
Int J Data Sci Anal (2016) 1:89–98
DOI 10.1007/s41060-016-0007-0

REGULAR PAPER

A mining-based approach for efficient enumeration of algebraic
structures

Majid Ali Khan1 · Nazeeruddin Mohammad1 · Shahabuddin Muhammad1 ·
Asif Ali2

Received: 7 March 2016 / Accepted: 22 March 2016 / Published online: 13 April 2016
© Springer International Publishing Switzerland 2016

Abstract Algebraic structures are well-studied mathemati-
cal structures in abstract algebra with applications in many
fields of computer security such as cryptography and authen-
tication. Generating such structures is computationally very
expensive because of the huge number of permutations. Also,
many of these permutations are redundant as they are sym-
metrically equivalent. The symmetry breaking (finding sym-
metrically equivalent structures) is also a computationally
challenging task. In this paper, we present a mining-based
approach for symmetry breaking in algebraic structures. The
approach reduces the number of redundant structures by iden-
tifying rules based on recurring patterns in the previously
known structures. These rules are then used as constraints in
a constraint solver. The proposed approach is applied to IP
loop, a special class of algebraic structures, and the deduced
rules have eliminated a large number of redundant solutions
resulting in significant time improvement.

Keywords Algebraic structures · Mining rules · Symmetry
breaking · Inverse property loop

This paper is an extension of our earlier paper published in IEEE
International Conference on Data Science and Advanced Analytics
(DSAA’15) [1].

B Majid Ali Khan
makhan@pmu.edu.sa; majidkk@gmail.com

1 College of Computer Engineering and Science, Prince
Mohammad Bin Fahd University, Khobar,
Kingdom of Saudi Arabia

2 Department of Mathematics, Quaid-i-Azam University,
Islamabad, Pakistan

1 Introduction

Algebraic structures are of interest to mathematicians
because of their special properties and also have applications
in different areas such as cryptography [3,4]. An algebraic
structure refers to a set with one or more finite operations
defined on it. Quasigroups (Latin squares), loops, and IP
loops are some of the widely studied algebraic structures [2].
A quasigroup is similar to group, but without the require-
ment of associativity. In other words, a quasigroup (S, ∗) is
a groupoid S with a binary operation ∗ such that for each x,
y ∈ S, x ∗ a = y and b ∗ x = y have unique solutions. The
multiplication table of a finite quasigroup is called a Latin
square. A loop is a quasigroup with an identity element e
such that for each x ∈ S, x ∗ e = x = e ∗ x . A loop L
is called an inverse property (IP) loop if it has a two-sided
inverse x−1 such that x−1 ∗ (x ∗ y) = y = (y ∗ x) ∗ x−1 for
each x, y ∈ L .

A simple way to count and enumerate algebraic structures
of any order is to model them as a finite domain constraint
satisfaction problem (CSP), where the range of the binary
operation ∗ is a CSP variable whose domain consists of
elements of the algebra. Then depending on the required
algebraic structure, the corresponding constraint is applied
on CSP variables. CSP constraints for Latin Square, loop,
and IP loop properties are shown in Table 1. Constraint solver
explores the state space in order to find all possible solutions
that satisfy the specified constraints.

It is well known that constraint satisfaction problems have
symmetries, that is, for every solution there are many equiv-
alent solutions [5,6]. For example, there are 161280 Latin
squares of order 5, of which only 1411 isomorphism classes1

1 Please refer to Sect. 2 for background information about constraint
programming and isomorphism classes.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-016-0007-0&domain=pdf

90 Int J Data Sci Anal (2016) 1:89–98

Table 1 Constraints for
generating algebraic structures

Name Constraint

Latin square ∀row : ∀i, j ∈ row, xi = x j ⇒ i = j

∀col : ∀i, j ∈ col, yi = y j ⇒ i = j

Loop x ∗ e = x = e ∗ x

IP loop ∀x, y ∈ L : x−1 ∗ (x ∗ y) = (y ∗ x) ∗ x−1 = y

Basic symmetry breaking in IP loop |x − x−1| ≤ 1

Isomorphism ∗1 Isom.∗2 ⇔ ∀u, v ∈ ∗1, f (u ∗1 v) = f (u) ∗2 f (v)

n All La�n squares of si sessalcmsihpromosInez
111
122
5213
536754

11410821615
13503110021582186

53855489121000409914974167
16608613381879620086592809542306778018

9 5524751496156892842531225600 15224734061438247321497
10 9982437658213039871725064756920320000 2750892211809150446995735533513

Fig. 1 Number of Latin squares and isomorphism classes

exist. To show the enormity of redundant copies, the num-
ber of Latin squares and unique isomorphism classes up to
order 10 are shown in Fig. 1 [2]. When enumerating alge-
braic structures, it is sufficient to find only one solution from
each class of equivalent solutions. To reduce the search time
of constraint solvers, it is better to break symmetries during
the search so that redundant search efforts can be avoided.
Therefore, additional constraints for symmetry breaking such
as those proposed by [7] are added. Generating these sym-
metric breaking constraints is a time-consuming process and
requires a good insight into the problem domain.

