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Abstract Owing to the uncertainty and vagueness of

practical decision-making problems, it is more convenient

for decision-makers (DMs) to express evaluation infor-

mation with fuzzy preference relations (FPRs) than precise

numerical values. As two important issues in the decision-

making process with FPRs, improving consistency and

acquiring the priority weights are worth further studying. In

this paper, we first provide an approach for constructing the

FPR with multiplicative consistency, and then an algorithm

of improving consistency is presented to generate an

acceptable FPR, in which the initial evaluation information

is retained to the largest extent through the local adjust-

ment strategy. Then, an input-oriented CCR DEA model is

developed to derive the priority weight vector of alterna-

tives, which is followed that a DEA cross-efficiency model

is constructed to discriminate multiple DEA efficient

DMUs. Subsequently, the complete rankings of alternatives

can be generated by a novel DEA-driven decision-making

method. Finally, a numerical example is proposed to verify

the feasibility and effectiveness of the developed method.

The advantages of the developed method are performed by

comparative analysis and sensitivity analysis.

Keywords Decision-making method � Fuzzy preference

relations � Multiplicative consistency � DEA cross-

efficiency

1 Introduction

As an important activity of daily life, decision-making has

been widely used in many fields [1]. In the real life, owing

to the limitation of the ability of decision makers (DMs)

and the vagueness of the decision-making problems, it is

more difficult for DMs to express preference information

with accurate numerical values [2, 3]. Therefore, more and

more DMs utilize fuzzy values to describe evaluation

information. The notion of fuzzy sets (FSs) is firstly

introduced by Zadeh [4] in 1965, afterwards, intuitionistic

fuzzy sets (IFSs) [5], interval-valued fuzzy sets (IVFSs)

[6], interval-valued intuitionistic fuzzy sets (IVIFSs) [7],

hesitant fuzzy sets (HFSs) [8], interval-valued hesitant

fuzzy sets (IVHSs) [9] and other extended forms of FSs

were successively proposed.

Preference relation, a powerful and important expression

tool, is increasingly attracting the attention of scholars [10],

and is employed by many DMs for expressing their eval-

uation information of one alternative over another. In

existing studies, preference relations mainly have two types

which are fuzzy preference relations (FPRs) [11] and

multiplicative preference relations (MPRs) [12], respec-

tively. In decision-making problems, consistency of pref-

erence relations is an important topic [13], lack of

consistency may cause unreasonable and inconsistent
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outcomes and then influence the selection of optimal

alternative [14].

In terms of measuring consistency of preference rela-

tions, numerous approaches are designed to examine

whether the preference relations are consistent. Zhang et al.

[15] constructed two models to generate the best consis-

tency index (BCI) and the worst consistency index (WCI)

of hesitant fuzzy preference relation (HFPR), and discussed

the average consistency index (ACI) of HFPR, then those

indexes are utilized to reflect the consistency degree of

preference relations. Noticing the self-confidence levels,

Liu et al. [16] established individual consistency index for

evaluating the individual consistency level. Meng et al.

[17] studied the incomplete and inconsistent interval fuzzy

preference relations (IFPRs), and developed programming

models to check whether the IFPRs are of additive and

multiplicative consistency. With respect to additive con-

sistency of probabilistic hesitant fuzzy linguistic preference

relations (PHFLPRs), Wang et al. [18] defined a method

for measuring the additive consistency degree of

PHFLPRs.

To achieve acceptable and consistent preference rela-

tions, many researchers investigated the methods of con-

sistency improvement. Zhang et al. [19] utilized an integer

programming model to enhance the consistency level of

fuzzy linguistic preference relations (FLPRs), and then

produced acceptable consistent FLPRs. Zhang and Meng

[20] established two programming models to repair

inconsistent intuitionistic triangular fuzzy preference rela-

tions (ITFPRs). For reaching the predefined level of con-

sistency, Li and Wang [21] developed an automatic

iterative algorithm to mend the inconsistency of PHFPRs.

According to the theory of graph, Wang and Xu [22]

designed a selective algorithm and a broken circle algo-

rithm to solve the consistency problem.

In addition, it is also important to derive priority weights

of alternatives in the decision-making problems, various

methods are designed for acquiring the priority vector of

alternatives in existing research. In the group decision-

making (GDM) problem with intuitionistic MPRs, Li et al.

[23] developed two algorithms to determine DMs’ priority

weights and overall priority weight vector. Wan et al. [24]

adopted a parametric linear program to generate the col-

lective interval priority weights, and then obtain the order

of alternatives. Xu [25] derived the priority weight inter-

vals from IMPRs by utilizing the error propagation for-

mula, and then yielded the order of alternatives through

sorting the weight intervals. Moreover, data employment

analysis (DEA) is also an efficient method in which how to

generate the priority weight vector of alternatives and

select the optimal alternative. Kao and Liu [26] applied

DEA model to derive the order of alternatives and applied

it to the case of robot selection. Combined IFPRs with

DEA method, Liu et al. [27] proposed a novel DEA model

for the priority weight vector derivation.

However, in traditional DEA model, there is a drawback

that it may produce multiple efficient decision-making

units (DMUs), DEA cross-efficiency can overcome this

disadvantage and further discriminate the DEA efficient

units [28]. It is the superiority that makes DEA cross-ef-

ficiency is widely used in the decision-making process and

exploited in different fields. Considering the relationship

between different DMUs, Cheng et al. [29] developed a

novel cross-efficiency model under the social network

environment, and employed it to evaluate the environ-

mental efficiency of Xiang Jiang River Basin. Based on

Pareto improvement, Wu et al. [30] provided a method to

judge whether the DMUs are Pareto-optimal, and one can

ultimately obtain the efficiency of Pareto-optimal through a

cross-efficiency model, which can heighten the efficiency

of different DMUs. In the problem of multi-attribute

decision making, Liu et al. [31] ranked the alternatives by

utilizing the stochastic DEA cross-efficiency and illustrated

the practicality by an example of evaluating the banks’

sustainable development.

According to the above literature reviews, the consis-

tency of preference relations and the derivation of priority

weight vector are two vital topics in the decision-making

process. Although many researchers developed different

methods to solve those issues, shortcomings still exist in

some methods. For example, Qian and Feng [32] derived

the consistent FPRs by utilizing a convergent iterative

algorithm, but all elements of the original FPR matrix are

changed in the iterative process, and then the adjusted

FPRs with acceptable consistency cannot represent the

evaluation information of DMs. Likewise, Liu et al. [27]’s

method damaged the initial preference values of DM in the

process of consistency-improving, and all elements of the

original FPR are revised. Lee [33] proposed a method to

construct FPRs that satisfy additive consistency and order

consistency, but the method cannot guarantee the con-

structed FPRs are acceptable for DMs, and the obtained

results will decrease the satisfaction degree of DMs. In

addition, the final ranking of alternatives is directly

induced from the additive FPRs in Lee’s [33] method, it

may not generate correct and reliable ranking results.

Therefore, to overcome those limitations, our work

explores a way to generate acceptable FPRs, and only the

most inconsistent elements are revised in the process of

constructing the acceptable FPRs. Additionally, DEA

cross-efficiency is employed to rank the alternatives based

on acceptable multiplicative consistent FPRs. The primary

contributions comprise the following five aspects.

(1) A new approach of constructing multiplicative FPRs

is provided.
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(2) An algorithm for improving consistency is devel-

oped, in which a local adjustment strategy is adopted

to obtain the FPRs with acceptable consistency, and

the original evaluation information of DMs can be

retained to the greatest extent.

(3) To rank different alternatives, an input-oriented CCR

DEA model is constructed.

(4) To further differentiate multiple DEA efficient

DMUs, DEA cross-efficiency is used to determine

the complete ranking of alternatives.

(5) The feasibility and practicality of the proposed

method are proved by employing a numerical

example, comparative analysis and sensitivity

analysis.

The remainder of this paper is structured as follows: In

Sect. 2, we review some preliminary concepts about FPRs,

additive consistency and multiplicative consistency of

FPRs. Section 3 shows a new approach for constructing

FPRs with multiplicative consistency, and provides a

method of measuring consistency level and a consistency-

improving algorithm. In Sect. 4, a CCR DEA model which

is input-oriented is presented. For discriminating the

DMUs with equal weights, DEA cross-efficiency mea-

surement method is also displayed in this section. In

Sect. 5, we apply the proposed method to practical deci-

sion-making problems. Finally, conclusions and future

prospects are highlighted in Sect. 6.

