
Probabilistic Cellular Automata for Granular Media in Video Games

Jonathan Devlin1, ∗ and Micah D. Schuster1, †

1Wentworth Insititue of Technology, 550 Huntington Ave, Boston, MA 02115, USA

Granular materials are very common in the everyday world. Media such as sand, soil, gravel, food
stuffs, pharmaceuticals, etc. all have similar irregular flow since they are composed of numerous
small solid particles. In video games, simulating these materials increases immersion and can be
used for various game mechanics. Computationally, full scale simulation is not typically feasible
except on the most powerful hardware and tends to be reduced in priority to favor other, more
integral, gameplay features. Here we study the computational and qualitative aspects of side profile
flow of sand-like particles using cellular automata (CA). Our CA uses a standard square lattice
that updates via a custom, modified Margolus neighborhood. Each update occurs using a set of
probabilistic transitions that can be tuned to simulate friction between particles. We focus on the
look of the sandpile structure created from an hourglass shape over time using different transition
probabilities and the computational impact of such a simulation.

I. INTRODUCTION

There are many computational methods that can be
used to compute physical phenomena. Modeling a com-
plex system first from principles is ideal in many scientific
fields, where physical accuracy is paramount. However,
for video games and computer graphics, performance of-
ten trumps accuracy. Provided that the result looks real-
istic enough, a simple physical simulation can be enough
to create the illusion of a more complex interaction with-
out the computational cost. This work looks to simu-
late physical phenomena in a realistic manner using cel-
lular automata (CA), as done in games such as Noita [1],
Rimworld [2], and Oxygen Not Included [3]. Our model
uses probabilistic transitions and a modified Margolus
neighborhood [4] to simulate the flow of granular media
through an hourglass.

The most common two-dimensional sandpile simula-
tion is the Abelian model [5]. It is simulated from a
top-down perspective following sand topping rules based
on height. From a mathematical perspective, this simula-
tion is often used to study concepts such as self-organized
criticality, as an examination of how complexity arises
in nature [6], rather than for video games or computer
graphics. Side profile sandpile simulations [7–9], however,
are more relevant for video games. Noitas primary game
mechanics, for example, use a side profile sandpile model
as the basis for their fluid, gas, and solid simulations
[10]. This leads to interesting interactions between the
game world and the player, where it is possible to directly
manipulate the environment in response to a player’s ac-
tions.

At a fundamental level, CA are simplified simulations
of physical phenomena where time and space have been
discretized and physical quantities are represented by a
finite set of values. The problem domain is defined as a
collection of cells whose properties are updated over time

∗ E-mail: devlinj1@wit.edu
† E-mail: schusterm@wit.edu

via a predetermined set of rules. The rules for updating
the cell typically consider local information only, i.e. only
nearby cells are considered, known as a neighborhood.

The concept was originally developed by Stanislaw
Ulam and John von Neumann in the 1940s at Los Alamos
National Laboratory for work on crystal growth and self-
replicating robots [11]. Further work was done by sci-
entists and mathematicians throughout the rest of the
century. Stephen Wolfram, in the 1980s, explored CA in
the context of mathematics, physics, biology, and chem-
istry [12–17]. His book on this research, A New Kind of
Science [18], is an important starting point for learning
about physical modeling using CA.

A common example of CA is Conways Game of Life
(GOL) [19]. GOL uses a two-dimensional square lattice
where each cell can be alive (1) or dead (0). Updating
the cells is defined by five rules that represent concepts
such as overpopulation or birth. Although the simula-
tion is simple, it displays surprisingly complex behavior.
The typical structures that emerge from a purely random
starting grid consist of groups of static cells, groups that
oscillate between two or more states, and groups that tra-
verse the grid. The GOL model shows that when dealing
with CA, simple starting rules can lead to complex be-
havioral results.

