Skip to main content
Log in

Identify Information Variability in Reciprocal Cognitive Fuzzy Preference Relations by an Additive Transitivity Learning Model

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Cognitive fuzzy preference relations (CFPRs) can represent the preference information of pairwise comparisons of objects through membership and non-membership degrees in an explainable way. Nevertheless, there is a heavy burden of an expert to provide a CFPR. As an important property of preference relations, the additive transitivity has challenging points in terms of weak interpretability of thresholds, inefficient use of information, and unfair treatment of small-value inputs. In addition, it is still a challenge to analyze the information variability of experts in the additive transitivity. In this study, to reduce the burden of experts when providing pairwise preference information, we define the reciprocal cognitive fuzzy preference relation (RCFPR). The additive transitivity of an RCFPR is defined to enhance the utilization efficiency of preference information. To avoid the unfair treatment of small-value inputs, we apply the ceiling restriction in the additive transitivity conditions of an RCFPR. An additive transitivity learning model considering the risk preferences of experts is set up to identify the information variability in RCFPRs. Simulation experiments show that the absolute-error-based objective function is suitable for the additive transitivity learning model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu, Z.S.: Intuitionistic preference relations and their application in group decision making. Inf. Sci. 177, 2363–2379 (2007). https://doi.org/10.1016/j.ins.2006.12.019

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhang, C., Liao, H.C., Luo, L.: Additive consistency-based priority-generating method of q-rung orthopair fuzzy preference relation. Int. J. Intell. Syst. 34, 2151–2176 (2019). https://doi.org/10.1002/int.22137

    Article  Google Scholar 

  3. Jiang, L.S., Liao, H.C.: Cognitive fuzzy sets for decision making. Appl. Soft Comput. 93, 106374 (2020). https://doi.org/10.1016/j.asoc.2020.106374

    Article  Google Scholar 

  4. Jiang, L.S., Liao, H.C.: Cognitive fuzzy preference relations and its applications in decision-making. Appl. Intell. (2022). https://doi.org/10.1007/s10489-021-03056-0

    Article  Google Scholar 

  5. Gong, Z.W., Guo, W.W., Herrera-Viedma, E., Gong, Z.J., Wei, G.: Consistency and consensus modeling of linear uncertain preference relations. Eur. J. Oper. Res. 283, 290–307 (2020). https://doi.org/10.1016/j.ejor.2019.10.035

    Article  MathSciNet  MATH  Google Scholar 

  6. Herrera-Viedma, E., Herrera, F., Chiclana, F., Luque, M.: Some issues on consistency of fuzzy preference relations. Eur. J. Oper. Res. 154, 98–109 (2004). https://doi.org/10.1016/S0377-2217(02)00725-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Liang, Q., Liao, X.W., Liu, J.P.: A social ties-based approach for group decision-making problems with incomplete additive preference relations. Knowl.-Based Syst. 119, 68–86 (2017). https://doi.org/10.1016/j.knosys.2016.12.001

    Article  Google Scholar 

  8. Meng, F.Y., Chen, S.M., Zhang, S.L.: Group decision making based on acceptable consistency analysis of interval linguistic hesitant fuzzy preference relations. Inf. Sci. 530, 66–84 (2020). https://doi.org/10.1016/j.ins.2020.03.070

    Article  MathSciNet  MATH  Google Scholar 

  9. Tang, J., Chen, S.M., Meng, F.Y.: Heterogeneous group decision making in the setting of incomplete preference relations. Inf. Sci. 483, 396–418 (2019). https://doi.org/10.1016/j.ins.2019.01.021

    Article  MathSciNet  MATH  Google Scholar 

  10. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971). https://doi.org/10.1016/S0020-0255(71)80005-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Melkonyan, T., Safra, Z.: Intrinsic variability in group and individual decision making. Manag. Sci. 62, 2457–2764 (2016). https://doi.org/10.1287/mnsc.2015.2255

    Article  Google Scholar 

  12. Regenwetter, M., Dana, J., Davis-Stober, C.P.: Transitivity of preferences. Psychol. Rev. 118, 42–56 (2011). https://doi.org/10.1037/a0021150