2 Preliminaries

In view of the uncertainty and vagueness of decision-

making environment, DMs are increasingly hard to char-

acterize preference information with crisp values. FPR is

an important tool that can support DMs to portray evalu-

ation information conveniently. In this section, we briefly

describe some prior knowledge about FPRs. Assume that a

collection of alternatives is described as

X ¼ fx1; x2; . . .; xng, and n 2 N, N ¼ f1; 2; . . .; ng.

Definition 1 [35]. A FPR R on a collection of alternatives

X ¼ fx1; x2; � � � ; xng can be denoted by a comparison

matrix R ¼ ðrijÞn�n, and

rij þ rji ¼ 1; rii ¼ 0:5; 8i; j 2 N; ð1Þ

where rij 2 ½0; 1�½0; 1�, which indicates the fuzzy preference
value of alternative xi to xj. If rij ¼ 0:5, then implies that

alternative xi is no different from xj; if rij 2 ð0; 0:5Þ, which
means that xj is better than xi, the greater the rij, the better

alternative xi than xj; if rij ¼ 1, then implies that alternative

xi is completely preferred to xj.

Definition 2 [35]. Let R ¼ ðrijÞn�n be a FPR on X, and

then R ¼ ðrijÞn�n be of additive consistency if it meets the

following additive-transitive property:

rij þ rjk þ rki ¼ rik þ rkj þ rji; i; j; k 2 N; ð2Þ

since rji ¼ 1� rij; rjk ¼ 1� rkj; rki ¼ 1� rik, then we have

rij ¼ rik þ rkj � 0:5; i; j; k 2 N: ð3Þ

Definition 3 [36]. Let R ¼ ðrijÞn�n be a FPR on X, and

then R ¼ ðrijÞn�n be of multiplicative consistency if it

meets the following multiplicative-transitive property:

rij:rjk:rki ¼ rik:rkj:rji; i; j; k 2 N: ð4Þ

Definition 4 [37]. Let R ¼ ðrijÞn�n be a FPR on X, and

R ¼ ðrijÞn�n be of multiplicative consistency, then we have

rij ¼
wi

wi þ wj
; i; j 2 N ð5Þ

where w ¼ ðw1;w2; . . .;wnÞT represents the corresponding

normalized priority weight vector, and

wi � 0;
Pn

i¼1

wi ¼ 1; i 2 N.

Example 1: In some cases, additive transitivity is an

unsuitable property to judge whether the FPRs are consis-

tent. Because it may contradict the preference values on the

½0; 1� scale [38]. Therefore, we adopt multiplicative-tran-

sitive property to model the consistency of FPRs in this

paper.

3 Consistency-Improving Algorithm with FPRs

We first introduce a method that is utilized to construct

FPRs with multiplicative consistency. Then a criterion for

measuring the consistency of FPRs is presented. In the end,

a consistency- improving algorithm combined with a local

adjustment strategy is designed.

3.1 Multiplicative Consistency Construction

Method for FPRs

According to Definition 3, the following theorem can be

obtained.

Theorem 1 R ¼ ðrijÞn�n is a FPR on a collection of

alternatives X ¼ fx1; x2; . . .; xng, then R is of multiplica-

tive consistency if.
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rij ¼
2n�

Pn

l¼1

ril þ 1

4n� 2
Pn

l¼1

ril þ rjl
� �

þ 2

; 8i\j 2 N: ð6Þ

Proof When i ¼ j, we have

rii ¼
2n�

Pn

l¼1

ril þ 1

4n� 2
Pn

l¼1

ril þ rilð Þ þ 2

¼ 0:5; ð7Þ

and

rij þ rji ¼
2n�

Pn

l¼1

ril þ 1

4n� 2
Pn

l¼1

ril þ rjl
� �

þ 2

þ
2n�

Pn

l¼1

rjl þ 1

4n� 2
Pn

l¼1

ril þ rjl
� �

þ 2

¼ 1: ð8Þ

Therefore, R ¼ ðrijÞn�n is a FPR.

In what follows, we prove R ¼ ðrijÞn�n satisfies the

condition of FPR with multiplicative consistency.

Since rij ¼
2n�

Pn

l¼1

rilþ1

4n�2
Pn

l¼1

rilþrjlð Þþ2

, then we have

rij
rji

¼
2n�

Pn

l¼1

ril þ 1

4n�
Pn

l¼1

ril þ rjl
� �

þ 2

�
4n�

Pn

l¼1

ril þ rjl
� �

þ 2

2n�
Pn

l¼1

rjl þ 1

¼
2n�

Pn

l¼1

ril þ 1

2n�
Pn

l¼1

rjl þ 1

; ð9Þ

and

ril � rji
rjl � rli

¼

2n�
Pn

l¼1

rilþ1

4n�
Pn

l¼1

ðrilþrllÞþ2

�
2n�

Pn

l¼1

rllþ1

4n�
Pn

l¼1

ðrjlþrllÞþ2

2n�
Pn

l¼1

rjlþ1

4n�
Pn

l¼1

ðrjlþrllÞþ2

�
2n�

Pn

l¼1

rllþ1

4n�
Pn

l¼1

ðrilþrllÞþ2

¼
2n�

Pn

l¼1

ril þ 1

2n�
Pn

l¼1

rjl þ 1

:

ð10Þ

According to Eqs. (9) and (10), it can be shown that

rij
rji

¼ ril � rlj
rjl � rli

: ð11Þ

Thus,

rij � rjl � rli ¼ ril � rlj � rji: ð12Þ

The proof of Theorem 1 is completed. j

Theorem 1 suggests the necessary conditions of multi-

plicative consistency for FPRs, on the basis of Theorem 1,

the following method for constructing multiplicative FPRs

can be deduced.

Theorem 2 Let R ¼ ðrijÞn�n be an original FPR provided

by a DM, we have

rij ¼

2n�
Pn

l¼1 ril þ 1

4n� 2
Pn

l¼1 ril þ rjl
� �

þ 2
; i\j;

0:5; i ¼ j;
1� rji; i[ j;

8
>><

>>:
ð13Þ

then R ¼ ðrijÞn�nis a FPR with multiplicative consistency.
Based on the above theorems, a multiplicative consis-

tent FPR R ¼ ðrijÞn�n can be generated from an original

FPR R ¼ ðrijÞn�n.

Example 1 Suppose that a DM provides its appraisal

information over four alternatives x1; x2; x3; x4, and then we

can derive an original FPR R ¼ ðrijÞn�n as follows:

R ¼

0:5 0:4 0:6 0:7
0:6 0:5 0:8 0:4
0:4 0:2 0:5 0:9
0:3 0:6 0:1 0:5

0

B
B
@

1

C
C
A:

Based on Theorem 2, we can generate a multiplicative

consistent FPR as follows:

R ¼

0.5000 0:75560.7083 0:6415

0.2444 0:50000.7128 0:6442

0.2917 0:28720.5000 0:6364

0.3585 0:35580.3636 0:5000

0

B
B
B
@

1

C
C
C
A
:

3.2 Consistency Measure for FPRs

For most DMs, providing an absolutely consistent FPR is dif-

ficult in practical decision-making problems.However, lacking

consistency may cause inconsistent evaluation outcomes, it is

necessary to design an algorithm to improve consistency level

of FPRs. To retain DM’s original evaluation information to the

greatest extent, we utilize the local adjustment strategy to

heighten the consistency degree of FPRs.
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Definition 6 [39]. Let R ¼ ðrijÞn�n is a FPR provided by a

DM, and R ¼ ðrijÞn�n is a corresponding multiplicative

consistent FPR, then the distance between R and R is

expressed by the following equation:

dðR;RÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

nðn� 1Þ
Xn

i\j

ðrij � rijÞ2
v
u
u
t ; ð14Þ

where i 6¼ j; i; j 2 N.

Then, the consistency index of R is presented below:

CIðRÞ¼dðR;RÞ; ð15Þ

where CIðRÞ 2 ½0; 1�, the closer the value of CIðRÞ is to 0,

the higher the consistency level of R is. If CIðRÞ ¼ 0, it

means that R is of complete consistency.

Definition 7 Let R ¼ rij
� �

n�n
be a FPR, CI be a prede-

fined threshold value, if

CIðRÞ�CI; ð16Þ

then R is called an acceptable multiplicative consistent

FPR.

3.3 An Algorithm of Improving Consistency

for FPRs

Improving consistency is an important problem in the

decision-making process. Assume that a collection of

alternatives denoted as X ¼ fx1; x2; . . .; xng, R ¼ ðrijÞn�n is

an original FPR provided by a DM. By comparing the

consistency index of FPR with the predefined threshold,

whether the FPR is of acceptable consistency can be

determined. If the FPR is unacceptable consistent, then it

should be adjusted with the following algorithm.

