{k+1}}}\). Similarly, we have

$$\begin{aligned}&\Bigg (\frac{1}{\alpha _k\delta _{k-1}}+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}}\sum _{j=1}^{k-1}\Bigg |\frac{\partial x_k^*}{\partial x_j} \Bigg |{\bar{H}}_{j,\sigma }(x) \nonumber \\&\le \frac{1}{\epsilon _k}+\frac{1}{\epsilon _k}\sum ^{k-1}_{j=1}\iota _j^{\frac{2r_n}{r_{k+1}}} +\Theta _k{{\bar{\varphi }}}_{k2}z_k^{\frac{2r_n}{r_k}}, \end{aligned}$$
(39)

where \({{\bar{\varphi }}}_{k2}\) denotes a smooth function. Using Lemma 1, it follows that

$$\begin{aligned}&\Bigg (\frac{1}{\alpha _k\delta _{k-1}}+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}}\sum \limits _{j=1}^{k-1}\Bigg |\frac{\partial x_{k}^{*}}{\partial \hat{\Theta }_j}\dot{\hat{\Theta }}_j\Bigg | \nonumber \\&\le \frac{k-1}{\epsilon _k} +\Theta _k{{\bar{\varphi }}}_{k3}z_k^{\frac{2r_n}{r_k}}, \end{aligned}$$
(40)

where \({{\bar{\varphi }}}_{k3}\) denotes a smooth function. Similarly, we obtain

$$\begin{aligned}&\Bigg (\frac{1}{\alpha _k\delta _{k-1}}+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}}\sum _{j=1}^{k-1}\Bigg |\frac{\partial x_k^*}{\partial x_j}\Bigg | |D_{j,\sigma }x_{j+1}| \nonumber \\&\le \frac{c}{2}\sum _{j=1}^{k-1}z_j^{\frac{2r_n}{r_j}}+\frac{2}{\epsilon _k} +\Theta _k{{\bar{\varphi }}}_{k4} z_k^{\frac{2r_n}{r_k}}, \end{aligned}$$
(41)

where \({{\bar{\varphi }}}_{k4}\) is a smooth function. By (37)–(41), and let \(\varphi _{k3}=\sum ^{k}_{j=1}{{\bar{\varphi }}}_{kj}\), we show that (22) holds. \(\square\)

Proof of (23)

For \(1\le j\le k\), defining \(\bar{H}_j({\bar{x}}_j(t-d_k))=\max _{1\le l\le S}\{H_{j,l}({\bar{x}}_k(t-d_k))\}\), we get

$$\begin{aligned}&\Bigg (\frac{1}{\alpha _k\delta _{k-1}}+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}}{\bar{\theta }}{{\tilde{L}}}_k \nonumber \\ {}\le & {} \Bigg (\frac{1}{\alpha _k\delta _{k-1}}+\frac{1}{\alpha _k\delta _k}\Bigg ) |z_k|^{\frac{2r_n-r_{k+1}}{r_k}} {\bar{\theta }}\Bigg ({\bar{H}}_{k} \sum \limits _{j=1}^{k}|x_j(t-d_j)|^{\frac{r_k+\omega }{r_j}} \nonumber \\&+\sum _{j=1}^{k-1}\Bigg |\frac{\partial x_k^*}{\partial x_j}\Bigg |{\bar{H}}_{j} \sum \limits _{l=1}^{j}|x_l(t-d_l)|^{\frac{r_j+\omega }{r_l}}\Bigg ). \end{aligned}$$
(42)

\(\square\)

By using (2), we obtain

$$\begin{aligned}&{\bar{H}}_{k} \sum \limits _{j=1}^{k}|x_j(t-d_j)|^{\frac{r_k+\omega }{r_j}} \nonumber \\&\le \sum \limits _{j=1}^{k}{{\tilde{H}}}_{j}({\bar{z}}_j(t-d_j))|z_j(t-d_l)|^{\frac{r_j+\omega }{r_j}}\nonumber \\&+\sum \limits _{j=1}^{k-1}{{\tilde{H}}}_{j}({\bar{z}}_j(t-d_{j+1}))|z_j(t-d_{j+1})|^{\frac{r_j+\omega }{r_j}}+{\bar{C}}_{k1}. \end{aligned}$$
(43)

where \({{\tilde{H}}}_{j}\) is a smooth function, \({\bar{C}}_{k1}>0\) is a constant. Similarly, there holds

$$\begin{aligned}&|{\bar{H}}_{j}({\bar{x}}_j(t-d_j)) \sum \limits _{l=1}^{j}|x_l(t-d_l)|^{\frac{r_j+\omega }{r_j}} \nonumber \\&\le \sum \limits _{l=1}^{j}{{\hat{H}}}_{l}({\bar{z}}_l(t-d_j))|z_l(t-d_l)|^{\frac{r_j+\omega }{r_l}}\nonumber \\&+\sum \limits _{l=1}^{j-1}{{\hat{H}}}_{l}({\bar{z}}_l(t-d_{l+1}))|z_l(t-d_{l+1})|^{\frac{r_j+\omega }{r_l}}+{\bar{C}}_{j1}, \end{aligned}$$
(44)

where \({\bar{C}}_{j1}>0\) is a constant, \({{\hat{H}}}_{l}\) denotes a smooth function. Also, we obtain

$$\begin{aligned} \Bigg |\frac{\partial x_k^*}{\partial x_j}\Bigg |\le \Bigg |g_{k-1}\cdots g_j\frac{r_k}{r_j}\Bigg |\Bigg (|z_{k-1}|^{\frac{(k-j)\omega }{r_{k-1}}} +\cdots +|z_j|^{\frac{(k-j)\omega }{r_j}}\Bigg ). \end{aligned}$$
(45)

By (42)–(45) and Lemma 1, we show that (23) holds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZG., Zhao, YZ., Sun, W. et al. Dynamic-Gain-Based Adaptive Fuzzy Control for Uncertain Delayed Non-triangular Switched Nonlinear Systems. Int. J. Fuzzy Syst. 24, 3745–3755 (2022). https://doi.org/10.1007/s40815-022-01360-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01360-6

Keywords

Navigation