Even after applying symmetric breaking constraints, the
solutions generated by the constraint solver have enormous
number of isomorphic copies. These redundant isomorphic
copies need to be eliminated in order to get the count of iso-
morphism classes. These isomorphic copies are eliminated
in a separate post-processing step (henceforth referred to
as isomorphism detection) using tools such as Nauty [8].
In this paper, we use a mining-based approach to discover
more symmetric breaking constraints. To the best of our
knowledge, mining-based approaches have never been used
to generate symmetric breaking rules. We demonstrate that
new rules can be generated without expertise in specific alge-
braic structures. To prove the effectiveness of our approach,
we apply the proposed approach on IP loops of order 13 and
show performance improvements in enumerating IP loops.
Inclusion of constraints discovered by our mining process
provides two benefits: (1) it cuts down the search space for
a constraint solver, which reduces the search time; (2) it

minimizes the number of redundant copies, which reduces
isomorphism detection time.

The rest of the paper is organized as follows. Section 2
describes the related background information for constraint
programming and the history of counting algebraic struc-
tures. Section 3 explains the methodology used to extract
the symmetric breaking constraints. Section 4 discusses the
results obtained by applying our approach to one of the well
known algebraic structures. Section 5 provides conclusion
and future directions.

2 Background

This section describes the background information about
algebraic structure enumeration using constraint solvers,
explains isomorphism classes, and describes the history of
algebraic structure enumeration.

2.1 Constraint solvers

Constraint programming (CP) is a paradigmwhere a problem
can be modeled in terms of constraints in order to iden-
tify feasible solutions from a huge set of possible solutions.
CP focuses on finding feasible solutions instead of optimal
solutions. CP has been applied in several domains including
computer graphics, natural language processing, scheduling,
and planning. There are several free and commercial con-
straint programming solvers available which allow users to
model problems in terms of constraints.

123

Int J Data Sci Anal (2016) 1:89–98 91

* 0 1 2 3 4 * 0 1 2 3 4 * 0 1 2 3 4 x x-1

0 2 1 0 3 4 e=0 0 1 2 3 4 e=0 0 1 2 3 4 0 0
1 4 3 2 0 1 1 1 0 3 4 2 1 1 3 0 4 2 1 2
2 1 2 3 4 0 2 2 3 4 1 0 2 2 0 4 1 3 2 1
3 3 0 4 1 2 3 3 4 0 2 1 3 3 4 1 2 0 3 4
4 0 4 1 2 3 4 4 2 1 0 3 4 4 2 3 0 1 4 3

(a) La�n Square (b) Loop (c) IP Loop

Fig. 2 Examples of algebraic structures

In this paper, we use JaCoP and Google’s or-tools to
enumerate algebraic structures. Constraint solver models
the problem as finite domain constraint satisfaction prob-
lem (CSP), where the range of the binary operation ∗ is a
CSP variable whose domain consists of elements of the alge-
bra. Then the relevant constraints for the algebraic structures
(Latin square, loop, and IP loop), as shown in Table 1, are
applied on CSP variables.

Latin square constraint in Table 1 implies that each symbol
(element) occurs only once in any row and in any column.
An example of Latin square of order 5 is shown in Fig. 2a.
The loop constraint enforces existence of identity element
(e) such that a binary operation (∗) between e and any other
element (x) results in the same element (x). For example, in
Fig. 2b e = 0 and (2 ∗ 0) = (0 ∗ 2) = 2, whereas (2 ∗
0) �= (0 ∗ 2) �= 2 in Latin square shown in Fig. 2a. The IP
loop constraint implies existence of left and right inverses
(x−1) such that x−1 ∗ x = e and x ∗ x−1 = e and holds
left inverse property (x−1 ∗ (x ∗ y) = y) and right inverse
property ((y ∗ x) ∗ x−1 = y) for each element of the loop.
For example in Fig. 2c, the inverse of element 1 is 2, and
2 ∗ (1 ∗ 3) = (3 ∗ 1) ∗ 2 = 3. On the contrary in Fig. 2b, the
inverse of element 1 is 1, but 1∗(1∗3) �= 3 and (3∗1)∗1 �= 3.

Once the constraints are applied, constraint solvers explore
the state space in order to find all possible solutions that sat-
isfy the specified constraints.

2.2 Isomorphism Classes

Given two algebraic structures (e.g., Latin squares, loops or
IP loops) (L1, ∗1) and (L2, ∗2), these structures are con-
sidered isomorphic to each other if there exists a bijective
function f : A → B, where A = {0, . . . , n − 1} and B
is any permutation of A, such that for all indices u and v
in L1: f (u ∗1 v) = f (u) ∗2 f (v). In our case, L1 (n × n)
is isomorphic to L2 (n × n) if ∀i, j < n, f (L1[i][j]) =
L2[f (i)][f (j)]. All those structures that are isomorphic to
each other belong to one isomorphism class.