In the process of adjustment, to maintain the DM’s

initial evaluation information to the greatest extent, a local

consistency adjustment method is adopted to enhance the

consistency degree of FPRs, in which only the most

inconsistent element will be adjusted. Let the most incon-

sistent element be ri�j� , where ri�j� � ri�j�
�
�

�
� ¼ max

i\j
rij � rij
�
�

�
�,

and it should be updated in each iteration. The procedures

of consistency-improving are displayed in the following

algorithm.

Algorithm 1

Input An original FPR R = ðrijÞn�n, a predefined

consistency threshold CI, and the adjusted

parameter d, where d 2 ð0; 1Þ.

Output A FPR eR¼ erij
� �

n�n
with

acceptable multiplicative consistency

Step 1 Let iteration t ¼ 0 and

RðtÞ ¼ r
ðtÞ
ij

� �

n�n
= Rð0Þ ¼ rij

� �
n�n

.

Step 2 According to Theorem 2, a FPR R ¼ rij
� �

n�n

with multiplicative consistency is derived.

Step 3 Utilize Eq. (15) to obtain the consistency

index CIðRðtÞÞ. If CIðRðtÞÞ\CI, which means

that R is multiplicative consistent, then output

eR¼ erij
� �

n�n
;

if CIðRðtÞÞ[CI, go to the next step.

Step 4 Find and update the most inconsistent element

ri�j� , then the elements of the adjusted FPR

Rðtþ1Þ ¼ ðrðtþ1Þ
ij Þn�n can be constructed as

follows:

r
ðtþ1Þ
ij ¼

ð1� dÞrðtÞi�j� þ drðtÞi�j� ; i ¼ i�; j ¼ j�;

r
ðtÞ
ij ; otherwise;

1� r
ðtþ1Þ
ji ; i ¼ j�; j ¼ i�;

ð17Þ

8
>>>>>>><

>>>>>>>:

afterward, let t ¼ t þ 1, return the step 2

Step 5 Let eR ¼ RðtÞ. Output a FPR eR¼ erij
� �

n�n
is of

acceptable multiplicative consistency.

Step 6 End.

Remark 2 The adjusted parameter d reflects the degree to

which the initial evaluation information is preserved, the

larger the value of d is, the less the original evaluation

information is retained. Particularly, when d ¼ 0, the initial

preference information of DMs is absolutely maintained. In

the process of consistency improvement, as the value of d
increases, the iteration times of reaching desirable consis-

tency level decrease.

Based on Algorithm 1, the following theorem can be

deduced.

Theorem 3 Let R be an original FPR, d be the adjusted

parameter, fRðtÞg be a sequence of FPR inAlgorithm 1, and

the consistency index of RðtÞ is represented by CIðRðtÞÞ, then
the following formula can be generated at each iteration.

CIðRðtþ1ÞÞ\CIðRðtÞÞ: ð18Þ

123

F. Jin et al.: Multiplicative Consistency and DEA Cross-Efficiency-Driven 605



Proof According to Theorem 2, for 8i\j, we have

r
ðtÞ
ij ¼

2n�
Pn

l¼1

r
ðtÞ
il þ 1

4n� 2
Pn

l¼1

r
ðtÞ
il þ r

ðtÞ
jl

� �
þ 2

; r
ðtþ1Þ
ij

¼
2n�

Pn

l¼1

r
ðtþ1Þ
il þ 1

4n� 2
Pn

l¼1

r
ðtþ1Þ
il þ r

ðtþ1Þ
jl

� �
þ 2

ð19Þ

From Algorithm 1, we have

r
ðtÞ
ij ¼ r

ðtþ1Þ
ij ði\j; i 6¼ i�; j 6¼ j�Þ, therefore, we can obtain

r
ðtÞ
ij ¼ r

ðtþ1Þ
ij . Then, for each iteration t, we have

CIðRðtþ1ÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

nðn� 1Þ
Xn

i\j

ðrðtþ1Þ
ij � r

ðtþ1Þ
ij Þ2

v
u
u
t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

nðn� 1Þ ðrðtþ1Þ
i�j� � r

ðtþ1Þ
i�j� Þ2 þ

Xn

i\j;ði;jÞ6¼ði�;j�Þ
ðrðtþ1Þ

ij � r
ðtþ1Þ
ij Þ2

0

@

1

A

v
u
u
u
t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

nðn� 1Þ ðð1� dÞrðtÞi�j� þ drðtÞi�j� � r
ðtÞ
i�j� Þ

2 þ
Xn

ði;jÞ6¼ði�;j�Þ;i\j

ðrðtÞij � r
ðtÞ
ij Þ

2

0

@

1

A

v
u
u
u
t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

nðn� 1Þ ðð1� dÞðrðtÞi�j� � r
ðtÞ
i�j� ÞÞ

2 þ
Xn

ði;jÞ6¼ði�;j�Þ;i\j

ðrðtÞij � r
ðtÞ
ij Þ

2

0

@

1

A

v
u
u
u
t

\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

nðn� 1Þ ðrðtÞi�j� � r
ðtÞ
i�j� Þ

2 þ
Xn

ði;jÞ6¼ði�;j�Þ;i\j

ðrðtÞij � r
ðtÞ
ij Þ

2

0

@

1

A

v
u
u
u
t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

nðn� 1Þ
Xn

i\j

ðrðtÞij � r
ðtÞ
ij Þ

2

v
u
u
t

¼ CIðRðtÞÞ:

ð20Þ

The proof of Theorem 3 is completed. j

The following inference can be obtained from

Theorem 3.

Corollary 1 For each iteration t, we have

CIðRðtÞÞ[CIðRðtþ1ÞÞ, and CIðRðtÞÞ[ 0. Consequently, the

sequence fCIðRðtÞÞg is monotonically decreasing and has

lower bounds.

Example 2 Following Example 1, we know that R is a

FPR with multiplicative consistency. Let consistency

threshold CI ¼ 0:21, adjusted parameter d ¼ 0:2, then the

following acceptable multiplicative consistent FPR eR can

be yielded from Algorithm 1:

Input: An original FPR R ¼ ðrijÞn�n.

Output The final ranking results and the best

alternative ~x:

Stage I Consistency-improving process

Step 1 Based on the given original FPR

R ¼ ðrijÞn�n, we utilize Algorithm 1

to improve the consistency degree of

original FPR, and then we can derive

an acceptable multiplicative

consistent FPR eR ¼ ð erijÞn�n:

Stage II Priority weights and efficiency values

determining process

Step 2 Based on the model (21) and

Theorem 4, the priority weight

vector w ¼ ðw1;w2; � � � ;wnÞT of

alternatives can be generated. If the

weights of different alternatives are

equal, then go to step 3; otherwise,

skip to step 4.

Step 3 Based on models (29) and (30),

Eqs. (31) and (32), calculating the

DEA cross-efficiency values of

different alternatives.

Stage III The best alternative selecting process

Step 4 Generate the final ranking results and

select the best alternative. If there are

some alternatives with equal weights,

the alternative with maximum cross-

efficiency is picked; otherwise, we

select the alternative with maximum

weight.

eR ¼

0:5 0:4711 0:6 0:7
0:5289 0:5 0:8 0:4
0:4 0:2 0:5 0:9
0:3 0:6 0:1 0:5

0

B
B
@

1

C
C
A:

4 DEA-Driven Decision-Making Method
with FPRs

This section explores how DEA can be employed to gen-

erate ranking results of alternatives and establish a deci-

sion-making method. First, an input-oriented DEA model is
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constructed for deriving the priority weights of alternatives.

Then, when the weights of different alternatives are equal,

a DEA cross-efficiency measurement method is introduced

to differentiate DMUs. Finally, based on the input-oriented

DEA model and DEA cross-efficiency, a DEA-driven

decision-making method with FPRs is designed.

4.1 Generating Priority Weights Based on DEA

In this subsection, we provide a DEA model which is input-

oriented to obtain the priority weight vector.

We denote X ¼ fx1; x2; . . .; xng as a collection of alter-

natives, eR ¼ ð erijÞn�n is an acceptable multiplicative con-

sistent FPR on X. In the alternative selecting process, each

alternative xi represents a DMU, and each column of eR ¼
ð erijÞn�n represents an input. Then we evaluate each alter-

native xi by constructing an input-oriented CCR DEA

model. In the following, the virtual outputs take the value

of 0:5 for all alternatives [40].

min hi

s:t:

Xn

p¼1
upfrpk � hifrik ; k 2 N;

Xn

p¼1
0:5up � 0:5;

up � 0; p 2 N;

hi is free:

8
>>>>>>><

>>>>>>>:

ð21Þ

where up indicates the input weight of the corresponding

DMUp, the efficiency score of xp can be obtained by

minimizing inputs with limited outputs. h�i is the optimal

solution of model (21), which represents the efficiency

score of xi, and if h�i\1, which means that xi is inefficient.