CA modeling of physical systems provides an excellent
computational framework for modeling the macroscopic
behaviors of various phenomena provided that the update
rules can approximate the microscopic properties. There-
fore, CA preserves features such as simultaneous motion,
local interactions, and time reversal symmetry for non-
probabilistic rules. In addition, the lattice structure of
the simulation is ideal for modern parallel computers,
where one can perform large simulations with minimal
hardware.

Common applications of CA to model complex systems
range from fluid dynamics to traffic congestion. Notable
CA such as lattice gas automata for fluid dynamics [20–
22], as well as chemical reactions, such as the Belousov-
Zhabotinsky reaction [23] using the Greenberg-Hastings
Model [24], are examples of CA applied to real world
applications.

ar
X

iv
:2

00
8.

06
34

1v
1 

 [
nl

in
.C

G
] 

 1
3 

A
ug

 2
02

0

mailto:devlinj1@wit.edu
mailto:schusterm@wit.edu


2

The flexibility that CA offers in video game environ-
ments, while keeping calculation time to a minimum, pro-
vides a simple way to represent complex interactions. In
this context, otherwise prohibitively expensive compu-
tations, such as interactions between gases, liquids, and
solids, can be implemented following simple rules that
produce the desired complex behavior. This allows games
to feel more realistic without the need to solve the com-
plex equations that govern these processes.

This work aims to examine the computational and
qualitative features of a modification to the standard
side-profile sandpile simulation. We start by describ-
ing our sandpile model and how we approached simulat-
ing sand particles falling in an hourglass. Then we will
present the results and computational performance of our
simulations using probabilistic transitions. Finally, we
conclude with our perspective on future work and modi-
fications to the model.

II. SANDPILE MODEL

Our sand pile model uses a modified Margolus neigh-
borhood, shown in Fig. 1. The standard version of this
neighborhood is first partitioned into 2x2 blocks of cells
on the lattice. On successive iterations, the 2x2 block
is shifted one cell in each dimenion before evaluation.
Although any block CA that uses a Margolus neighbor-
hood can be computed using a larger neighborhood, the
amount of states to consider during each iteration in-
creases rapidly. Our change to the standard Margolus
neighborhood adds an additional shift to the 2x2 block.
This creates a cyclical pattern over four iterations. The
first two are the standard Margolus update, the second
two shift the neighborhood as shown in Fig. 1b.

As an example of this update process, consider (x, y) to
be upper-left corer of the 2x2 block on the first iteration.
The upper-left corner in successive iterations would be:

• Iteration 2: (x + 1, y + 1)

• Iteration 3: (x, y + 1)

• Iteration 4: (x + 1, y)

Note there may be cells on the domain boundary that
are updated on every other iteration. This is typically
not an issue for our simulations since the interior cells,
where the dynamics occur, will be updated properly.

The motivation for this change stems from the toppling
behavior of the particles when interacting with static
boundary cells, whether the finite boundary of the simu-
lation or lattice features for the particles to interact with.
The standard neighborhood causes sand particles to top-
ple in one direction only until they can no longer fall in
that specific direction. When forming a pile, one side
builds to the top before the toppling behavior switches
to the other slope. When interacting with static features
within on the lattice, this can cause particles to stick
to left hand slopes. Our modified neighborhood forces

FIG. 1. Standard alternating 2x2 block Margolus neighbor-
hood, panel (a), and our addition to the neighborhood, panel
(b). The standard neighborhood alternates between the dark
and light 2x2 blocks on successive iterations. With our addi-
tion, the simulation alternates between four 2x2 blocks, two
in panel (a) and two in panel (b).

partiles to alternate topple direction, yielding a more in-
teresting simulation.

When modeling a physical system, it is important to
consider the real world properties of the media being sim-
ulated. Accounting, in some way, for the microscopic
motion of our particles will lead to a more realistic and
insightful result. As sand pours through an hourglass,
the grains contact each other which, due to nonuniform
particle shapes, prevents a smooth and consistent flow.