For example, Fig. 3 shows two IP loops L1 and L2, which
look quite different from each other (as highlighted). But they
are isomorphic to each other because there exists a bijective
function, f : {0, 1, 2, 3, 4, 5, 6} → {0, 1, 2, 4, 3, 5, 6} that
satisfies the isomorphismproperty for each element of L1 and

0 1 2 3 4 5 6 0 1 2 3 4 5 6
1 2 0 5 6 4 3 1 2 0 6 5 3 4
2 0 1 6 5 3 4 f : (3 4) 2 0 1 5 6 4 3
3 6 5 4 0 1 2 ≈ 3 5 6 4 0 2 1
4 5 6 0 3 2 1 4 6 5 0 3 1 2
5 3 4 2 1 6 0 5 4 3 1 2 6 0
6 4 3 1 2 0 5 6 3 4 2 1 0 5

Fig. 3 Isomorphism example: IP loop of order 7 (L1 on the left and
L2 on the right)

L2. Please note that f (0) = 0, f (1) = 1, f (2) = 2, f (3) =
4, f (4) = 3, f (5) = 5, and f (6) = 6. For example, it can
be seen that at indices (i, j) = (1, 3), isomorphism property
is satisfied because f (L1[1][3]) = L2[f (1)][f (3)] = 5.

We can also describe the above bijective function f as
f : (3 4), which means that symbols 3 and 4 are swapped.
Another way to check isomorphism between two algebraic
structures L1 and L2 is to generate L2 from L1 by swap-
ping particular rows, columns, and the values according to
the function f. For example, in Fig. 3, L2 can be generated
from L1 by swapping rows 3 and 4, column 3 and 4, and
values 3 and 4.

Finding isomorphism in this way, by applying the above
formula for all permutations of f is extremely time-consuming
and involves huge number of possibilities for even slightly
large n.

2.3 History of algebraic structures enumeration

It is known that researchers had interest in counting and enu-
merating algebraic structures for over three centuries. Latin
squares, loops, and IP loops are someof thewell-studied alge-
braic structures. Earliest history of counting Latin squares
(LS) goes back to at least 1782 as the number of reduced
LS of order 5 was known to Euler [14] and Cayley [13].
Since that time, the researchers have been trying to get the
next order algebraic structures. However, there has been
considerable delay in achieving the consecutive milestones.
This was because of computational complexity of the prob-
lem. The history of counting reduced Latin squares and
loops is summarized in Table 2. This table shows the main
achievements and the related studies. Additionally, there are
numerous other studies [12,17,18,21] on counting algebraic
structures, which produced incorrect counts.

123

92 Int J Data Sci Anal (2016) 1:89–98

Table 2 History of counting
Latin squares and loops

Keymilestones in Latin square (LS)
and loops counting

Historical study details

Reduced LS up to N=5 Euler (1782) [14]

Reduced LS up to N=6 Frolov (1890) [16]

Isotopy classes up to N=6 Fisher and Yates (1934) [15]

Loops up to N=6 Schonhardt (1930) [25], Albert (1944) [9]
and Sade (1970) [23]

Main & isotopy classes for N=7 Sade (1951) [22], Saxena (1951) [24]

Loops up to N=7 Brant and Mullen (1985) [11]

Reduced LS for N=8 Wells (1967) [26]

Reduced LS for N=9 Bammel and Rathstein (1975) [10]

Reduced LS for N=10 McKay and Rogoyski (1995) [19]

Reduced LS for N=11 McKay and Wanless (2005) [20]

Loops and LS up to N=10 McKay, Meynert and Myrvold (2007) [2]

Inverse property loops up to N=13 Slaney and Ali (2008) [7]

In this paper, we demonstrate the application of mining
techniques in order to reduce the time in enumerating alge-
braic structures.

3 Proposed methodology

We propose an approach to find symmetry breaking con-
straints by mining rules from the previously known solutions
of lower-order algebraic structures. These constraints can
then be used for efficient enumeration of algebraic structures
of higher order. For example, we can find rules by applying
a mining technique on known set of matrices for algebraic
structures of order 1 to n. The discovered rules can then be
used for enumerating the solutions for algebraic structures
of order (n + 1).

Thus, the first step in our proposedmethodology is to enu-
merate the required algebraic structures and their respective
isomorphism classes. These algebraic structures and the iso-
morphism classes are then used in the second step to identify
rules in the form of symmetry breaking constraints. These
rules can then be used to enumerate algebraic structure of
higher order. The following subsections describe the details
of these steps.

3.1 Enumerating algebraic structures

The steps used for generating the algebraic structures of
any order n is shown in Fig. 4. We consider a matrix (our
algebraic structure) Matn of order n (that is, n rows and n
columns). Each element of the matrix is a domain variable
that contains a value in the range {0 . . . n − 1}. We apply
algebraic structure constraints on Matn to generate a set
Sn = {mat1,mat2, . . .matp} such that ∀mati ∈ Sn , where

Fig. 4 Algebraic structure
generation

mati represents a valid algebraic structure of order n. This
set obviously contains many matrices which are isomorphic
copies of each other. Next, we apply isomorphic detection
that results in another set Rn such that Rn ⊆ Sn and ∀x ∈ Rn ,
x represents an isomorphism class.