According to model (21), the following theorem can be

deduced to generate the priority weights.

Theorem 4 Let R¼ðrijÞn�n be a multiplicative consistent

FPR, the optimal solution of model (21) is h�i , r : N ! N is

a permutation, and we have h�rð1Þ � h�rð2Þ � � � � � h�rðnÞ, then

the generated priority weights meet that

wrð1Þ �wrð2Þ � � � � �wrðnÞ, and

(1) wrðnÞ ¼ 1

�
Pn

i¼1

h�rðnÞ
2h�rðiÞ�h�rðnÞ

(2) wrðiÞ ¼
h�rðnÞ�wrðnÞ
2h�rðiÞ�h�rðnÞ

i 2 N

Proof Due to R ¼ ðrijÞn�n is a FPR with multiplicative

consistency, from Eq. (5), we know that there is a priority

weight vector w ¼ ðw1;w2; � � � ;wnÞT , and it satisfies

rij ¼ wi

wiþwj
, where wi [ 0;

Pn

i¼1

wi ¼ 1. Thus, model (21) can

be transformed into the following model:

minhi

s:t:

Xn

p¼1
up

wp

wpþwk
�hi

wi

wiþwk
;k2N;

Xn

p¼1
up�1;

up�0;p2N;

hi is free:

8
>>>>>>><

>>>>>>>:

ð22Þ

Generally speaking, we assume that

w1 �w2 � � � � �wn, then for 8i 2 N, wi

wiþwk
� 0. Thus, the

objective function hi is minimal only if the constraint
Pn

p¼1

up � 1 turns into
Pn

p¼1

up ¼ 1.

Moreover, since w1 �w2 � � � � �wn, we have

0� w1

w1þwk
� w2

w2þwk
� � � � � wn

wnþwk
for 8k 2 N. Thus, the

optimal solutions are fu�1; u�2; . . .; u�ng ¼ f1; 0; . . .; 0g, then
the first constraint of the model (22) is transformed into
w1

w1þwk
� hi

wi

wiþwk
; k 2 N, which means that hi � w1ðwiþwkÞ

wiðw1þwkÞ.

Hence, the optimal solution of model (22) can be deter-

mined as follows:

h�i ¼ max
k2N

w1ðwi þ wkÞ
wiðw1 þ wkÞ

	 


¼ w1ðwi þ wnÞ
wiðw1 þ wnÞ

¼ w1

w1 þ wn
ð1þ wn

wi
Þ: ð23Þ

From Eq. (23) and w1 �w2 � � � � �wn, we can obtain

h�1 � h�2 � � � � � h�n, therefore

max
i2N

fh�i g ¼h�1 ¼
w1ðw1 þ wnÞ
w1ðw1 þ wnÞ

¼ 1;

min
i2N

fh�i g ¼h�n ¼
w1ðwn þ wnÞ
wnðw1 þ wnÞ

¼ 2w1

w1 þ wn
:

ð24Þ

According to Eqs. (23) and (24), we have

2h�i ¼
2w1ðwi þ wnÞ
wiðw1 þ wnÞ

¼ 2w1

w1 þ wn
� wi þ wn

wi

¼ min
i2N

fh�i g �
wi þ wn

wi
: ð25Þ

Then, we have.

wi ¼
wn �min

i2N
fh�i g

2h�i �min
i2N

fh�i g
ð26Þ

Therefore,

1 ¼
Pn

i¼1

wi ¼
Pn

i¼1

wn�min
i2N

fh�i g
2h�i �min

i2N
fh�i g

¼ wn �
Pn

i¼1

min
i2N

fh�i g
2h�i �min

i2N
fh�i g

, then we

obtain that

wn ¼ 1

,
Xn

i¼1

min
i2N

fh�i g

2h�i �min
i2N

fh�i g
ð27Þ
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The proof of Theorem 4 is completed. j

Remark 3 We employ the input-oriented CCR DEA

model to generate the weights of alternatives for the fol-

lowing reasons: firstly, DEA model is a great method for

selecting most efficient DMU, and it is widely used in

many fields. Secondly, the input-oriented CCR DEA model

is suitable for FPR. According to the features of FPR, we

can regard each alternative as a DMU, and view each

column of FPR as an input. Consequently, the input-ori-

ented CCR DEA model can be utilized to derive the pri-

ority weights of alternatives. Lastly, the difference between

our CCR DEA model and the existing literature is that this

DEA model is input-oriented, while most of the existing

literature is output-oriented, such as [27, 34, 41]. Deriving

the weights of alternatives by input-oriented CCR DEA

model not only enriches the existing research, but also

provides a simple and convenient way to generate the

rankings of alternatives.

Example 3 Following Example 2, we can obtain the

priority weights by utilizing model (21) from the FPR eR.

And then the efficiency score of the alternative x1 can be

derived from the following model (28):

min h1

s:t:

0:5u1 þ 0:5289u2 þ 0:4u3 þ 0:3u4 � 0:5h1;

0:4711u1 þ 0:5u2 þ 0:2u3 þ 0:6u4 � 0:4711h1;

0:6u1 þ 0:8u2 þ 0:5u3 þ 0:1u4 � 0:6h1;

0:7u1 þ 0:4u2 þ 0:9u3 þ 0:5u4 � 0:7h1;

u1 þ u2 þ u3 þ u4 � 1;

ui � 0;

h1 is free:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð28Þ

The optimal solution of model (28) is h�1 ¼ 0:8725.

Similarly, alternatives x2, x3 and x4 can also be evaluated,

and h�2 ¼ 1; h�3 ¼ 1; h�4 ¼ 1, then we have h�1\h�2 ¼
h�3 ¼ h�4. According to Theorem 4, we have w1 [w2 ¼
w3 ¼ w4, and the priority weights of the four alternatives

can be calculated as follows: w ¼ fw1;w2;w3;w4gT ¼
f0:2764; 0:2139; 0:2139; 0:2139gT .

4.2 Deriving Complete Ranking Based on DEA

Cross-Efficiency

From Example 3, it is observed that the weights of different

DMUs may same, which means that there exist multiple

DEA efficient DMUs [41], and we do not derive the

complete ranking of alternatives. Therefore, to discriminate

multiple DEA efficient DMUs, DEA cross-efficiency is

used to further measure the efficiencies of DMUs.

Firstly, we establish a CCR-DEA model to generate the

self-evaluation efficiency of DMUPðp 2 NÞ based on the

derived acceptable multiplicative consistent FPRs, and

each alternative represents a DMU, each column of eR ¼
ð erijÞn�n represents an output. At the same time, the virtual

input value of all DMUs is taken as 0:5. The CCR-DEA

model is established as follows:

maxEii ¼
Xn

p¼1
upifrip

s:t:

Xn

p¼1
upifrjp � 0:5vi; j 2 N;

0:5vi ¼ 1;

upi � 0; p 2 N:

8
>>><

>>>:

ð29Þ

where vi represents the weight of input, upiðp 2 NÞ denotes
the weight of output, and Eii indicates the self-evaluated

efficiency score of DMUi.

Then, based on the optimal solution of model (29)

E�
ii ¼ fE�

11;E
�
22; � � � ;E�

nng, the following DEA cross-effi-

ciency model is established:

min
Xn

j¼1
dji

s:t:

Xn

p¼1
upið

Xn

j¼1
frjpÞ þ vix ¼ n; i 2 N;

Xn

p¼1
upifrip � E�

iivix ¼ 0; i 2 N;

Xn

p¼1
upifrjp � E�

jjvixþ dji ¼ 0; i; j 2 N;

upi; vi; dji � 0; i; j; p 2 N:

8
>>>>>>><

>>>>>>>:

ð30Þ

where x represents the virtual input variable of each DMU,

i.e., x ¼ 0:5, the weights of associated inputs and outputs

are expressed as vi, upi, the deviation variable is denoted as

dji. With the optimal weights fu�1i; u�2i; � � � ; u�ni; v�i g of

DMUi, the self-evaluation efficiency and peer-evaluation

efficiency of DMUi can be obtained as follows:

Eij ¼
Pn

p¼1 u
�
pifrjp

v�i x
; i 6¼ j; i; j 2 N ð31Þ

According to the above analysis, we can obtain the

following cross-efficiency matrix E ¼ ðEijÞn�n, which is

composed of self-evaluation efficiency values and peer-

evaluation efficiency values.

