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Abstract We present here a data mining approach for part-
of-speech (POS) tagging, an important natural language
processing (NLP) task, which is a classification problem.We
propose a semi-supervised associative classification method
for POS tagging. Existing methods for building POS tag-
gers require extensive domain and linguistic knowledge and
resources. Our method uses a combination of a small POS
tagged corpus and untagged text data as training data to build
the classifiermodel using association rules. Our taggerworks
well with very little training data also. The use of semi-
supervised learning provides the advantage of not requiring a
large high-quality annotated corpus. These properties make
it especially suitable for resource-poor languages. Our exper-
iments on various resource-rich, resource-moderate and
resource-poor languages show good performance without
using any language-specific linguistic information. We note
that inclusion of such features in our method may further
improve the performance. Results also show that for smaller
training data sizes our tagger performs better than state-of-
the-art conditional random field (CRF) tagger using same
features as our tagger.

This article is an invited extended version of paper [24] presented in
IEEE International Conference on Data Science and Advanced
Analytics 2014, Shanghai, China (DSAA’14).
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1 Introduction

A few languages like English and French have been exten-
sively analyzed for NLP tasks such as POS tagging. Domain
expertise is needed in order to study the properties of each
language so as to build linguistic resources, select appro-
priate features, configure parameters and set exceptions in
systems. To build systems to handle each of the remaining
(6500+ or so) “resource-poor” languages [23] of the world
would require the same intensive effort, expertise, expenses
and time. In order to handle this challenge, we need to build
domain-independent, language-independent and data-driven
systems, which can work reasonably and effectively without
much domain expertise.

POS tagging (henceforth referred to as just tagging) is
an important NLP classification task that takes a word or a
sentence as input, assigns a POS tag or other lexical class
marker to a word or to each word in the sentence, and
produces the tagged text as output. For this task, several
rule-based [8], stochastic-supervised [7,33], and stochastic-
unsupervised [3,17] methods are available for a number of
languages.All of these (including the state-of-the-art taggers)
require training data and linguistic resources like dictionaries
in large quantities.

These taggers do not perform well for resource-poor lan-
guages, which do not have much resources and training
data. So, there is a need to develop generic semi-supervised
tagging methods which take advantage of untagged corpus
and require less or no lexical resources. A few available
techniques for this are discussed in Sect. 2. In order to
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perform well, these techniques require a large untagged cor-
pus. Unfortunately, for many resource-poor languages, even
obtaining this is hard.

This motivates us to explore data mining methods to build
a generic POS tagger. Data mining, being composed of data-
driven techniques, is a promising direction to explore or
to develop language-/domain-independent tagging methods.
Associative classification [31] is a well-known data mining-
based classification approachwhich uses association rules [1]
to build the classifier model. To the best of our knowledge,
no semi-supervised association ruleminingmethod exists. In
this work, we apply semi-supervised associative classifica-
tion approach to build a generic semi-supervised POS tagger.

However, direct application of data mining concepts for
this task is not feasible and requires handling various chal-
lenges like (1) mapping POS tagging task to association rule
mining problem, (2) developing semi-supervised methods to
extract association rules from training set of annotated and
untagged data combined and (3) handling challenges of POS
tagging task (discussed in Sect. 4.2), like class imbalance,
data sparsity and phrase boundary problems.

Our method uses a combination of a small annotated and
untagged training data to build a classifier model using a
new concept of context-based association rule mining. These
association rules work as context-based tagging rules. Our
experiments demonstrate that this new concept gives good
performance even without using any linguistic resources—
except for a small POS tagged corpus—for resource-rich
English, resource-moderate Hindi and resource-poor Telugu,
Tamil and Bengali languages.

Our method is generic in two aspects: (1) it does not use
any language-specific linguistic information such asmorpho-
logical features and there is ample scope to improve further
by including such features and (2) it does not require a large,
high-quality, annotated corpus and uses the POS tags of the
annotated corpus only to calculate scores of “context-based
lists” which are used to form association rules. This can be
easily adapted for various languages. Also, as an additional
benefit our tagger makes human-understandable model since
it is based on association rules, which are simple to under-
stand.

Our algorithm has the following advantages, especially
suitable for resource-poor languages, arising due to the use of
untagged data: (1) increased coverage of words and contexts
in the classifier model increases tagging accuracy and tags
unknown words without using smoothing techniques and (2)
it creates additional linguistic resources from untagged data
in the form of word clusters.

Remainder of this paper is as follows. Section 2 surveys
related work. Section 3 formally presents the problem. Sec-
tions 4, 5 and 6 present details of our proposed approach.
Section 7 gives details of the various datasets, experiments
and discusses the performance. Section 8 presents case study

of Hindi and Telugu languages and Sect. 9 finally concludes
the paper.

2 Related work

Associative classifiers have been successfully applied for
various classification tasks. For example, Zaïane et al. [36]
present an associative classifier for mammography image
classification and Soni and Vyas [29] use it for predictive
analysis in health care data mining. Some of the asso-
ciative classifiers worth mentioning are CBA [22], which
integrates association rules and classification by finding class
association rules,CMAR[21], uses concept ofmultiple class-
association rules, CPAR [35], based on predictive association
rules and ACME [32], exploits maximum entropy princi-
ple. A good review of various associative classifiers and
the detailed analysis of this method can be found in [31].
For text classification, Kamruzzaman et al. [19] use associ-
ation rules in a hybrid system of Naive Bayes and genetic
classifier. Shaohong and Guidan [25] present a supervised
language-specific hybrid algorithm of statistical method and
association rule mining to increase the POS tagging accuracy
of Chinese text. To the best of our knowledge, no semi-
supervised method exists for mining association rules from
a training set of annotated and untagged data combined.