3.2 Mining symmetry breaking rules

In order to identify rules to restrict the number of symme-
tries, we first need to generate all the algebraic structures of
orders p to n (i.e., Sp, . . . , Sn). The value of p is chosen such
that Sp has considerably large number of structures. We also
determine the corresponding set of isomorphism classes (i.e.,
Rp, . . . , Rn). Our first attempt for mining rules was to gen-
erate association rules from the known algebraic structure

123

Int J Data Sci Anal (2016) 1:89–98 93

Table 3 Some of the
association rules extracted from
known isomorphism classes of
IP loops

Association rule (∀mati ∈ Rn, . . . , Rp) Support (%) Confidence (%) Lift

mati [3][1] = 4 �⇒ mati [4][4] = 1 69.24 100 1.44

mati [4][4] = 1 �⇒ mati [3][1] = 4 69.24 100 1.44

mati [3][1] = 4 �⇒ mati [1][3] = 4 69.24 100 1.44

mati [1][3] = 4 �⇒ mati [3][1] = 4 69.24 100 1.44

mati [3][1] = 4 �⇒ mati [4][2] = 3 69.24 100 1.44

mati [4][2] = 3 �⇒ mati [3][1] = 4 69.24 100 1.44

mati [3][1] = 4 ∧ mati [4][4] = 1 �⇒ mati [1][3] = 4 69.24 100 1.44

Fig. 5 Rule mining framework

in Rp, . . . , Rn . Each matrix was considered an itemset. Each
position in the matrix along with its value was considered a
unique item, Ii, j,v . So, an item I3,4,4 means that the matrix
had value 4 at index (3,4). Thus, an n × n matrix resulted in
n2 items in each itemset.

We applied this approach to the known isomorphism
classes of inverse property loop (IP Loop) algebraic struc-
tures of order 11 and 13 which consisted of 10391 matrices.
The apriori algorithm [27] was then applied on these item-
sets using R programming language [29]. Please note that
we did not feel the need to use any advanced association rule
mining algorithm like Eclat [28] as the standard apriori algo-
rithm took only few seconds (about 10 seconds) to get all the
association rules from 10391 matrices.

We considered rules with support larger than 60% and
the confidence equal to 100%. This provided us with 186
different rules which had 100% confidence. Some of these
association rules are shown in Table 3. For example, the first
rule specified that whenever any matrix in Rp, . . . , Rn had
value 4 at index (3, 1), the matrix also had value 1 at index
(4, 4). This was always true (confidence=100%) and was
observed in about 70%of thematrices. The rule lift indicated
a positive correlation between antecedent and consequent of
the rule.

All of the rules were also symmetric with exactly
same support and confidence (e.g., mati [3][1] = 4 ⇔
mati [4][4] = 1). The presence of such rules in these struc-
tures was significant. This could potentially be used to add
symmetry breaking constraints in the constraint solver. These
constraints would discard any matrix as being redundant
which did not satisfy these rules. For example, a constraint

based on the first rule would discard all matrices which had
value 4 at index (3, 1), but did not have value 1 at index (4,
4).

In order to evaluate these association rules, we applied
them as additional constraints in our Google’s or-tools-based
constraint solver for identifying inverse property loop (IP
Loops) of order 13. Unfortunately, these rules did not reduce
the number of solutions or the time. As it turned out, these
rules just discovered certain properties which were holding
true because of the constraints (shown in Table 1) placed to
generate algebraic structures.

This forced us to rethink our strategy. Our next strategy
targeted a rulemining approach that could reduce the number
ofmatrices generated for higher order (Sn+1).Wenoticed that
a large number ofmatrices were eventually discarded later on
by the isomorphism detectionmethod.We tried to investigate
whether therewas any recurring pattern in thematriceswhich
were getting discarded. For this purpose, a new rule mining
strategywas devised. The proposed rulemining framework is
shown in Fig. 5, and the corresponding algorithm is outlined
in Algorithm 1. It considers Sp, . . . , Sn to create a matrix X
such that an element at row i and column j (represented as
xi j) of X can be defined as follows. xi j ⊆ V ×C where V =
{0 . . . n − 1} is a set of values and C = {0 . . . |Sn|} is a set of
counts. For example, x00 = {(3, 5), (4, 1), (1, 6)} means that
at (row, column) = (0, 0), 3 appeared in 5 different matrices,
4 appeared in 1 matrix, and 1 appeared in 6 matrices of all
the matrices in Sp, . . . , Sn . We apply the same procedure to
the set of matrices in Rp, . . . , Rn to compute a matrix Y such
that each element of Y is defined similarly as yi j ⊆ V × C .
Finally, we define a difference matrix D ⊆ V × C and its
elements are computed as follows:

∀i, j ≤ n, ∀(v, c) ∈ xi j ∧ (v, c′) /∈ yi j �⇒ di j = di j ∪ (v, c)