Using a regular square grid, it is impossible to directly
simulate nonuniform particles and their interactions. In-
stead, we use a set of probabilistic transitions to approxi-
mate the effect of friction and other particle interactions.
Fig. 2 shows all of the transitions that change state.
Most of the transitions, Fig. 2(a) - 2(h), will always tran-
sition in a natural way, falling or toppling down. The fi-
nal two transitions, Fig. 2(i) and 2(j), where the particles
are stacked vertically, will only topple with probability p.
This represents the effect of irregular shape and friction
as the particles move past each other.

These transitions prevent a smooth flow of particles as
they begin to stack, which, as shown in the results, ulti-
mately changes the overall piling behavior of the particles
as they come to rest. While we chose two of the tran-
sitions to exhibit the probabilistic behavior, for analysis
purposes, transitions (c)-(h) could also have associtaed
probablities. This would give seven parameters to adjust
to achieve the desired toppling and stacking behavior.
One can even bias the tople direction by choosing dif-
ferent probabilities for the left and right version of the
transition.



3

FIG. 2. All transitions that change the particle configuration within the Margolus neighborhood. The two probabilistic
transitions (i) and (j) will transition to a new state with probability p.

III. RESULTS

We obtained all our results using an hourglass shaped
container inside of a 61x61 cell grid. The edges of the
hourglass are fixed to the occupied state and do not
change their state over the course of the simulation. For
each iteration, we use the modified Margolus neighbor-
hood, as described above, and the transitions shown in
Fig. 2.

We start our investigation by examining the determin-
istic simulation, where the probability, p, for all transi-
tions in Fig. 2, is set to 1. Thus, using the same initial
condition will always result in the same evolution of the
simulation. We then adjust the probability of the transi-
tions and investigate the differences in the piling behav-
ior. Computationally, each iteration of the domain took
a few milliseconds to calculate, with our visualization
dominating the execution time. For time sensitive appli-
cations, such as computer graphics and video games, this
style of simulation can easily be translated to production
applications.

A. Deterministic Simulation

The deterministic approach fixes every transition with
p = 1. Without a probability governing toppling behav-
ior, any given starting condition of sand will result in the
same sand position for any given number of generations
regardless of how many runs of the simulation are per-
formed. The deterministic simulation gives us a baseline
for which to compare, which is especially can be useful
when adding additional interactions between particles.
Fig. 3 shows the formation of the sandpile over time.

Despite its moderate accuracy representing granular
flow, there is a noticeable bias in how the sand fills the
hourglass. The particles alternate filling one slope com-
pletely before falling down the other slope. This pattern
alternates as the pile is formed, breaking any attempted
immersion as sand falls in an abnormal but constant way.
The unusual way the particles interacted prompted us to
add a probabilistic system that reproduced friction-like
interactions.

B. Probabilistic Simulation

For this approach we adjust the probabilities of two
transitions, shown in Fig. 2(i) and (j). The piling be-
havior of the deterministic simulations can then be used
as a baseline for comparison when adjusting these proba-
bilities. Our goal for these simulations is to examine the
changes in the structure of the sandpile.

Fig. 4 shows how the sand piled on the bottom of the
hourglass after 200 iterations in response to four different
values of p: 0.25, 0.50, 0.75, and 1.00. Each simulation
was executed 10000 times and the average probability
for a particle to exsist in any given cell is shown by the
colorbar. The p = 1.00 simulation is equivalent to the
deterministic simulation and is shown for reference.

The simulations where p < 1.00 show areas around the
pile where sand particles may be present after the 200
iterations. As the value of p decreases, the sandpile be-
comes thinner and taller as a result of particles resisting
topple. In effect, this can be interpreted as a friction-like
force that keeps the individual grains from sliding past
each other. Over time, the grains will settle as they will
eventually come to a stable configuration.