One of the first semi-supervised POS tagging methods
was proposed by Cutting et al. [10] which uses untagged
corpus by incorporating features obtained from a small frac-
tion of untagged data along with features obtained from
a large annotated data. A good overview of the existing
semi-supervised POS tagging methods and discussion on
their limitations is provided by Subramanya et al. [30],
which uses graph as a smoothness regularizer to train CRFs
[20] in a semi-supervised manner from a large untagged
data and a small annotated data. Authors of [27] present
a tri-training [37]-based semi-supervised POS tagger that
combines supervised SVMTool [16] and unsupervisedUnsu-
pos [6] taggers. Later in [28], they present a condensed
nearest neighbor method for semi-supervised POS tagging
and report 97.5% accuracy on WSJ dataset of English. Most
of the existing semi-supervised POS tagging methods use
a combination of complex learning methods and existing
supervised taggingmethods to learn from large untagged data
and moderate-sized annotated data. All these methods have
been developed for resource-rich English and other European
languages.

To the best of our knowledge, no semi-supervised tagger
exists for resource-moderate Hindi and resource-poor Tel-
ugu and Tamil languages. Also to the best of our knowledge,
no fully data mining-based generic POS tagger exists for
any language. Baseline POS taggers for various languages
are discussed below. We note that all the reported accuracy
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values were obtained for very small-sized test sets. All the
mentioned POS taggers use linguistic (especially morpho-
logical) knowledge in some or the other form, while our
approach uses only the POS tags of the annotated set in an
indirect form and learns from the untagged data.

For Hindi language, Avinesh and Karthik [2] proposes
a CRF model with transformation-based learning (TBL)
with morphological features and reports 78.67% accuracy
on SPSAL corpus. Gadde and Yeleti [15] reports 92.36%
accuracy on ISPC corpus using special linguistic features
in a hidden Markov model (HMM). Shrivastava and Bhat-
tacharyya [26] propose an HMM with morphological fea-
tures and report 93.05% accuracy. For Telugu language,
Avinesh andKarthik [2] apply transformation-based learning
(TBL) on top of a CRF model and report 77.37% accuracy
on SPSAL corpus. Gadde and Yeleti [15] use various special
linguistic features in an HMM and report 91.23% accuracy
on ISPC corpus.

For Bengali language, Dandapat et al. [11] present various
supervised and semi-supervised maximum entropy models
and HMMs using morphological features and report 87.9%
accuracy for semi-supervisedHMMonCIIL corpus.Authors
in [14] report 92.35% accuracy using a voted approach
among various models. For Tamil language, Dhanalakshmi
et al. [12] present a linear programming-based support vector
machine (SVM) model and reports 95.63% accuracy.

3 Problem definition

Automated POS tagging is a classification task which takes
a word or a sentence as input, assigns a POS tag or other
lexical classmarker to aword or to eachword in the sentence,
and produces the tagged text as output. In semi-supervised
paradigm, the POS tagger is built from a corpus of untagged
sentences and a set of annotated sentences. The POS tagging
classification problem is formally defined as follows:

Given a set of tags � = {T1, T2, . . . , Tn}, an annotated
training set of tagged sentences AS = {St1, St2, . . . StN },
where Sti = 〈W1/Ti ,W2/Tj . . .Wn/Tk〉 (Wi is a word and
Ti is a tag from �) and a untagged training corpus of sen-
tences D = {S1, S2 . . . SM }, where Si = 〈W1W2 . . .Wm〉,
the goal is to build a classifier model Φ which outputs the
best tag sequence 〈T1T2 . . . Tl〉 for an input sequence ofwords
〈W1W2 . . .Wl〉.

4 Our approach

4.1 Mapping POS tagging to association rule mining

According to the one sense per collocation [34] hypothesis,
the sense of a word in a document is effectively determined

by its context. The notion of context has been used in various
methods of POS tagging [3,33]. A context can occur in mul-
tiple places in the text.We refer to this list of occurrences of a
context as its context-based list. We use this idea for building
our tagger. In our method, we mine context-based associa-
tion rules from training data containing both annotated and
untagged text. Our method works as follows:

– We collect all possible words occurring in the same con-
text from theuntaggeddata into a list called context-based
list (formally defined later). In thisway,we are able tofind
groups of words of similar categories from the untagged
data.

– Using the annotated set and the tag finding algorithm
of Algorithm 1, we find association rules of the form:
Context ⇒ Tag for the context-based lists. Each rule
maps a context-based list to a suitable POS tag. These
association rules work as the context-based classification
rules.

– Lastly, we group these context-based association rules
according to their POS tags to form clusters. This set
of clusters is used as the classifier model to tag words
using the method described in Sect. 6 (algorithm given
in Algorithm 2).