123

94 Int J Data Sci Anal (2016) 1:89–98

Algorithm 1 Rule Mining Algorithm
1: procedure MineRules({Sp, . . . , Sn}, {Rp, . . . , Rn})
2:
3: R f ← empty � R f is a set of final rules
4: while true do
5: Rd ← empty � Rd is a set of newly discovered rules
6: NewRuleDiscovered ← f alse
7: for i ← 0, n − 1 do � Initialize matrices
8: for j ← 0, n − 1 do � X [i][j][k] = c represents that at row i , column j , k appears c times
9: for k ← 0, n − 1 do
10: X [i][j][k] ← 0 � X [i][j][k] = c �⇒ (k, c) ∈ xi j
11: Y [i][j][k] ← 0 � Y [i][j][k] = c �⇒ (k, c) ∈ yi j
12: D[i][j][k] ← 0 � D[i][j][k] = c �⇒ (k, c) ∈ di j
13: for q ← p, n do � Go over matrices of order p to n
14: for all matrices mat ∈ Sq do � Compute xi j ∈ X
15: for i ← 0, q − 1 do
16: for j ← 0, q − 1 do
17: for all rule < row, col, value, count >∈ R f do
18: if i = row ∧ j = col ∧ mat[i][j] = value then
19: continue; � Ignore the matrices which are already covered by an existing rule
20: X [i][j][mat[i][j]] ← X [i][j][mat[i][j]] + 1
21: for all matrices mat ∈ Rq do � Compute yi j ∈ Y
22: for i ← 0, q − 1 do
23: for j ← 0, q − 1 do
24: Y [i][j][mat[i][j]] ← Y [i][j][mat[i][j]] + 1
25: for i ← 0, n − 1 do � Compute di j ∈ D containing the difference in X and Y
26: for j ← 0, n − 1 do
27: for k ← 0, n − 1 do
28: if X [i][j][k] > 0 ∧ Y [i][j][k] = 0 then
29: D[i][j][k] ← X [i][j][k]
30: Create a rule r < row = i, col = j, value = k, count = D[i][j][k] >
31: Rd ← Rd ∪ r
32: NewRuleDiscovered ← true
33: if NewRuleDiscovered = true then
34: Find the rule Highest Signi f icant Rule < row, col, value, count >∈ Rd with highest significance using Eq. 1
35: R f ← R f ∪ Highest Signi f icant Rule
36: else
37: return R f

Every element di j ∈ D contains a set of (value, count)
pair. Each such pair indicates that the specified value
occurred count times at index (i, j) in the matrices of
Sp, . . . , Sn but these values were never observed in any
matrix in Rp, . . . , Rn at index (i, j). This means that these
matrices are redundant and can be safely discarded. Each
such pair thus forms the basis for identifying a rule for sym-
metry breaking.

For the sake of simplicity in performing significance
analysis, we flatten the di j ∈ D. We define D f lat as a 4-
tuples (i, j, v, c) set where v ∈ V and c ∈ C . It can be
computed as follows:

∀i, j ≤ n,∀(v, c) ∈ di j , D f lat = D f lat ∪ (i, j, v, c)

Each tuple (i, j, v, c) identifies a potential rule specifying
that any matrix with value v at position i, j can be discarded
as no isomorphism class existed with these values at the
specified position. However, not every rule has the same sig-
nificance.A rulewhich results in highest number of discarded

matrices should be preferred over a rule which discards few
matrices. Similarly, a rule observed in matrices of all orders
(i.e., n, . . . , p) should be preferred over the rule that is based
on the matrices of any particular order.

We used the above insights to devise our rule significance
method. For each element (rule) in D f lat , the corresponding
significance is computed using the following equation:

Sig = (1 − i/n) + (1 − j/n) + (1 − v/n) + c/|Sn| (1)

This equation normalizes each element of the tuple to [0,
1]. In general, the ruleswith higher counts, lower indices, and
lower values are given higher significance. For example, the
significance of three elements in D f lat which are computed
from 200 algebraic structures of order 7, 9, and 11 would be
as follows:

– (1, 2, 1, 150) has significance 3.35
– (1, 1, 2, 100) has significance 3.1
– (10, 10, 1, 200) has significance 1.9

123

Int J Data Sci Anal (2016) 1:89–98 95

The first rule has the highest significance as it has lower
values for the indices and higher values for count. The sec-
ond rule has lower significance than the first rule because of
lower value of count. The third rule has the least significance
(despite having the highest count) since it has highest values
of indices.

4 Results

To show the effectiveness of our proposed methodology,
we applied it to the problem of counting and enumerating
isomorphism classes of IP loops. We modeled the problem
as finite domain constraint satisfaction problem (CSP) and
began our study using a leading constraint solver Google’s
or-tools. We enumerated the algebraic structures and the
isomorphism classes of IP loops of order 7, 9, 11, and 13
using known constraints mentioned in Table 1. The reason
we chose odd number for the orders was that the set of
known constraints are different for odd and even orders of the
algebraic structures. Also, as of now, the number of isomor-
phism classes for IP loop are known up to order 13 only. We
evaluated the performance improvements of our proposed
approach by enumerating the highest order of known IP loop
structures.

Table 4 shows the total number of solutions, the number
of isomorphism classes, and the time taken to compute these
structures on a general purpose desktop system. It should be
noted that the time includes the time taken to determine the
solutions as well as the time spent to detect isomorphism
classes. Isomorphism was detected based on checking all
the permutations of possible mappings. It is quite evident
from this table that the number of solutions and the time
to identify isomorphism classes increase exponentially with
increasing orders of the IP loop structures. For example,
the time required for enumerating IP loops of order 13 is
increased by 17000 times as compared to time taken for enu-
merating order 11 IP loops. Similarly, the total number of
solutions also increased by 1200 times.