E ¼

E11 E12 � � � E1n

E21 E22 � � � E2n

..

. ..
. . .

. ..
.

En1 En2 � � � Enn

2

6
6
6
4

3

7
7
7
5
:

Eventually, we can derive the final efficiency of DMUj

by a weighted arithmetic average operator,
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Ej ¼
1

n

Xn

i¼1

Eij; j 2 N ð32Þ

The final efficiency of the alternative xj is arithmetic

average of the j column of matrix E, then we can acquire

the complete rankings by sorting the efficiency values of all

alternatives in descending order.

Example 4 Following example 3, we can utilize model

(29) to obtain the optimal self-evaluated efficiency

E�
ii ¼ ðE�

11;E
�
22;E

�
33;E

�
44Þ ¼ ð1; 1; 1; 1Þ, then the cross-effi-

ciency matrix is generated by using the model (30) and

Eq. (31),

E ¼

1.0000 0:82170.8458 1:0000

1.0000 1:00000.6597 1:0000

1.0000 0:73401.0000 0:8998

1.0000 0:82170.8458 1:0000

2

6
6
6
4

3

7
7
7
5
:

Then, we use Eqs. (31) and (32) to calculate self-eval-

uation efficiency and peer-evaluation efficiency of four

alternatives, the final efficiency scores are

E ¼ ðE1;E2;E3;E4Þ ¼ ð1; 0.8443,0.8378,0:9749Þ, then the

ranking result is x1	x4	x2	x3. Consequently, the best

alternative is x1, which has the maximum cross-efficiency.

4.3 DEA-Driven Decision-Making Method

with FPRs

In the light of the above analysis, we develop the following

DEA-driven decision-making method (Algorithm 2), which

can improve the consistency level of FPRs and determine

the complete rankings of alternatives.

According to consistency-improving and DEA evalua-

tion method, the above decision-making process is pre-

sented in Fig. 1.

Decision makers

An original FPR

Multiplicative consistent FPR

Acceptable or not

Acceptable multiplicative 
consistent FPR

Consistency improvement

Derive the priority weight

Weights are equal or not

Select alternative

The best alternative

No

No

Yes

Calculate the consistency 
index

DEA cross-efficiencyYes

Algorithm 1

Models(29),(30)
Eqs.(31),(32)

Alternative selecting 
process

Consistency-improving 
process

Priority weights and 
efficiency values 
deriving process

Fig. 1 DEA-driven decision-making method with FPRs
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Algorithm 2

R ¼

0:5 0:75 0:65 0:6
0:25 0:5 0:6 0:7
0:35 0:4 0:5 0:9
0:4

0:2

0:3

0:45

0:1

0:32

0:5

0:28

0:8
0:55
0:68
0:72

0:5

0

B
B
B
B
@

1

C
C
C
C
A
:

Next, Algorithm 2 is adopted for generating the rankings of

alternatives. Let consistency threshold CI ¼ 0:1, adjusted

parameter d ¼ 0:2, iteration t ¼ 0. From Theorem 2, a

multiplicative consistent FPR is yielded which is presented

below:

R ¼

0:5000 0:7549 0:7906 0:6778
0:2451 0:5000 0:7540 0:6583
0:2094 0:2460 0:5000 0:6642
0:3222

0:3529

0:3417

0:3684

0:3358

0:3637

0:5000

0:3790

0:6471
0:6316
0:6363
0:6210

0:5000

0

B
B
B
B
@

1

C
C
C
C
A
:

Then, Eqs. (14) and (15) are applied to acquire the

consistency index, where CIðRð0ÞÞ ¼ 0:1219. Due to

CIðRð0ÞÞ[CI ¼ 0:1, which signifies the current consis-

tency level is unacceptable, the consistency improvement

process is executed. Since

max
i\j

r
ð0Þ
ij � r

ð0Þ
ij

�
�
�

�
�
� ¼ r

ð0Þ
34 � r

ð0Þ
34

�
�
�

�
�
� ¼ 0:2358, the most incon-

sistent element r35 should be revised by Eq. (17), and the

following updated FPR can be obtained.

Rð1Þ ¼

0:5 0:75 0:65 0:6
0:25 0:5 0:6 0:7
0:35 0:4 0:5 0:8528
0:4

0:2

0:3

0:45

0:1472

0:32

0:5

0:28

0:8
0:55
0:68
0:72

0:5

0

B
B
B
B
@

1

C
C
C
C
A
:

By Eqs. (14) and (15), the adjusted consistency index

CIðRð1ÞÞ ¼ 0:1134[CI, the consistency level remains

unacceptable. Therefore, the FPR Rð1Þ should be further

modified. In the same way, the acceptable multiplicative

consistent FPR Rð4Þ can be generated when t ¼ 4, and the

consistency index CIðRð4ÞÞ ¼ 0:0996\0:1.

Rð4Þ ¼

0:5 0:75 0:65 0:6
0:25 0:5 0:6 0:7
0:35 0:4 0:5 0:7849

0:4

0:2306

0:3

0:45

0:2151

0:32

0:5

0:28

0:7694
0:55
0:68
0:72

0:5

0

B
B
B
B
@

1

C
C
C
C
A
:

Subsequently, the efficiency values of alternatives can

be derived with model (21), i.e.,

h�i ¼ð0:6499; 0.9224, 0:9215; 1; 1Þ. Then, according to

Theorem 4, the priority weights of alternatives are

w ¼ ð0:3277; 0.1782, 0:1785; 0.1578, 0:1578ÞT . Due to

the weights of alternatives x4 and x5 are identical, models

(29) and (30) are employed to discriminate alternatives and

generate the final rankings.

By running models (29) and (30), the optimal weights of

inputs and outputs are acquired, and the following cross-

efficiency matrix is constructed.

E ¼

1.0000 0:83861.0000 0:90770.5997

1.0000 1:00001.0000 0:59850.4985

1.0000 0:83861.0000 0:90770.5997

1.0000 0:71480.8838 0:93580.6499

1.0000 0:71480.8838 0:93580.6499

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

Thus, the final efficiency scores of alternatives are

E ¼ ðE1; E2; E3; E4; E5Þ ¼ ð1; 0.8214, -
, and the ranking result is x1	x3	x4	x2	x5.

5 Numerical Example and Model Discussion

This section offers a practical example for illustrating the

feasibility and practicability of the decision-making

method, and then comparative analysis is conducted to

highlight the merits of the developed method. Finally,

sensitivity analysis is utilized to discuss the influence of

essential parameters on the rankings of alternatives.

5.1 Numerical Example

Owning to complexity, suddenness and destructiveness,

emergency events not only threaten the life safety of

public, but also lead to huge economic and property losses

[42]. In recent years, as the frequent occurrence of emer-

gency events, such as COVID-19, waterlogging, earth-

quakes, and others, many researchers are absorbed in

emergency decision-making [43, 44]. In the process of

emergency management, sufficient material supply plays a

pivotal and important role in guarantying the life health of

public and maintaining social order. Due to the lack of

emergency events information and the urgency of decision-

making time, how to quickly and accurately deliver goods

to victims is significant when emergencies happened. To

safeguard public safety and reduce the damages of emer-

gencies to society, it is necessary to set up temporary

warehouse of emergency materials, which can cut down the

time of emergency goods dispatched to demand points and

improve the efficiency of emergency decision-making.

Therefore, selecting an optimal location of temporary

warehouse for emergency materials deserves further study.

To improve the efficiency of preventing and coping with

emergency events, we need to choose an optimal storage

position for emergency materials. After investigation and

consideration of various factors, we assume that there are

four alternatives which are denoted as X ¼ fx1; x2; x3; x4g.
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The evaluation information of four temporary warehouse

locations is given by a DM and expressed as a FPR

R ¼ ðrijÞ4�4, the detailed information of the FPR R is as

follows:

R ¼

0:5 0:3 0:6 0:7
0:7 0:5 0:8 0:4
0:4 0:2 0:5 0:6
0:3 0:6 0:4 0:5

0

B
B
@

1

C
C
A:

We set the consistency threshold CI ¼ 0:135, and the

adjusted parameter d ¼ 0:2 [34]. In the following, we uti-

lize the established decision-making method to derive the

ranking results and select an optimal temporary position

from four alternatives.