By experimenting with two varieties of bi-gram (one with
preceding word and the other with succeeding word) and
trigramas possible contexts,we found that trigramworks best
for our method. For a word instanceWi , we fix its context as
a trigram containingWi in the middle and we use this context
to find the context-based list. Any other notion of context can
be used as long as it fits into the formalism given below.
Context-based list: If Ψ is a function mapping from a word
instance Wi in the data to its context Ψ (Wi ), then inverse
function Ψ −1(Ψ (Wi )) is a list of words instances sharing
the same context. We refer to this list as context-based list
of Ψ (Wi ). It denotes words of similar category or type as
Wi in a specific context and can store multiple instances
of a word. For a given trigram (Wi−1 Wi Wi+1) of words,
Ψ (Wi ) = (Wi−1,Wi+1). The preceding wordWi−1 and suc-
ceeding word Wi+1 are called context words and Ψ (Wi ) is
called the context word pair of Wi .
Context-based association rule: For each context-based list
L , our approach finds association rule of the form L ⇒ T .
This rule maps the context-based list L to a POS tag T with
support and confidence parameters defined below. Since each
list L is obtained from a unique context word pair, so each
association rule uniquely associates a context to a POS tag
and works as the context-based tagging rule.

In the following definitions and formulas, we develop the
intuition and themethod to compute the interestingness mea-
sures of the significant association rules. The complexity in
defining support is due to the presence of untagged train-
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ing data required for semi-supervised learning. The support
is the count of occurrences of the context in the dataset.
Context-based lists are made from untagged data D, and we
are interested in those words of these lists for which we know
the tag in annotated set AS. Hence, we define support of a
context as follows:

AllTagContextSupport: Number of unique words of a
context-based list L whose tags are available (in annotated set
AS) is denoted as AllTagContextSupport(L). This measure
gives the number of tagged words of L .

ContextSupport: For a list of words L in which duplicates
may be present, ContextSupport(L) is defined as the set of
unique words present in L .

Coverage: For a context-based list L ,

Coverage(L) = AllTagContextSupport(L)

|ContextSupport(L)| (1)

This measure represents the confidence that enough number
of tagged samples are present in L .

ContextTagSupport:Number of unique words of a context-
based list L present in annotated set AS with a particular tag
T is denoted as ContextTagSupport(L , T ).

Confidence: For a context-based list L and tag T ,

Confidence(L , T ) = ContextTagSupport(L , T )

|ContextSupport(L)| (2)

This measure represents the confidence that considerable
number of words in list L have a particular tag T and leads
to rules of the form Context ⇒ Tag.

WordTagSupport: Frequency of tag T for a word W in the
annotated set AS is denoted as WordTagSupport(T,W ).

WordTagScore: For a word W and tag T ,

WordTagScore(W, T ) = WordTagSupport(T,W )

max
Ti∈�

WordTagSupport(Ti ,W )
(3)

This represents how good the tag fits the word on a scale of
0 to 1.

ListTagScore: For a tag T in context-based list L ,

ListTagScore(L , T )

=

∑

Wi∈ContextSupport(L)

WordTagScore(Wi , T )

|{Wi ∈ ContextSupport(L) : Wi/T ∈ AS}|
(4)

where AS is the annotated set. This formula represents
the average frequency of tag T in context-based list L .

Intuitively, it represents how good the tag fits the list. Unfor-
tunately, this is not always indicative of the correct tag for the
list. For example, if a tag is overall very frequent, it can bias
this score. Therefore, we compare this with the following
score, inspired by the notion of Conviction [9].

BackgroundTagScore: For a tag T in annotated set AS,

BackgroundTagScore(T )

=

∑

Wi∈ContextSupport(AS)

WordTagScore(Wi , T )

|{Wi ∈ ContextSupport(AS) : Wi/T ∈ AS}|
(5)

This represents the average frequency of tag T in annotated
set AS.

4.2 POS tagging challenges

POS tagging, especially for resource-poor languages, involves
threemajor challenges listed below. In our approach, we han-
dle each of them explicitly.

1. Data sparsity problem: Some POS tag classes are
present in the annotated set with very few representa-
tions. This is not enough to derive statistical information
about them. In our approach, the use of untagged data
reduces this problem (shown in Sect. 7.4).

2. Class imbalance problem: POS tag classes are highly
imbalanced in their occurrence frequency. While select-
ing a tag thismay lead to biasing toward themost frequent
tags. Existing solutions of class imbalance problem typi-
cally favor rare classes [13]. However, while tagging the
context-based lists, we need to find POS tags for them
in such a way that we neither favor frequent tags nor
rare tags. We tackle this problem using a novel Minmax
approach to find the best preferred POS tag instead of the
most frequent one (described in Sect. 5.2).

3. Phrase boundary problem: Some lists are formed at
phrase boundaries where the context comes from two dif-
ferent phrases. We need to filter out these context-based
lists which do not contain words of similar categories. In
this case, the context of a word instance need not rep-
resent strong context and so the context-based list may
contain unrelated words. We use suitable parameters to
handle this problem (explained in Sect. 5.3).