Table 5 shows rules extracted by applying the proposed
mining approach to known structures of IP loops of order

Table 4 Time taken and number of solutions for IP loops

Order (n) Total solutions
(with known
constraints)

Isomorphism classes Time (s)

5 1 1 0

7 4 2 0.023

9 64 7 0.024

11 6464 49 5.86

13 7853368 10342 103636

Table 5 Rules extracted from IP loops of order 7, 9, and 11

Rules (∀mati ∈ Sn, . . . , Sp) Support count Significance

mati [3][3] �= 1 420 2.58

mati [1][5] �= 3 109 2.18

mati [5][5] �= 1 259 2.09

mati [3][5] �= 6 640 2.08

Table 6 Performance gains for IP loops of order 13

Without using
mined constraints

After usingmined
constraints

Perf. Gain

Total solutions 7853368 6392816 18.6%

Time (s) 103636 81124 21%

Isomorphism classes 10342 10342 -

7, 9, and 11. This consisted of 6532 matrices. This table
also shows the respective support count and the significance
of these rules. The first rule specifies the constraint that all
matrices which have the value 1 at index (3, 3) should be
discarded. This rule was based on the observation that 420
matrices out of 6532 had the value 1 at index (3, 3), but all of
them eventually got discarded by the isomorphism detection
method (that is, they were redundant copies). The second
rule was then discovered from the remaining 6112 matrices.
A similar process was repeated to discover the other rules.

These discovered rules were then used as additional
constraints for enumerating IP loops of order 13. Table 6
shows the performance improvements. The total number of
solutions decreased to 6392816, which is 18.6% improve-
ment. The time taken to determine isomorphism classes was
reduced by 21% to 81124s. This shows a considerably large
performance gain in terms of time as well as the number of
solutions using the mining approach.

4.1 Rules evaluation

It should be noted that inclusion of these additional con-
straints (based on rules discovered using our proposed rule
mining approach) did not cause any loss of information as all
the representative isomorphism classes (i.e., 10342 isomor-
phism classes) were identified successfully.

We conducted further evaluation of the rules to get a break
down of the number of solutions discarded by each rule and
their corresponding isomorphism classes.

Table 7 shows the total number of solutions discarded by
each rule, the number of isomorphism classes which repre-
sent the discarded solutions and the corresponding number of
unique mappings. For example, the rule mati [5][5] �= 1 has
discarded 150488 solutions which were represented by 3263
unique isomorphism classes using 4116 different mappings.

123

96 Int J Data Sci Anal (2016) 1:89–98

Table 7 Rules evaluation: the number of solutions discarded by each
rule, the corresponding number of isomorphism classes, and the number
of different mappings

Rules Number of
isomorphic
solutions
discarded

Number of
isomorphism
classes

Number of
mappings

mati [3][3] �= 1 609408 6322 8853

mati [1][5] �= 3 304160 6322 6146

mati [5][5] �= 1 150448 3263 4116

mati [3][5] �= 6 396536 8583 14156

Total solutions (unique) 1460552 8853 21529

Figure 6 shows one of the 3263 isomorphism classes
(labeled as (a) in the center). It also shows 4 of the 150448
discarded solutions for the rule mati [5][5] �= 1 (labeled as
(a1), (a2), (a3) and (a4)). Note that all the discarded solutions
shown in Fig. 6 have mati [5][5] = 1, while the correspond-
ing isomorphism class (in the middle) has mati [5][5] �= 1.
For clarity, the differences between discarded solutions and
their corresponding isomorphism classes are highlighted.
The mapping which makes the discarded solution isomor-
phic to its isomorphism class is also shown in the rectangle

box. For example, the matrix labeled (a1) is isomorphic to its
representative isomorphism class matrix (a) due to mapping
(5, 6). This means that swapping values 5 with 6, swapping
column 5 with column 6 and swapping row 5 with row 6 in
matrix (a1) will get the matrix (a).

It was observed that the set of isomorphism classes which
represented the discarded solutions based on different rules
is not mutually exclusive. For example, in Fig. 7, the matrix
(b1) which was discarded due to mati [5][5] �= 1 rule and
the matrix (b2) which was discarded due to mati [3][5] �= 6
rule are represented by the same isomorphism class (i.e.,
matrix (b)). It was also observed that the same set of 6322
isomorphism classes represented all the solutions (matrices)
discarded by mati [3][3] �= 1 and mati [1][5] �= 3 rules. In
general, all of the 1460552 discarded solutions were repre-
sented by 8853 isomorphism classes using 21529 different
mappings.

5 Conclusion

Studying algebraic structures is an important area of research
in mathematics with applications in many areas of computer
science. However, generating these structures is computa-

21110198765432102111019876543210
60182111957240316018211195724031
98117015216314029811701521631402
79586011121021437921856011102143
56711921801103240156119217810324

5 11 6 8 9 1 2176115421701230 1 0 8 2 3 9 4 10
41210173201198561119430120217856

7 9 12 10 6 4 1 11 0 5 2 3 8 0 1 2 3 4 5 6 7 8 9 10 11 12 7 9 12 10 5 8 1 6 0 4 2 3 11
8 6 10 11 5 9 4 0 12 1 3 7 2 1 3 0 4 2 6 7 9 11 12 8 10 5 8 6 10 11 9 4 7 0 5 1 3 12 2
9 12 7 5 11 10 8 4 1 6 0 2 3 2 0 4 1 3 12 5 6 10 7 11 8 9 9 12 7 8 6 11 10 4 1 5 0 2 3

10 8 11 12 7 3 9 2 6 0 5 4 1 3 4 1 2 0 10 11 5 6 8 12 9 7 10 8 11 12 7 9 4 2 3 0 6 5 1
11 10 5 9 8 12 3 1 7 2 4 6 0 4 2 3 0 1 7 8 12 9 11 5 6 10 11 10 5 6 8 3 9 1 12 2 4 7 0