Stage I Consistency-Improving Process

Step 1 Let iteration t ¼ 0 and Rð0Þ ¼ R ¼ rij
� �

4�4
,

CI ¼ 0:135 and d ¼ 0:2, based on the original

FPR Rð0Þ ¼ ðrð0Þij Þ4�4, we can utilize

Theorem 2 to obtain multiplicative consistent

FPR R ¼ ðrijÞ4�4 as follows:

R ¼

0.5000 0:76670.6635 0:6765

0.2333 0:50000.6735 0:6875

0.3365 0:32650.5000 0:6636

0.3235 0:31250.3364 0:5000

0

B
B
B
@

1

C
C
C
A
:

Then, we calculate the consistency index of

the original FPR Rð0Þ by using the Eqs. (14)

and (15), we have

CIðRð0ÞÞ ¼ dðRð0Þ;RÞ ¼ 0:2328[CI ¼ 0:135, which

means that Rð0Þ is a FPR with unacceptable multiplicative

consistency. Therefore, we should improve the consistency

level of Rð0Þ. Because

r
ð0Þ
12 � r

ð0Þ
12

�
�
�

�
�
� ¼ 0:4667 ¼ max

i\j
r
ð0Þ
ij � r

ð0Þ
ij

�
�
�

�
�
�, r

ð0Þ
12 is the most

inconsistent element of Rð0Þ. After that, Eq. (17) is adopted

to adjust r
ð0Þ
12 , we can obtain a new element

r
ð1Þ
12 ¼ ð1� 0:2Þrð0Þ12 þ 0:2r

ð0Þ
12 ¼ 0:3933r

ð1Þ
12 . Thus, the fol-

lowing adjusted FPR is generated:

Rð1Þ ¼

0:5 0:3933 0:6 0:7
0:6067 0:5 0:8 0:4
0:4 0:2 0:5 0:6
0:3 0:6 0:4 0:5

0

B
B
@

1

C
C
A:

We utilize Eqs. (14) and (15) to calculate the consistency

index of adjusted FPR, and then we can obtain

CIðRð1ÞÞ ¼ dðRð1Þ;RÞ ¼ 0:2028[CI ¼ 0:135, Rð1Þ ¼
ðrð1Þij Þ4�4 is unacceptable multiplicative FPR. As

r
ð1Þ
12 � r

ð1Þ
12

�
�
�

�
�
� ¼ 0:3734 ¼ max

i\j
r
ð1Þ
ij � r

ð1Þ
ij

�
�
�

�
�
�, r

ð1Þ
12 is the most

inconsistent element of Rð1Þ and it should be revised. Then,

we can obtain the new element r
ð2Þ
12 ¼ð1� 0:2Þ

r
ð1Þ
12 þ 0:2r

ð1Þ
12 ¼ 0:4680, the adjusted FPR Rð2Þ ¼ ðrð2Þij Þ4�4

as follows:

Rð2Þ ¼

0:5 0:4680 0:6 0:7
0:5320 0:5 0:8 0:4
0:4 0:2 0:5 0:6
0:3 0:6 0:4 0:5

0

B
B
@

1

C
C
A:

We utilize Eqs. (14) and (15) to calculate the consistency

index of adjusted FPR, and then we can obtain

CIðRð2ÞÞ ¼ dðRð2Þ;RÞ ¼ 0:1810[CI ¼ 0:135, which

indicates Rð2Þ is of unacceptable consistency. Due to

r
ð2Þ
12 � r

ð2Þ
12

�
�
�

�
�
� ¼ 0:2987 ¼ max

i\j
r
ð2Þ
ij � r

ð2Þ
ij

�
�
�

�
�
�, r

ð2Þ
12 is the most

inconsistent element of Rð2Þ, and then the new element is

derived by using Eq. (17), we have

r
ð3Þ
12 ¼ ð1� 0:2Þrð2Þ12 þ 0:2r

ð2Þ
12 ¼ 0:5277, the adjusted FPR

Rð3Þ ¼ ðrð3Þij Þ as follows:

Rð3Þ ¼

0:5 0:5277 0:6 0:7
0:4723 0:5 0:8 0:4
0:4 0:2 0:5 0:6
0:3 0:6 0:4 0:5

0

B
B
@

1

C
C
A:

Since CIðRð3ÞÞ ¼ dðRð3Þ;RÞ ¼ 0:1665[CI ¼ 0:135, Rð3Þ

is of unacceptable consistency. As

r
ð3Þ
24 � r

ð3Þ
24

�
�
�

�
�
� ¼ 0:2875 ¼ max

i\j
r
ð3Þ
ij � r

ð3Þ
ij

�
�
�

�
�
�, r

ð3Þ
24 is the most

inconsistent element of Rð3Þ, and then we can acquire the

new element by using Eq. (17), we have

r
ð4Þ
24 ¼ ð1� 0:2Þrð3Þ24 þ 0:2r

ð3Þ
24 ¼0:4575, the adjusted FPR

Rð4Þ ¼ ðrð4Þij Þ4�4 as follows:

Rð4Þ ¼

0:5 0:5277 0:6 0:7
0:4723 0:5 0:8 0:4775
0:4 0:2 0:5 0:6
0:3 0:5225 0:4 0:5

0

B
B
@

1

C
C
A:

As CIðRð4ÞÞ ¼ dðRð4Þ;RÞ ¼ 0:1498[CI ¼ 0:135, Rð4Þ is

of unacceptable consistency. Owing to

r
ð4Þ
12 � r

ð4Þ
12

�
�
�

�
�
� ¼ 0:2390 ¼ max

i\j
r
ð4Þ
ij � r

ð4Þ
ij

�
�
�

�
�
�, r

ð4Þ
12 is the most
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inconsistent element of Rð4Þ, and then the new element is

obtained by using Eq. (17), we have

r
ð5Þ
12 ¼ ð1� 0:2Þrð4Þ12 þ0:2r

ð4Þ
12 ¼ 0:5755, the adjusted FPR

Rð5Þ ¼ ðrð5Þij Þ4�4 as follows:

Rð5Þ ¼

0:5 0:5755 0:6 0:7
0:4245 0:5 0:8 0:4775
0:4 0:2 0:5 0:6
0:3 0:5225 0:4 0:5

0

B
B
@

1

C
C
A:

Since CIðRð5ÞÞ ¼ dðRð5Þ;RÞ ¼ 0:1325\0:135, Rð5Þ ¼
ðrð5Þij Þ4�4 is of acceptable consistency, the iteration process

terminates at this step. Thus, the acceptable multiplicative

consistent FPR eR ¼ ð erijÞ4�4 ¼ Rð5Þ is as follows:

eR ¼

0:5 0:5755 0:6 0:7
0:4245 0:5 0:8 0:4775
0:4 0:2 0:5 0:6
0:3 0:5225 0:4 0:5

0

B
B
@

1

C
C
A:

For convenience, the consistency index CIðRðtÞÞ, the most

inconsistent element ri�j� and the adjusted FPR for each

iteration are presented in Table 1.

Stage IIPriority weight vector deriving process

Step 2 Based on the acceptable multiplicative

consistent FPR eR ¼ ð erijÞ4�4 derived from

stage I, we utilize model (21) to obtain the

efficiency scores of four alternatives,

respectively, the efficiency scores are

h� ¼ ðh1; h2; h3; h4Þ ¼ ð0:7516; 1; 1; 1Þ:Then,
we utilize Theorem 4 to obtain the priority

weights as follows:

w ¼ ð0:3562; 0:2146; 0:2146; 0:2146ÞT .
Since there exist multiple efficient DMUs

from the above result, we cannot obtain a

complete ranking among those alternatives

whose weights are same. Therefore, we go to

step 3 and employ DEA cross-efficiency to

further discriminate DMUs and generate the

final rankings.