5 Building classifier model

5.1 Finding association rule for a context-based list

The first step in our classifier model building method is
to compute context-based lists from an untagged train-
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1. for each tag Ti ∈ � present in annotated set AS do:
2. Find BackgroundTagScore(Ti ) // Use Equation (5)
3. for context based list L do:
4. Find Coverage(L) // Use Equation (1)
5. if Coverage(L) ≥ MinCoverage:
6. ContextT agSupport (L , Tmax ) = max

Ti∈�
ContextT agSupport (L , Ti )

7. Maxcon f = Con f idence(L , Tmax ) // Use Equation (2)
8. if Maxcon f > MinCon f idence:
9. MaxT set = {Ti | ContextT agSupport (L , Ti ) == ContextT agSupport (L , Tmax )}
10. Best Pre f T ag = FindBest Pre f T ag(L , MaxT set)
11. Return Best Pre f T ag
12. else: Return NOTVALIST
13. else: Return NOTVALIST

14. FindBest Pre f T ag(L , MaxT set):
15. Initialize Pre f T agset = {}
16. for each word W of Context Support (L) present in AS do:
17. Tagset (W ) = {Ti | W has tag Ti in AS}
18. UnqTagset = Tagset (W ) ∩ MaxT set
19. Find MaxWTag | WordTagSupport (MaxWTag,W ) == max

Tj∈UnqTagset
WordTagSupport (Tj ,W )

20. Pre f T agset = Pre f T agset ∪ MaxWTag
21. Find MinTag ∈ Pre f T agset | ∃ Wmin ∈ Context Support (L) with(

WordTagSupport (MinTag,Wmin) == min
Wi∈Context Support (L)

WordTagSupport (MinTag,Wi )

)

22. Find ListT agScore(L , MinTag) // Use Equation (4)
23. if ListT agScore(L , MinTag) ≥ BackgroundTagScore(MinTag): Return MinTag
24. else: Return NOTVALIST

Algorithm 1: Algorithm to find POS tag for a context-based list

ing corpus D. It may be noted that a context-based list
can store multiple instances of a word. We use a slid-
ing window of size three to collect the context-based lists
from D, in a single iteration, taking care of sentence
boundaries.

In the next step, we use the algorithm shown in Algo-
rithm 1 to find association rules for all the context-based lists.
In this algorithm, BackgroundTagScore of all the POS tags
present in the annotated set AS (lines 1–2) are computed
first. Then, for a context-based list satisfying the thresh-
old values of Coverage and Confidence (lines 3–9), function
FindBestPrefTag (described in Sect. 5.2) finds the best pre-
ferred tag (lines 10–11, 14–24) from the set of tags with
maximum ContextTagSupport (lines 7–9).

For a context-based list L present as antecedent in associ-
ation rule L ⇒ T , tag T returned by this algorithm becomes
the consequent. This algorithmoutputs best preferred tags for
all the context-based lists and hence finds association rules
for all of them.

5.2 Handling class imbalance problem

Wehandle the class imbalance problem byusing a novelMin-
max approach in the function FindBestPrefTag (lines 14–24
in Algorithm 1) and parameters BackgroundTagScore and
ListTagScore. In our Minmax approach, the preferred tag
Ti for context-based list L is the one which has maximum

ContextTagSupport(L , Ti ), but it is also having minimum
WordTagSupport(Ti ,W ) among those words of list L which
have tag Ti as the best tag in AS. This takes care that
the selected tag is supported by majority of the words in
the list and is not biased by annotated set’s most frequent
tag.

To find the best preferred tag for list L in the function
FindBestPrefTag, from the set of all the tags with maxi-
mum ContextTagSupport value (line 9), at first we find those
tags which are best tags (having maximumWordTagSupport
value) for the words of list L in AS (lines 15–20). Next,
from this set of preferred tags we find the tag with mini-
mum WordTagSupport value (line 21). Then, we check the
tag scores using criteria specified in lines 22–23, which is,{
ListTagScore(L , Ti ) ≥BackgroundTagScore(Ti ) }, to ensure
that the selected tag has above-average support in the anno-
tated set and the context-based list, both. If none of the tags
satisfy this criteria, then we tag the list as “NOTVALIST”
(line 24).

5.3 Handling phrase boundary problem

To filter out context-based lists with the phrase boundary
problem (see Sect. 4.2), we use two suitable threshold values
for parameters Confidence and Coverage. Coverage takes
care of the fact that a context-based list has considerable
number of words to map it to a tag and Confidence ensures
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that the tag found for the list is the one which is supported
by majority of the words in the list.

If context-based list L has Coverage and Confidence
values less than the corresponding threshold valuesMinCov-
erage andMinConfidence, we tag L as “NOTVALIST” (lines
3–8, 12, 13 in Algorithm 1). If L satisfies both of the thresh-
old values, then only we find the set of all the tags which have
maximum ContextTagSupport(L , Ti ) value and use this set
(lines 9–10) to find the best preferred tag for the list (lines
14–24).

5.4 POS tag-wise grouping of association rules

In the last step, we group context-based lists according
to their POS tags to get clusters of context-based lists as
classifier model. We exclude context-based lists with tag
“NOTVALIST” from the grouping process. Then,we process
these clusters to store word frequencies, corresponding con-
text word pairs and their frequencies in each cluster. We
represent the set of clusters as Clustset.

Since we are highly confident about the tags of the words
present in the annotated set AS so, to improve cluster quality
we remove those words (present in AS) from each cluster
which do not have a matching cluster tag in AS. Finally, we
get a set of clusters in which each cluster has words, their
counts and associated context word pairs with their counts.
Each cluster has a unique POS tag. These clusters are over-
lapping in nature and words can belong to multiple clusters.

6 POS tagging of test data

Our tagging method is formalized in Algorithm 2. To tag
the words of a test sentence, we make use of the test word’s
context word pair, preceding word, and the word frequency
in a cluster to decide the tag of the word. When a test word
is found in only one cluster then we output the cluster tag
as the tag of the test word. But when a test word is found in
many clusters, then to select the suitable clusters following
priority order is followed:

1. Criteria 1: Highest priority is given to the presence of
matching context word pair of the test word in the clus-
ters.