12 7 9 6 10 2 11 8 4 3 1 0 5 5 6 8 7 12 2 0 10 3 4 9 1 11 12 7 9 5 10 2 3 11 4 6 1 0 8
(a1) 6 11 5 8 9 0 1 3 2 10 7 12 4 (a2)

0 1 2 3 4 5 6 7 8 9 10 11 12 7 9 12 10 5 1 4 11 0 6 2 3 8 0 1 2 3 4 5 6 7 8 9 10 11 12
1 3 0 4 2 8 5 11 10 7 12 9 6 8 5 10 11 6 4 9 0 12 1 3 7 2 1 3 0 4 2 9 5 12 10 7 11 8 6
2 0 4 1 3 6 12 9 5 11 8 7 10 9 12 7 6 11 8 10 4 1 5 0 2 3 2 0 4 1 3 6 12 9 11 5 8 10 7
3 4 1 2 0 11 9 5 6 12 7 10 8 10 8 11 12 7 9 3 2 5 0 6 4 1 3 4 1 2 0 11 8 10 12 6 5 7 9
4 2 3 0 1 7 8 10 12 6 11 5 9 11 10 6 9 8 3 12 1 7 2 4 5 0 4 2 3 0 1 10 9 11 6 12 7 5 8

5 11 6 7 10 1 0 2 3 8 9 12 4 12 7 9 5 10 11 2 8 4 3 1 0 6 5 11 6 10 7 1 0 8 9 3 2 12 4
6 5 7 8 12 0 2 3 9 10 4 1 11 (a) 6 5 10 9 12 0 2 4 7 8 3 1 11

32140601811592172813021401511967
14625073921110187352110146921018
01301125146821791405260138211179

29210314751186013260417911582101
06914232101758110624183217015911
50401131128679215031741129601821

(a3) (a4)

Mapping: (5 6)

Mapping: (1 2)(3 4)(7 12)(8 11)

Mapping: (5 6)(7 8)(9 10)

Mapping: (5 6)(7 9)(8 10)

Fig. 6 An isomorphism class (in the middle) and 4 of the 150448 redundant isomorphic copies discarded by mati [5][5] �= 1 rule for IP Loop of
order 13

123

Int J Data Sci Anal (2016) 1:89–98 97

21110198765432102111019876543210
60121115987240316018211195724031
01911765218314029811701521631402

021438751162101902143 6 10 11 9 12 7 5 8
97682101511103247965211180110324

5 11 6 7 9 1 967115012143280 4 0 1 2 10 8 12 3
11194012305218761112147320019856

7 9 12 11 5 8 1 6 0 10 2 4 3 0 1 2 3 4 5 6 7 8 9 10 11 12 7 5 6 11 10 9 1 12 0 3 2 8 4
8 6 10 12 11 4 7 0 5 1 9 3 2 1 3 0 4 2 6 7 9 11 12 8 10 5 8 6 10 9 12 1 2 0 11 5 4 3 7
9 12 7 5 6 11 3 10 1 8 0 2 4 2 0 4 1 3 12 5 6 10 7 11 8 9 9 12 11 5 8 10 7 3 1 6 0 4 2

10 8 11 6 12 3 4 2 9 0 7 5 1 3 4 1 2 0 10 9 12 5 11 6 7 8 10 8 12 7 11 3 9 6 4 0 5 2 1
11 10 5 8 7 12 9 1 4 2 3 6 0 4 2 3 0 1 8 10 11 12 6 5 9 7 11 9 5 10 7 12 4 8 3 2 1 6 0

12 7 9 10 8 2 11 4 3 6 1 0 5 5 6 8 9 10 2 0 3 7 4 12 1 11 12 10 9 8 6 2 11 4 7 1 3 0 5

(b1) 6 11 5 7 9 0 1 8 2 3 4 12 10 (b2)
7 9 12 11 6 1 8 5 0 10 2 4 3
8 5 10 12 11 7 4 0 6 1 9 3 2
9 12 7 6 5 3 11 10 1 8 0 2 4

10 8 11 5 12 4 3 2 9 0 7 6 1
11 10 6 8 7 9 12 1 4 2 3 5 0
12 7 9 10 8 11 2 4 3 5 1 0 6

(b)

Mapping: (5 6)

Mapping: (1 4 2 3)(5 6)(7 11 9)(8 12 10)

Fig. 7 An isomorphism class (in the middle) and 2 redundant isomorphic copies discarded by mati [5][5] �= 1 and mati [3][5] �= 6 rules for IP
Loop of order 13

tionally expensive because of overwhelmingly large number
of symmetries present in these structures. In this paper, we
presented a mining-based approach to discover symmetry
breaking constraints in algebraic structures. We demon-
strated the effectiveness of our approach by applying it to
enumerate IP loops. We found new symmetry breaking con-
straints that resulted in significant reduction in the number
of redundant solutions, thereby reducing computational time
to generate these structures.

To the best of our knowledge, this is the first time a
mining-based approach has been applied to discover sym-
metry breaking constraints. This work can be enhanced in
multiple directions. A similar approach can be applied to
other algebraic structures like C loops and flexible loops.
Applying other mining approaches such as clustering and
classification need further investigation.