Step 3 On the basis of the acceptable FPR with

multiplicative consistency eR ¼ ð erijÞ4�4, we

calculate the self-evaluated efficiency scores

by using model (29), and then we have

E�
ii ¼ðE�

11;E
�
22;E

�
33;E

�
44Þ ¼ ð1; 1; 0:8571; 0:9048Þ. Next,

we use model (30) and Eq. (31) to obtain the cross-

efficiency matrix as follows:

Table 1 The specific iteration

processes
Iteration (t) CI(R(t)) ri�j� RðtÞ

0 0.2328 r12

Rð0Þ ¼

0:5 0:3 0:6 0:7
0:7 0:5 0:8 0:4
0:4 0:2 0:5 0:6
0:3 0:6 0:4 0:5

0

B
B
@

1

C
C
A

1 0.2018 r12

Rð1Þ ¼

0:5 0:3933 0:6 0:7
0:6067 0:5 0:8 0:4
0:4 0:2 0:5 0:6
0:3 0:6 0:4 0:5

0

B
B
@

1

C
C
A

2 0.1810 r12

Rð2Þ ¼

0:5 0:4680 0:6 0:7
0:5320 0:5 0:8 0:4
0:4 0:2 0:5 0:6
0:3 0:6 0:4 0:5

0

B
B
@

1

C
C
A

3 0.1665 r24

Rð3Þ ¼

0:5 0:5277 0:6 0:7
0:4723 0:5 0:8 0:4
0:4 0:2 0:5 0:6
0:3 0:6 0:4 0:5

0

B
B
@

1

C
C
A

4 0.1498 r12

Rð4Þ ¼

0:5 0:5277 0:6 0:7
0:4723 0:5 0:8 0:4775
0:4 0:2 0:5 0:6
0:3 0:5225 0:4 0:5

0

B
B
@

1

C
C
A

5 0.1325 –

Rð5Þ ¼

0:5 0:5755 0:6 0:7
0:4245 0:5 0:8 0:4775
0:4 0:2 0:5 0:6
0:3 0:5225 0:4 0:5

0

B
B
@

1

C
C
A
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E ¼

1.0000 1:00000.8456 0:6911

1.0000 1:00000.8456 0:6911

1.0000 0:68330.8571 0:7142

1.0000 0:87480.3538 0:9048

0

B
B
B
@

1

C
C
C
A
:

Then, we can obtain the final efficiency scores of four

temporary warehouse locations by utilizing Eq. (32), which

are E ¼ ðE1;E2;E3;E4Þ ¼ ð1; 0.8895, 0:7255; 0.7503):
Stage IIIThe best alternative selecting process

Step 4 From Stage II, we know that

E1 \E2 \E4 \E3, then the ranking results

of four alternatives are x1	x2	x4	x3:

Therefore, the optimal location of emergency

materials is x1:

5.2 Comparative Analysis

In this subsection, the comparison between the existing

method and our developed method is displayed to verify

the feasibility and effectiveness of our method.

(1) Now, we utilize the Algorithm and the priority

generation method proposed by Qian and Feng [32] to

solve the problem, the details are as follows.

First, we use the Algorithm in [32] to obtain the

acceptable FPR, the steps are as follows:

Step 1 Let Bð0Þ = (b
ð0Þ
ij Þ4�4 ¼ R, iteration k ¼ 0,

adjusted parameter a ¼ 0:8, and threshold

d ¼ 0:135.

Step 2 We can obtain the FGBIðBð0ÞÞ ¼ 0:167 by

employing the following Quadratic

programming (QP) model in [32], and the

weight vector

v ¼ ðv1; v2; v3; v4ÞT ¼ ð0:3; 0:45; 0:1;0:15ÞT
can also be obtained.

minFGCI ¼ 2

ð4� 1Þð4� 2Þ
X

i\j

ð2bij � vi � vjÞ2

s:t:
v1 þ v2 þ v3 þ v4 ¼ 1

v1; v2; v3; v4 � 0

(

Step 3 Since FGBIðBð0ÞÞ ¼ 0:167[ d ¼ 0:135,

which means that Bð0Þ is unacceptable FPR.

Step 4 We need to adjust all elements of FPR Bð0Þ by
using Eq. (10) in [32]. Therefore, we can

obtain the adjusted FPR Bð1Þ ¼ ðbð1Þij Þ4�4 as

follows:

Bð1Þ ¼

0:5 0:325 0:6 0:675
0:675 0:5 0:775 0:45
0:4 0:225 0:5 0:575

0:325 0:55 0:425 0:5

0

B
B
@

1

C
C
A

Step 5: Let k ¼ 1, we can calculate the FGBIðBð1ÞÞ ¼
0:1067 by using the QP model in [32], and the

weight vector is

v ¼ ðv1; v2; v3; v4ÞT ¼ ð0:3; 0:45; 0:1; 0:15ÞT .
As FGBIðBð1ÞÞ ¼0:1067\0:135, it means

that Bð1Þ is satisfactory consistency and Bð1Þ is
of acceptable consistency.

Step 6 Output the following modified

acceptable consistent FPR:

Bð1Þ ¼

0:5 0:325 0:6 0:675
0:675 0:5 0:775 0:45
0:4 0:225 0:5 0:575

0:325 0:55 0:425 0:5

0

B
B
@

1

C
C
A.

To check the effectiveness of modification,

the criteria of modification effectiveness

should be calculated. We have

d
ð1Þ
1 ¼ 0:025\0:2, d

ð1Þ
2 ¼ 0:025\0:1.

Therefore, the modification is regarded as

acceptable.

Step 7 We utilize the priority generation method of

[32] to derive the interval weights based on

the FPR Bð1Þ and threshold d. We can generate

the interval weights of four alternatives by

using the nonlinear programming model in

[32]. Then the following interval weights of

four alternatives can be derived:

½vL1 ; vU1 � ¼ ½0:1738; 0:4262�; ½vL2 ; vU2 � ¼ ½0:3238; 0:5762�;
½vL3 ; vU3 � ¼ ½0:0000; 0:2262�; ½vL4 ; vU4 � ¼ ½0:0238; 0:2762�:

Thus, the ranking result of four alternatives is

x2	x1	x4	x3, and the optimal alternative is

x2.

(2) Now, we utilize Lee [33]’s method to solve the

problem.
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Step 1 Let P� ¼ ðpijÞ4�4 ¼ R, based on the complete

FPR P�, we can construct the additive

consistent matrix P by using Eq. (42) in [33],

which is shown below:

P ¼

0:5 0:5 0:6 0:575
0:5 0:5 0:675 0:475
0:4 0:325 0:5 0:525

0:425 0:525 0:475 0:5

0

B
B
@

1

C
C
A;

Step 2 Utilizing Eq. (43) in [33], the ranking value

RVðxiÞ of alternative xiði ¼ 1; 2; 3; 4Þ can be

calculated as follows:

RVðx1Þ¼
2

42

X4

j¼1

p1j¼
2

42
ð0:5þ0:5þ0:6þ0:575Þ¼0:2719;

RVðx2Þ¼
2

42

X4

j¼1

p2j¼
2

42
ð0:5þ0:5þ0:675þ0:475Þ¼0:2688;

RVðx3Þ¼
2

42

X4

j¼1

p3j¼
2

42
ð0:4þ0:325þ0:5þ0:525Þ¼0:2188

RVðx4Þ¼
2

42

X4

j¼1

p4j¼
2

42
ð0:425þ0:525þ0:475þ0:5Þ¼0:2406:

Step 3 Due to

RVðx1Þ[RVðx2Þ[RVðx4Þ[RVðx3Þ, the
rankings of the four alternatives are

x1	x2	x4	x3, where the best alternative is

x1.

(3) Now, Liu et al. [27]’s method is employed to gen-

erate the orders of alternatives.

Step 1 Let initial FPR Rð0Þ = (r
ð0Þ
ij Þ4�4 ¼ R, iteration

c ¼ 0, consistency threshold CI ¼0:135, and

parameter h ¼ 0:8.

Step 2 Calculating the consistency index CIðRð0ÞÞ by
Eq. (13).

Step 3 As CIðRð0ÞÞ ¼ 0:2500[ 0:135, which means

that the current consistency degree is

unacceptable.

Step 4 According to Theorem 2 in [27], the

following additive consistent fuzzy preference

relation is derived

Rð0Þ ¼

0:5000 0:4797 0:5281 0:5171
0:5203 0:5000 0:5484 0:5374
0:4719 0:4516 0:5000 0:4890
0:4829 0:4626 0:5110 0:5000

0

B
B
@

1

C
C
A

Step 5 Employing Eq. (15) of [27] to improve the

consistency level of R. After 3 iterations, the

adjusted acceptable FPR is generated as

follows:

Rð3Þ ¼

0:5000 0:3877 0:5649 0:6107
0:5041 0:5000 0:6772 0:4671
0:4351 0:3228 0:5000 0:5458
0:3893 0:5329 0:4542 0:5000

0

B
B
@

1

C
C
A.

Then, the modified consistency index

CIðRð3ÞÞ ¼ 0:1246\0:135, FPR Rð3Þ meets the

acceptable additive consistency.Step 6Based on Rð3Þ, the
preference values of four alternatives are derived and

displayed below:

p1 ¼ 0:5158; p2 ¼ 0:5371; p3 ¼ 0:4509; p4 ¼ 0:4671:

Consequently, the order of alternatives is x2	x1	x4	x3.