2. Criteria 2: Second highest priority is given to the pres-
ence of matching preceding word of the test word as first
word of the context word pairs in clusters.

3. Criteria 3: Last priority is given to the frequency of the
test word in the clusters.

For test words not present in any cluster, we use criterion
1 and 2 to select appropriate clusters. Based on the priority
order, only one of the criterion is used to select the suitable

clusters. If we are not able to find any suitable cluster, then
we return “NOTAG” as the tag of the test word.

Even whenwe find suitable clusters, to increase precision,
our method finds POS tags only for those cases where it is
confident. It avoids to wrongly classify non-confident cases
and returns “NOTAG” for them. This is especially useful
when the cost of misclassifying (false positive) is high. This
also gives opportunity to integrate other language-/domain-
specificPOS taggers as they can be used for the non-confident
cases.

After selecting the suitable clusters, we need to make sure
that we have enough confidence in the highest probability
tag obtained from the clusters. To ensure this, we use the
parameter TagProbDif, which gives the fractional difference
between the highest and the second highest cluster tag prob-
abilities and is defined as follows:

TagProbDif = TagProb(Cmax) − TagProb(Csecmax)

TagProb(Cmax)
(6)

where Cmax is the cluster with highest TagProb(Ci ) value
and Csecmax is the cluster with second highest TagProb(Ci )

value. TagProb(Ci ) of a cluster is defined as follows:

TagProb(Ci ) = Frequency of X in Ci
∑

∀C j∈Clustset
Frequency of X in C j

(7)

where X is set as follows: If the test word is present in cluster
Ci then X = test word. For test word not present in any
cluster, if the clusters are selected based on the presence of
the context word pair of the test word then X = context word
pair; if the clusters are selected based on the presence of the
preceding word of the test word as first word of the context
word pairs in clusters, then X = preceding word of the test
word. In this way, we are able to tag some unseen/unknown
words also which are not present in the training data. This, in
a way, acts as an alternative of smoothing technique for them.

After selecting the clusters (based on priority order), we
compute their TagProb values using (7) and then compute
TagProbDif using (6). For TagProbDif value above a suitable
threshold valueMinprobDif, we output the tag of cluster with
highest TagProb value as the tag of the test word, otherwise
we return “NOTAG’.

7 Experiments, results and observations

7.1 Dataset details

We have done our experiments on resource-rich English
language (New York Times dataset of American National
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Table 1 Statistics of all the five language datasets with AverageAccuracy values obtained by our tagger

Hindi Telugu Tamil Bengali English

No. of words in untagged training set 393,303 104,281 169,705 85,796 1,293,388

No. of words in annotated training set 282,548 83,442 20,207 21,561 629,532

POS tag count in annotated training set 35 28 28 27 109

No. of words in test set 70,811 20,854 22,352 20,618 471,977

POS tag count in test set 32 24 27 29 105

Test words tagged as NOTAG by our tagger 1916 1634 2647 3448 9385

AverageAccuracy (%) (Eq. 8) 87.8 87.6 83.46 76.17 88.5

Resource type Moderate Poor Poor Poor Rich

for each word Wmid in sentence S with context word pair CWp and CWs do:

Initialize PredClustset = {}
if ∃ cluster Ci ∈ Clustset | Wmid ∈ Ci :

Find PClustset = {Ci | Wmid ∈ Ci }
if ∃ cluster C j ∈ PClustset | CWp and CWs pair is present as context word pair in cluster C j :

Find all such clusters from PClustset and append to PredClustset #Criteria 1
else:

if ∃ cluster C j ∈ PClustset | CWp is present as preceding word in a context word pair in cluster C j :
Find all such clusters from PClustset and append to PredClustset #Criteria 2

else: Append PredClustset = PredClustset ∪ PClustset #Criteria 3

else:

if ∃ cluster Ci ∈ Clustset | CWp and CWs pair is present as context word pair in cluster Ci :
Find all such clusters from Clustset and append to PredClustset #Criteria 1

else:
if ∃ cluster Ci ∈ Clustset | CWp is present as preceding word in a context word pair in cluster Ci :

Find all such clusters from Clustset and append to PredClustset #Criteria 2
else: Return NOTAG

∀ Ci ∈ PredClustset Find TagProb(Ci ) // Use Equation (7)
Find Cmax = cluster with highest TagProb(Ci ) value in PredClustset
Find Csecmax = cluster with second highest TagProb(C j ) value in PredClustset
Find TagProbDi f // Use Equation (6)
if TagProbDi f ≥ MinprobDi f : Return PredTag = POS tag label of cluster Cmax
else: Return NOTAG

Algorithm 2: Tagging Algorithm – Classification method using set of clusters Clustset for tagging words of a sentence

Corpus1 using Biber tag set [18]), resource-moderate Hindi
language [4,5] and resource-poor Telugu2 [4], Tamil3 and
Bengali4 languages. Table 1 gives details of all the language
datasets. All the five language datasets have flat tag sets
present in annotated training and test sets without any hierar-
chy. The POS tag data distribution in the resource-moderate
and resource-poor language datasets are highly imbalanced
and sparse.