Acknowledgments This work was supported by Prince Mohammad
Bin Fahd University (PMU) internal research grant. The views and
conclusions herein are those of the authors and do not represent the
official policies of the university.

References

1. Khan, M.A., Mohammad, N., Muhammad, S., Ali, A.: A mining
based approach for efficient enumeration of algebraic structures.
In: IEEE International Conference on Data Science and Advanced
Analytics (DSAA) (2015)

2. McKay, B.D., Meynert, A., Myrvold, W.: Small latin squares, qua-
sigroups, and loops. J. Comb. Des. 15, 98–119 (2007)

3. Battey,M., Parakh, A.: An efficient quasigroup block cipher.Wirel.
Pers. Commun. 73(1), 63–76 (2013)

4. Krapez, A.: An application of quasigroups in cryptology. Math.
Maced 8, 47–52 (2010)

5. Gent, I.P., Barbara, S.: Symmetry Breaking During Search in Con-
straint Programming. University of Leeds, School of Computer
Studies, Leeds (1999)

6. Gent, I.P., Harvey,W., Kelsey, T.: Groups andConstraints: Symme-
try Breaking During Search. Principles and Practice of Constraint
Programming-CP 2002. Springer, Berlin (2002)

7. Ali, A., Slayney, J.: Counting loops with the inverse property. Qua-
sigroups Relat. Syst. 16, 13 (2008)

8. McKay, B.D.: Practical graph isomorphism. Congr. Numer. 30,
3587 (1981)

9. Albert, A.A.: Quasigroups. II. Trans. Am. Math. Soc. 55, 401–409
(1944)

10. Bammel, S.E., Rothstein, J.: The number of 9 × 9 latin squares.
Discret. Math. 11, 83–95 (1975)

11. Brant, L.J., Mullen, G.L.: A note on isomorphism classes of
reduced latin squares of order 7. Util. Math. 27, 261–263 (1985)

12. Brown, J.W.: Enumeration of latin squareswith application to order
8. J. Comb. Theory 5, 177–184 (1972)

13. Cayley, A.: On latin squares. Oxf. Camb. Dublin Messenger Math.
19, 85–239 (1890)

14. Euler, L.: Recherches sur une nouvelle espéce de quarrés magiques
combinatorial aspects of relations. Verhandelingen/uitgegeven
door het zeeuwsch Genootschap derWetenschappen te Vlissingen,
9, 85–239, (1782)

15. Fisher, R.A., Yates, F.: The 6× 6 latin squares. Proc. Camb. Philos.
Soc. 30, 492–507 (1934)

16. Frolov, M.: Sur les permutations carrées. J. Math. Spéc IV, 8–11
(1890)

17. Jacob, S.M.: The enumeration of the latin rectangle of depth three
by means of a formula of reduction, with other theorems relating
to non-clashing substitutions and latin squares. Proc. Lond. Math.
Soc. 31, 329–354 (1930)

123

98 Int J Data Sci Anal (2016) 1:89–98

18. MacMahon, P.A.: Combinatory Analysis, vol. 1. Cambridge Uni-
versity Press, Cambridge (1915)

19. McKay, B.D., Rogoyski, E.: Latin squares of order 10. Electron. J.
Combin. 2, N3 (1995)

20. McKay, B.D., Wanless, I.M.: On the number of latin squares. Ann.
Combin. 9, 335–344 (2005)

21. Norton,H.W.: The 7× 7 squares.Ann. Eugenics 9, 269–307 (1939)
22. Sade, A.: An omission in norton’s list of 7× 7 squares. Ann. Math.

Stat. 22, 306–307 (1951)
23. Sade, A.: Morphismes de quasigroupes: Tables. Revista da Fac-

uldade de Ciências de Lisboa, 2: A – Ciências Matemáticas, 13
149–172, (1970/71)

24. Saxena, P.N.: A simplified method of enumerating latin squares by
macmahon’s differential operators; II. The 7 × 7 latin squares. J.
Indian Soc. Agric. Stat. 3, 24–79 (1951)

25. Schönhardt, E.: Über lateinische quadrate und unionen. J. Reine
Angew. Math. 163, 183–230 (1930)

26. Wells, M.B.: The number of latin squares of order eight. J. Comb.
Theory 3, 98–99 (1967)

27. Agrawal, R., Srikant, R.: Fast algorithms for mining association
rules. In: Proceedings of 20th International Conference on very
Large Data Bases, VLDB 1215, 487–499 (1994)

28. Zaki,M.J.: Scalable algorithms for associationmining. IEEETrans.
Knowl. Data Eng. 12(3), 372–390 (2000)

29. R: A Language and Environment for Statistical Computing. http://
www.R-project.org

123

http://www.R-project.org
http://www.R-project.org

	A mining-based approach for efficient enumeration of algebraic structures
	Abstract
	1 Introduction
	2 Background
	2.1 Constraint solvers
	2.2 Isomorphism Classes
	2.3 History of algebraic structures enumeration

	3 Proposed methodology
	3.1 Enumerating algebraic structures
	3.2 Mining symmetry breaking rules

	4 Results
	4.1 Rules evaluation

	5 Conclusion
	Acknowledgments
	References