    Article  Google Scholar 

  13. Gong, Z.W., Tan, X., Yang, Y.J.: Optimal weighting models based on linear uncertain constraints in intuitionistic fuzzy preference relations. J. Oper. Res. Soc. 70, 1296–1307 (2019). https://doi.org/10.1080/01605682.2018.1489349

    Article  Google Scholar 

  14. Wan, S.P., Wang, F., Dong, J.Y.: Additive consistent interval-valued Atanassov intuitionistic fuzzy preference relation and likelihood comparison algorithm based group decision making. Eur. J. Oper. Res. 263, 571–582 (2017). https://doi.org/10.1016/j.ejor.2017.05.022

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, Z.B., Yang, X.Y., Tu, J.C., Chen, X.: Optimal consistency and consensus models for interval additive preference relations: a discrete distribution perspective. J. Oper. Res. Soc. 71, 1479–1497 (2019). https://doi.org/10.1080/01605682.2019.1621219

    Article  Google Scholar 

  16. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986). https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MATH  Google Scholar 

  17. Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers and decision-making. Int. J. Intell. Syst. 28, 436–452 (2013). https://doi.org/10.1002/int.21584

    Article  Google Scholar 

  18. Yager, R.R., Alajlan, N.: Approximate reasoning with generalized orthopair fuzzy sets. Inf. Fusion 38, 65–73 (2017). https://doi.org/10.1016/j.inffus.2017.02.005

    Article  Google Scholar 

  19. Rivieccio, U.: Neutrosophic logics: Prospects and problems. Fuzzy Sets Syst. 159, 1860–1868 (2008). https://doi.org/10.1016/j.fss.2007.11.011

    Article  MathSciNet  MATH  Google Scholar 

  20. Long, Y.L., Tang, M., Liao, H.C.: Renewable energy source technology selection considering the empathetic preferences of experts in a cognitive fuzzy social participatory allocation network. Technol. Forecast. Soc. Chang. 175, 121317 (2022). https://doi.org/10.1016/j.techfore.2021.121317

    Article  Google Scholar 

  21. Zeng, Z., Jiang, L.S., Liao, H.C.: A cognitive fuzzy evidential reasoning approach for multi-expert multi-criterion decision making. IEEE Trans. Cognit. Dev. Syst. (2022). https://doi.org/10.1109/TCDS.2022.3177414

    Article  Google Scholar 

  22. Bezdek, J.C., Spillman, B., Spillman, R.: A fuzzy relation space for group decision theory. Fuzzy Sets Syst. 1, 255–268 (1978). https://doi.org/10.1016/0165-0114(78)90017-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Tanino, T.: Fuzzy preference orderings in group decision making. Fuzzy Sets Syst. 12, 117–131 (1984). https://doi.org/10.1016/0165-0114(84)90032-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, P.S., Diao, H.Y., Zou, L., Deng, A.S.: Uncertain multi-attribute group decision making based on linguistic-valued intuitionistic fuzzy preference relations. Inf. Sci. 508, 293–308 (2020). https://doi.org/10.1016/j.ins.2019.08.076

    Article  MathSciNet  MATH  Google Scholar 

  25. Chu, J.F., Liu, X.W., Wang, Y.M., Chin, K.S.: A group decision making model considering both the additive consistency and group consensus of intuitionistic fuzzy preference relations. Comput. Ind. Eng. 101, 227–242 (2016). https://doi.org/10.1016/j.cie.2016.08.018

    Article  Google Scholar 

  26. Li, C.C., Dong, Y.C., Xu, Y.J., Chiclana, F., Herrera-Viedma, F., Herrera, F.: An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and fusion: taxonomy and future directions. Inf. Fusion 52, 143–156 (2019). https://doi.org/10.1016/j.inffus.2018.12.004

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Numbers 71771156, 71971145, 72171158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisheng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Zeng, Z. & Jiang, L. Identify Information Variability in Reciprocal Cognitive Fuzzy Preference Relations by an Additive Transitivity Learning Model. Int. J. Fuzzy Syst. 24, 3770–3780 (2022). https://doi.org/10.1007/s40815-022-01364-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01364-2

Keywords

Navigation