1 http://americannationalcorpus.org/FirstRelease/contents.html.
2 Provided by IIIT Hyderabad, data is part of IL-ILMT project
sponsored by MC&IT, Govt. of India Reference No: 11(10)/2006-
HCC(TDIL).
3 http://sanskrit.jnu.ac.in/ilci/index.jsp.
4 http://sanskrit.jnu.ac.in/ilci/index.jsp.

7.2 Performance analysis and observations

We observed that for the following set of threshold values
MinConfidence = 60%, MinCoverage = 60% and Min-
probDif = 30%, the three parametersConfidence,Coverage
and TagProbDif give best AverageAccuracy (defined below)
values for all the five languages. Tables 1, 2, 3, 4, 5, 8 and 9
show the results for this set of threshold values for the respec-
tive parameters.

AverageAccuracy

= Number of correctly tagged test words

|Test set| − No. of test words tagged as NOTAG

(8)

where |Test set| = No. of words in the test set.
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Table 2 Tagging criteria selection and number of words correctly tagged using them by our tagging algorithm shown in Algorithm 2 for 70811
Hindi and 20854 Telugu test set words with classifier models built using training data specified in Table 1

Table 3 AverageAccuracy (%) values for all languages obtained by our tagger and CRF tagger for various annotated training set sizes ( ≤ 25,000
words)

Test Annotated CRF Our Tagger
Lang. set Training Average Average No. of Untagged

size set size Accuracy Accuracy NOTAG Training
(%) (%) Words set size

Hindi 20227

5730 74.6 79.1 3195 10025
10030 78.4 79.05 2740 10025
15771 81.3 82.1 2116 25020
25591 84.7 85.0 1903 50019

Telugu 20854

4994 59.4 81.4 5617 9994
9994 67.1 82.6 3897 23435
14995 71.2 84.4 3240 43434
23435 75.3 84.3 2419 104281

Tamil 22352

5006 48.9 75.0 6957 40988
9941 59.9 79.7 4357 80004
15007 65.9 82.1 3778 80004
20207 69.4 83.1 3495 80004

Bengali 20618

5010 47.3 73.5 7081 49997
10003 56.2 74.6 5332 85796
15009 59.3 75.2 4269 85796
21561 63.0 77.8 4170 85796

English 24952
10671 70.4 79.7 3774 50444
15298 72.9 82.3 3424 50444
24825 76.4 82.5 2574 93679

Table 2 shows that for both known and unknown test
words, highest percentage of correct tagging is done by giv-
ing first priority to presence of context word pair in the
cluster (Criteria 1). Here, knownwords means test set words
which are present in untagged training set and unknown
word means unseen test set words which are not present
in the untagged training set. Note that words of annotated
training set are not included in the classifier model, only
their tags are used indirectly while building the model. This
trend was observed for all the five languages. In the results
shown in Table 1, around 46%unknownEnglishwords, 60%
unknown Hindi words, 67% unknown Telugu words, 52%
unknown Bengali words and 57% unknown Tamil words

were correctly tagged using their context word pair. This
shows the strength of our tagger to tag unknown words
without using any smoothing technique used by other POS
taggers.

In Table 3,we compare our resultswith a supervisedCRF5

tagger [20]. This tagger useswords, their POS tag and context
word pair information from annotated training data, while
our tagger uses words and their context word pair informa-
tion from untagged training data and POS tag information

5 http://crfpp.googlecode.com/svn/trunk/doc/index.html, CRF model
outputs tag for all test words. So, for CRF tagger AverageAccuracy =
(No. of correctly tagged test words)/(No. of test words).

123

http://crfpp.googlecode.com/svn/trunk/doc/index.html


Int J Data Sci Anal (2016) 1:123–136 131

Table 4 Effect of annotated
training data size on classifier
model of Tamil language for
22,352 test set words built with
169,705 untagged words

No. of words in
annotated set

No. of clusters (unique
words) in model

No. of NOTAG test
words

Average
accuracy (%)

5006 22 (2021) 5317 72.2

9941 25 (3553) 3575 79.0

15,007 26 (4842) 2940 82.09

20,207 26 (5774) 2647 83.46

Table 5 Effect of untagged
training data size on classifier
model built using 282,548 Hindi
and 14,995 Telugu annotated
training set words for 70,811
Hindi and 20,854 Telugu test set
words

Lang. No. of words in
untagged set

No. of clusters (unique
words) in model

No. of NOTAG
test words

Average
accuracy (%)

Hindi 50019 25 (4366) 4714 87.3

98,331 28 (6081) 3664 87.7

128,329 28 (6865) 3220 87.9

158,337 29 (7546) 2890 87.9

188,326 29 (8112) 2793 88.0

196,659 29 (8260) 2748 88.0

282,554 30 (9517) 2484 88.0

294,979 30 (9663) 2450 88.1

393,303 30 (10817) 1916 87.8

Telugu 23435 24 (4619) 3318 84.4

43,434 24 (4646) 3240 84.4

63,436 24 (4629) 2962 83.7

83,442 24 (4700) 2864 83.5

104,281 23 (2799) 2032 82.3

from annotated training data. We observe that for annotated
training data size ≤ 25000 words, our tagger gives better
AverageAccuracy than CRF tagger. Our tagger also gives
better POS tag precisions and better tagging accuracies than
CRF tagger for unknown words and performance improves
by increasing the untagged training data size up to a certain
size. This shows that our tagger can be a better choice for
the resource-poor languages. Also, as an additional benefit
the model made by our tagger is more human understandable
than that made by CRF tagger.