From a qualitative perspective, when p ≤ 0.50, the pile
appears more like a viscous fluid rather than a discrete
set of grains. This leads to an upstable looking pile that
settles over many iterations. Values larger than p = 0.50
tends to give more pleasing granular flow while also pro-
viding variation in the piling and toppling behavior.

C. Computational Performance

To use this simulation in production computer graph-
ics or video games, it must be performant at the desired
resolution for the application. To see the toppling be-
havior in detail, we used a low-resolution hourglass for
our results. However, in practice, we expect the neces-
sary resolution to be much higher. Modern video games,
for example, typically use resolutions of 1080p to 4k to
enhance visual fidelity.

By their nature, the speed of any CA simulation will
be dependent on the specifics of the computing hardware.



4

FIG. 3. Deterministic sandpile hourglass simulation time progression from t = 50 to t = 500, (a)-(d). When there are no
probabilistic transitions the result of the simulation is completely determined by the starting condition. This deterministic
simulation acts as the baseline for comparison.

FIG. 4. Sandpile hourglass simulation after 200 iterations using different transition probabilities (see text for details). The
colorbar represents the probability that a particle exsists in the associated cell. Lower probability transitions create long, skinny
piles compared to higher probabilities.

Thus, a direct comparison of the compute times is less
relevant than the scaling behavior as we increase the res-
olution of the simulation. Since CA are compute heavy,
the only relevant piece of hardware is the CPU. For all of
our calculations we used a 4.0GHz Intel Core i7 6700K.
Table I shows the compute times for five common resolu-
tions, their cell count, and time scaling. We compute the
time for the calculation of one iteration averaged over 100
individual runs. The scaling uses the 640x480 resolution
as a baseline.

Resolution Time (ms) Cells Scaling

640x480 3.08 307,200 1.00

800x600 4.57 480,000 1.45

1920x1080 21.51 2,073,600 6.98

2560x1440 38.84 3,686,400 12.61

3840x2160 85.88 8,294,400 27.88

TABLE I. Compute times, number of cells, and time scaling
for different simulation resolutions. All times represent com-
puting one iteration of the simulation and are the average of
100 individual runs. 640x480 is the baseline used to compute
scaling as the resolution increases.

The time scaling follows the increase in cells nearly
identically. This is because the time per iteration is
solely dependent on performing the Margolus neighbor-
hood calculations, which itself depends on the total num-
ber of cells in the domain. The memory footprint is neg-
ligible for this style of simulation because we can use a
single byte to represent the occupation of each cell.

For a typical video game, where a simulation like this
may take place, one has approximately 16 milliseconds
for all calculations in one frame. Thus, when using a
smaller grid, more time can be allocated to other compu-
tations, such as physics, input, animation, etc. Typically,
these types of physical simulations do not associate one
cell with one screen pixel. Rather, lower resolutions are
used to approximate liquids, gases, and granular media
that are relevant to the specific game. For example, Ter-
raria [25] uses 16x16 pixel tiles to represent the game
world. When computing its CA fluid simulations, this
greatly reduces the number of cells to calculate on each
frame. Overall, the highest resolution possible for the
given context is desirable.



5

IV. CONCLUSIONS

We have shown the characteristics of sandpiles using
a probabilistic CA model. The toppling behavior and
final structure are largely dependent on the chosen prob-
abilities and can be adjusted to create a friction-like in-
teraction between particles. This causes elongated piles
and longer settling times as the probability to topple de-
creases. Using our modified Margolus neighborhood, we
get a complex and interesting flow of particles that re-
flect real world motion. Computationally, our method
provides a balance between fast computation and realis-
tic flow, even at high resolution.

In game development, where framerate is paramount,
using CA for physical simulations allows for fast calcu-
lations while maintaining a high framerate. In addition,
simulating multiple types of materials and their inter-
actions adds very little computational overhead while
generating complex behaviors. The system we modeled
could handle up to 4k resolution while maintaining a rea-
sonable execution time per iteration. Most games, how-
ever, do not simulate each pixel. Instead, small regions
of pixels represent one cell of data. Thus, a 4k screen
region can be simulated with less cells than our 640x480
calculation.