(4) Wu [45]’s method is utilized to pick the optimal

alternative

Step 1 Let FPR R ¼ ðrijÞ4�4, then Model (1) in [45]

is employed to derive the optimal weights,

and the CCR efficiency of each alternative Edd

and parameter ad can be calculated as follows:

Edd ¼ ð1; 1; 0:8571; 1Þ

ad ¼ ð0:9375; 0:7394; 0:7885; 0:7321Þ
Step 2 Solving model (2) in [45], the cross-efficiency

values Edj can be calculated by using Eq. (3).

Edj ¼

1.0000 0:57140.8571 0:7143

0.7500 1:00000.6250 0:5000

1.0000 0:57140.8571 0:7143

0.6296 1:00000.4444 1:0000

0

B
B
B
@

1

C
C
C
A

Step 3 According to Eqs. (6) and (7) in [45], the

following consistency FPR B ¼ ðbdjÞ4�4 can

be obtained:

B ¼

0.5000 0:49890.5290 0:5072

0.5011 0:50000.5301 0:5083

0.4710 0:46990.5000 0:4781

0.4928 0:49170.5219 0:5000

0

B
B
B
@

1

C
C
C
A

Step 4: Based on Eq. (8), the ranking weights of four

alternatives are generated, we have

w ¼ð0.2529, 0:2533; 0.2432, 0:2505Þ.
Therefore, the final ranking is x2	x1	x4	x3.
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Based on the above comparative analysis, Table 2 and

Fig. 2 reveal the derived ranking results from different

methods.

From Table 2 and Fig. 2, we find that the generated final

ranking results with our method are different from Qian

and Feng [32]’s method, Liu et al. [27]’s method and Wu

[45]’s method. Qian and Feng [32]’s method proposed an

iterative algorithm to obtain an acceptable FPR with sat-

isfactory consistency. But all original evaluation informa-

tion is changed in the process of iterative, and then the

elements of the acceptable consistent FPR cannot represent

the DM’s initial evaluation information. Similarly, Liu

et al. [27]’s method modified all elements of initial FPR in

the process of improving consistency degree, and the

original preference of DM is destroyed. Based on the DEA

evaluation method, Wu [45] utilized cross-efficiency val-

ues to construct consistency FPR, but the method neglected

the consistency level of FPR, and there is no guarantee that

the established consistency FPR is accepted by DMs.

Additionally, from the multiplicative consistent FPR

R ¼ ðrijÞ4�4, the preference value of alternative x1 is higher

than x2. Therefore, the derived ranking results with those

methods are unreliable and unreasonable.

According to Table 2 and Fig. 2, it is observed that our

method and Lee [33]’s method generate unanimous rank-

ing results. Lee [33] constructed an additive consistent FPR

based on a complete FPR, but Lee [33]’s method ignored

the consistency degree of FPR, which not ensure the FPR

with additive consistency is acceptable, and then may lead

to unreliable decision-making results. And Lee [33]’s

method directly utilized the preference information of each

row of FPR to derive the order of alternatives by a

weighted arithmetic average operator, which may be

unreliable and inaccurate.

However, our decision-making model not only guaran-

tees the original FPR is consistent, but also applies a

consistency-improving algorithm to ensure that the multi-

plicative consistent FPR is acceptable. Additionally, we

adopt local consistency adjust strategy to improve the

Table 2 The derived ranking

results from different methods
Methods The ranking results The best alternative

Qian and Feng [32]’s method x2	x1	x4	x3 x2

Lee [33]’s method x1	x2	x4	x3 x1

Liu et al. [27]’s method x2	x1	x4	x3 x2

Wu [45]’s method x2	x1	x4	x3 x2

Our method x1	x2	x4	x3 x1

Fig. 2 The rankings of alternatives with different methods
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consistency level of FPR, which retains the DM’s original

preference information to the largest extent, and the

adjusted FPR meets the expected consistency threshold.

Moreover, the DEA cross-efficiency is applied to derive the

rankings of alternatives and then the alternative with

maximum efficiency scores is selected, the obtained deci-

sion-making results from our method are more convincing

and reliable.

5.3 Sensitivity Analysis

In this subsection, we carry out a sensitivity analysis to

investigate the effects of the essential parameter d on the

consistency level of FPR and the final ranking results of

alternatives.

5.3.1 Effects of Adjusted Parameter d on the Consistency

Level of FPR

The adjusted parameter d expresses the extent to which the

initial preference information is retained, the smaller the

value of d is, the more the original preference of DM is

held.

From Table 3 and Fig. 3, it can be seen that as the

adjusted parameter increases, the number of iterations will

converge to a certain numerical value. Specifically, when

0:1� d\0:5, the number of iterations will gradually

decline, and the declining rate of the number of iterations is

decreasing. When 0:5� d� 0:9, the number of iterations

remains unchanged. Additionally, with the increase of

adjusted parameter d, the speed of reaching an accept-

able consistency level is becoming faster. Since for each

iteration, the distance between the adjusted FPR and the

FPR with multiplicative consistency is getting smaller. And

the larger the value of d is, the closer the adjusted element

is to the desired value. When d is lager enough, i.e.,

d� 0:5, the number of iterations keeps unchanging attri-

bute to the consistency level meets the expected threshold.

Moreover, as the value of adjusted parameter d increa-

ses, the consistency index of the acceptable FPR eR will

continue to decline except for d ¼ 0:5, which means that

the larger the value of d is, the higher the consistency

degree of FPR eR is. Because in the iteration process, the

distance between the original FPR and the adjusted FPR

gradually decreases. And with the increase of d, the

inconsistent element ri�j� of initial FPR is modified to a

greater extent, then the consistency index gradually

reduces, while the consistency degree of FPR progressively

heightens.

5.3.2 Effects of Adjusted Parameter d on the Final

Ranking Results

As can be seen in Fig. 4 and Table 4, with the increase of

the adjusted parameter d, the ranking results of alternatives

keep unchanging until it exceeds a certain value, i.e.,

d ¼ 0:5. Concretely, for different d, alternative x1 still

possesses the maximum cross-efficiency values. In other

words, alternative x1 is always the optimal selection. Since

Table 3 The influence on the

consistency index and the

number of iterations

d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CIðRÞ 0.1347 0.1325 0.123 0.1173 0.129 0.1101 0.0928 0.0781 0.0679

Number of iterations 11 5 4 3 2 2 2 2 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ
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Fig. 3 The influence on the consistency index and the number of

iterations

Fig. 4 The influence on the cross-efficiency of alternatives
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parameter d has little influence on the cross-efficiency

value of alternative x1, which still equal to 1. In addition,

the cross-efficiency of alternative x4 is larger than x3 when

0:1� d� 0:5, and the cross-efficiency of alternative x3 will

over alternative x4 when 0:6� d� 0:9. The reason is that as

d increases, the cross-efficiency score of alternative x3
gradually rises, while the cross-efficiency value of alter-

native x4 gradually declines, and then the efficiency of x4 is

exceeded by x3 when d[ 0:5.

Based on the above analysis, it is clear that the selection

of optimal alternative is not sensitive to the changes of

value of d, which illustrates the robustness of our devel-

oped decision-making method.

6 Conclusion

In this study, a DEA-driven decision-making method is

developed under fuzzy environment, in which FPR is

employed to express evaluation information of DM. Firstly,

a novel approach is designed to establish a multiplicative

consistent FPR. Then, to guarantee FPR is acceptable for

DM, we develop a consistency index to check the consis-

tency level of multiplicative consistent FPR. If the initial

consistency level does not meet the threshold, a consis-

tency-improving algorithm is constructed to enhance the

consistency degree of FPR, in which only the most

inconsistent element is revised, and the initial evaluation

information of DM is maintained to the greatest extent.

Subsequently, for assessing the performance of alterna-

tives, an input-oriented CCR DEA model is provided, and

the DEA cross-efficiency measurement method is utilized

to further distinguish DMUs with the same weight. After

that, a DEA-driven decision-making method with FPR is

developed to obtain complete ranking results of alterna-

tives. In the end, a numerical example is conducted to

verify the feasibility of the proposed method, comparative

analysis and sensitivity analysis are given for highlighting

the merits and robustness of the design decision-making

method.

However, how to determine the appropriate consistency

threshold is not studied in our work. Moreover, we assume

the FPR provided by DM is complete, and the situation that

FPRs are incomplete is neglected. Therefore, a possible

future research direction is how to determine the appro-

priate consistency threshold for different decision-making

problems. In addition, it is interesting for incomplete FPRs

to discuss decision-making models.
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