7.3 Effect of annotated (POS tagged) training data size

For 22,352 Tamil test set words we varied the size of anno-
tated training set while keeping the untagged training set
constant at 169,705 words (see Table 4). We observed that
the coverage of words by the clusters (number of unique
words in the cluster set) in the classifier model increases
with the increase in the size of annotated training data. This
happens because more context-based lists qualify for get-
ting tagged which gets them included in cluster set and
which in turn increases the number of unique words cap-
tured by the cluster set. This increases the tagging accuracy
while the number of words missed by the model (tagged as
“NOTAG”) decreases. For all the five languages,weobserved

that increasing the annotated training data size improves clus-
ter quality which increases the AverageAccuracy values but
only up to a certain size. We also observed that there is only
a slight decrease in AverageAcuracy value with decrease in
annotated training set size, so performance does not decrease
drastically when the annotated training set is made smaller.
Our tagger gives above 70% AverageAccuracy with anno-
tated training data size as low as 5000 words and untagged
training data size 10,000 words for all the languages. This
justifies the use of small annotated training set to build a
semi-supervised POS tagging model for the resource-poor
languages.

7.4 Effect of untagged (raw) training data size

In Tables 1, 3 and 5 (for 70,811 Hindi and 20,854 Telugu test
set words, using 282,548 Hindi and 14,995 Telugu annotated
training set words), we observe that increasing the untagged
training data size initially increases word coverage of clus-
ters (number of unique words in the cluster set) which in turn
increases the AverageAccuracy values but stabilizes after a
certain size. After this if we increase the untagged data size
then it decreases the performance. For all the five languages,
we observed that while keeping the size of annotated train-
ing set constant if we increase the size of untagged training
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Table 6 List of 35 POS tags present in Hindi annotated training set of
282,548 words and distribution of tagged words in it

Table 7 List of 28 POS tags present in Telugu annotated training set
of 83,442 words and distribution of tagged words in it

Table 8 Precision and Recall values (in %) of 32 POS tags of 70,811
Hindi test set words obtained by our classifiermodel built using 282,548
annotated and 393,303 untagged training set words

data then the coverage of words by the clusters in the clas-
sifier model increases up to a certain size. This accounts for
the increase in tagging accuracy and decrease in the num-
ber of words missed by the model (tagged as “NOTAG”).
Also, Table 2 shows that for Hindi with higher untagged
training data size than Telugu, the number of test words
for which there is no POS tag present in the cluster set is
far less than Telugu. Other interesting observation is that
AverageAccuracy does not vary much as the untagged train-
ing data size varies, so our algorithm is able to perform well
even with a small-sized untagged training data.

Table 9 Precision and Recall values (in %) of 24 POS tags of 20,854
Telugu test set words obtained by our classifiermodel built using 83,442
annotated and 104,281 untagged training set words

7.5 Effect of various parameter values on classifier
model

We made following observations about the effect of para-
meter values: (1) For parameter Confidence, increasing
threshold value of MinConfidence increases the quality of
clusters but at the same time it also increases the num-
ber of context-based lists tagged as “NOTVALIST” which
decreases the word coverage of clusters. (2) Decreasing
threshold value of MinCoverage for parameters Coverage
although decreases the quality of clusters (by allowing inclu-
sion of non-related words in a context-based list) but at
the same time it increases the word coverage of clusters by
decreasing the number of context-based lists tagged as “NOT-
VALIST”. (3) By varying the threshold value ofMinprobDif
from 5 to 30% for parameter TagProbDif, we found that
increasing the threshold value increases the Precision values
of POS tags but slightly decreases their Recall because the
number of words tagged as “NOTAG” increases. Practical
advantage of this parameter is that it ensures that tagging
of ambiguous and non-confident cases is avoided. (4) The
number of POS tag clusters obtained in the classifier model
is almost independent of the selected threshold values of the
parameters. For the training data sizes given in Table 1 and
for the range of threshold valuesMinConfidence = 60–90%
and MinCoverage = 0–75%, number of POS tag clusters
found for English was 100–101, for Hindi was 29–31, for
Tamil was 22–26, for Bengali was 25 and for Telugu was
23. We noted that the POS tags missing from the set of
clusters were the rare POS tags having very low frequen-
cies.

7.6 Complexity analysis

Our tagger’s complexity is linear, O(N ), where N is the
number of words in untagged training data. We note that
while making the trained model, time required to build the
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Fig. 1 F1 Score values (in %) for 29 test set POS tags of Hindi (listed in Table 10) obtained by CRF tagger and our tagger using annotated training
set of 5730 words with 393,303 untagged training set words

context-based lists constitutes the most time taking section
of our algorithm. This section of the algorithm decides the
overall complexity of our tagger stated above.Merging of the
lists is also linear, O(n), where, n is the number of obtained
context-based list, but n � N . Tagging of the test words is
an instant lookup in the trained model and hence constant,
O(1). So, bulk of the time is taken by model building sec-
tion, in which context-based list building takes most of the
time since it is linear in size of untagged data. Since, tagging
time is almost instantaneous for a test word, our tagger is
efficient.

8 Case study of resource-moderate Hindi and
resource-poor Telugu languages

We present here, the detailed results obtained by applying
our POS tagging method on resource-moderate Hindi and

resource-poor Telugu languages and compare them with
results obtained by applying supervised CRF6 tagger [20].