When implementing new rules for new materials, there
are possibilities for refining the calculations. Breaking up
the domain into large groups of cells and preventing up-
dates on groups that are unlikely to change value, such
as at the domain boundary, can significantly speed up
the calculations. For our simulations, the domain was
small enough that this type of optimization was not nec-
essary. However, for high resolution production applica-
tions, this represents an efficient way to reduce the calcu-
lation time per iteration. For the future, we intend to add
additional materials that interact probabilistically using
our modified neighborhood. This leads to increased im-
plementation complexity while, at the same time, gives
our simulation more interesting behaviors. In addition,
we intend to design a fully configurable toy simulation
that can be used and expanded upon in modern game
engines.

ACKNOWLEDGMENTS

This work was performed with the support of the De-
partment of Computer Science and Networking at Went-
worth of Technology.

[1] Nolla Games, “Noita,” Nolla Games, Helsinki (2019).
[2] Ludeon Studios, “Rimworld,” Ludeon Studios, Montreal

(2018).
[3] Klei Entertainment, “Oxygen Not Included,” Klei Enter-

tainment, Vancouver (2017).
[4] T. Toffoli and N. Margolus, Cellular Automata Machines:

A New Environment For Modeling (The MIT Press,
1987).

[5] P. Bak, C. Tang, and K. Wiesenfeld, Physical Review
Letters 59 (1987).

[6] P. Bak and M. Paczuski, Proceedings of the National
Academy of Sciences 92 (1995).

[7] J. Cervelle, E. Formenti, and B. Masson, Theoretical
Computer Science 381 (2007).

[8] A. Dennunzio, P. Guillon, and B. Masson, Theoretical
Computer Science 410 (2009).

[9] E. Goles and M. Kiwi, Theoretical Computer Science 115
(1993).

[10] P. Purho, “Noita: A game based on falling sand
simulation,” https://80.lv/articles/noita-a-game-based-
on-falling-sand-simulation/ (2019).

[11] J. von Neumann, Theory Of Self-Reproducing Automata
(University of Illinois Press, 1966).

[12] S. Wolfram, Nature 311 (1984).
[13] S. Wolfram, Physica D: Nonlinear Phenomena 10 (1984).
[14] S. Wolfram, Physical Review Letters 55 (1985).
[15] S. Wolfram, Physical Review Letters 54 (1985).
[16] S. Wolfram, Journal of Statistical Physics 45 (1986).
[17] S. Wolfram, Cellular Automata And Complexity (World

Scientific Publishing, 1986).
[18] S. Wolfram, A New Kind Of Science (Wolfram Media,

2002).
[19] M. Gardner, Scientific American 223 (1970).
[20] J. Hardy, O. de Pazzis, and Y. Pomeau, SIAM Journal

on Applied Mathematics 34 (1976).
[21] U. Frisch, B. Hasslacher, and Y. Pomeau, Physical Re-

view Letters 56 (1986).
[22] D. Wolf-Gladrow, A. Dold, F. Takens, and B. Teissier,

Lattice-Gas Cellular Automata And Lattice Boltzmann
Models (Springer Berlin / Heidelbe, 2004).

[23] A. M. Zhabotinskii, Biofizika 9 (1964).
[24] J. Greenberg and S. Hastings, Physical Review A 13

(1978).
[25] Re-Logic, “Terraria,” 505 Games, Mila (2011).


	Probabilistic Cellular Automata for Granular Media in Video Games
	Abstract
	I Introduction
	II Sandpile Model
	III Results
	A Deterministic Simulation
	B Probabilistic Simulation
	C Computational Performance

	IV Conclusions
	 Acknowledgments
	 References