List of POS tags and tag-wise distribution ofwords present
in Hindi and Telugu annotated training data for the data sizes
given in Table 1 are shown in Tables 6 and 7, respectively.
Please note that “NULL” tag present in Hindi annotated and
test sets is noise and hence it is not counted in the available
tag set and is not included in the results. It is clear from the
tables that there is a class imbalance problem in the data and
we handle it using a specific method (discussed in Sect. 4.2)
in our algorithm.

Precision and Recall values obtained for each POS tag
of 70,811 Hindi and 20,854 Telugu test set words by our
classifier models built using training data sizes specified in
Table 1 (282,548Hindi and 83,442 Telugu annotated training
set words with 393,303 Hindi and 104,281 Telugu untagged

6 http://crfpp.googlecode.com/svn/trunk/doc/index.html. For CRF
tagger AverageAccuracy = (No. of correctly tagged test words)/(No.
of test words).
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Table 10 List of 29 POS tags present in Hindi test set of 20,227 words
and distribution of tagged words in it

training set words) are shown in Tables 8 and 9, respectively.
Their AverageAccuracy values are already shown in Table 1.
In each cell of these tables, the first value below the POS
tag name gives Precision and second value gives Recall. It
is well known that Precision is the number of correctly pre-

dicted positive results divided by the number of all positive
results, and Recall is the number of correctly predicted pos-
itive results divided by the number of positive results that
should have been predicted.

For Hindi, using training set data of Table 1, the obtained
classifiermodel cluster set contained30POS tag clusterswith
10,817 unique words (see Table 5). Analyzing the results in
Table 8, we can say that, except for “RDP”, only very rare
POS tag classes, like “RBC”, “QFC”, “PRPC”, “NSTC,” etc.,
which have number of samples below 45 in the annotated
training set (see Table 6) are missed by our tagger. It may be
noted that the POS tag “RDP” is given to duplicated words
of other POS tags. It is a difficult POS tag class because it has
total overlappingwith other tags.Apart from these, for almost
all other tags our tagger performed well, although they also
are not highly represented in the annotated set (see Table 6).

For Telugu, using training set data mentioned in Table 1,
the obtained classifier model cluster set had 23 POS tag clus-
ters with 7180 unique words. Results in Table 9 show that,
excluding “ECH” and “UNK”, which are exceptional POS

Fig. 2 F1 Score values (in %) for 24 test set POS tags of Telugu (listed in Table 11) obtained by CRF tagger and our tagger using annotated
training set of 4994 words with 104,281 untagged training set words
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Table 11 List of 24 POS tags of 20,854 Telugu test set words and
distribution of tagged words in it

tag classes, our tagger performed well although the POS tag
classes had minimalistic representation (see Table 7) in this
resource-poor language dataset. This proves the utility of our
POS tagging method for resource-poor languages.

Figures 1 and 2 present comparison graphs of F1 Scores
(defined below) of our tagger and CRF tagger for Hindi and
Telugu, respectively. F1 Score of a POS tag T is the harmonic
mean of its Precision and Recall values and is defined as
follows:

F1 Score of T

= 2 · (Precision of T) · (Recall of T)
(Precision of T) + (Recall of T)

(9)

Figure 1 shows comparison graph for 20,227 Hindi test
set words containing 29 POS tags (see Table 10). In this
graph, the CRF tagger’s values were obtained from a classi-
fier model built with training set of 5730 annotated words,
while our tagger used 393,303 untagged training set words
alongwith this annotated set to build the classifiermodel. Our
tagger obtained 81.1% AverageAccuracy while CRF tagger
obtained 74.67%.

Figure 2 presents comparison graph of F1 Scores of our
tagger and CRF tagger for Telugu test set of 20,854 words
with 24 POS tags (see Table 11). Our tagger’s classifier
model was built using 4994 annotated training set words
along with 104,281 untagged training set words. CRF tagger
used 4994 annotated training set words to build the classi-
fiermodel. Our tagger obtained 77%AverageAccuracywhile
CRF tagger obtained 59.4%.

Since our motivation is to provide a practical good tagger
for resource-poor languages, we present comparison results
of small annotated training data sizes for both the languages.
Figure 1 shows that, in case of Hindi language, except for
“RDP” and “QCC”, overall performance of our tagger is
better than CRF tagger. Figure 2 clearly shows that for Tel-
ugu our tagger outperforms CRF tagger. In both the cases,
our tagger performs well for maximum number of POS tags
although the annotated training data sizes are considerably
small.

9 Conclusions and future work

In this work, we developed a semi-supervised associative
classification method for POS tagging. We used the con-
cept of context-based list and context-based association rule
mining. We also developed a method to find interestingness
measures required to find the association rules in a semi-
supervisedmanner from a combined training set of annotated
and untagged data. We showed that our tagger gives good
performance for resource-rich as well as resource-poor lan-
guages without using extensive linguistic knowledge. It
works well even with less annotated and untagged training
data. It can also tag unknown words. These advantages make
it very suitable for resource-poor languages and can be used
as an initial POS taggerwhile developing linguistic resources
for them.

Future work includes (1) using other contexts instead of
trigram, (2) finding methods to include linguistic features in
the current approach, (3) mining tagging patterns from the
clusters to find tag of a test word and (4) using this approach
for other lexical item classification tasks.
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