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Abstract Outlier detection consists in detecting anomalous
observations from data. During the past decade, outlier detec-
tion methods were proposed using the concept of frequent
patterns. Basically such methods require to mine all frequent
patterns for computing the outlier factor of each transaction.
This approach remains too expensive despite recent progress
in pattern mining field to provide results within a short
response time of only a few seconds. In this paper, we provide
the first anytime method for calculating the frequent pattern
outlier factor (FPOF). This method which can be interrupted
at anytime by the end-user accurately approximates FPOF by
mining a sample of patterns. It also computes the maximum
error on the estimated FPOF for helping the user to stop the
process at the right time. Experiments show the interest of
this method for very large datasets where exhaustive mining
fails to provide good approximate solutions. The accuracy of
our anytime approximate method outperforms the baseline
approach for a same budget in number of patterns.

Keywords Pattern mining - Outlier detection - Pattern
sampling

1 Introduction

Outlier detection consists in detecting anomalous observa-
tions from data [17]. The outlier detection problem has
important applications, such as detection of credit card fraud
or network intrusions. During the past decade, outlier detec-
tion methods were proposed for categorical data [2,7,9,18,
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20,27,28]. The general principle is to build a model that
reflects the majority of the dataset and to judge as outlier all
data observations that deviate from this model. Some of these
approaches use the concept of frequent patterns [18,20,27]
for building the model. Their key idea is to consider the num-
ber of frequent patterns supported by each data observation.
A data observation is unlikely to be an outlier if it supports
many frequent patterns since frequent patterns correspond
to the “common features” of the dataset. Frequent pattern
outlier detection methods first extract all frequent itemsets
from the data and then assign an outlier score to each data
observation based on the frequent itemsets it contains. These
outlier detection methods follow the schema of pattern-based
two-step methods.

Pattern-based two-step methods [19] aim at exhaustively
mining all patterns (first step) in order to build models
(second step) like pattern sets (e.g., classifier [21] or clus-
tering [10]) or pattern-based measures (e.g., frequent pattern
outlier factor (FPOF) [18] or CPCQ index [22]). The com-
pleteness of pattern mining is often considered as a crucial
advantage for constructing accurate models or measures.
However, it also leads to three important issues that hinder
the user interaction with the system:

1. Threshold issue The completeness of the first step
requires to adjust thresholds which is recognized as being
very difficult. Typically, if the minimal support threshold
is too low, the extraction becomes unfeasible. If it is too
high, some essential patterns are missed.

2. Accuracy issue Completeness leads to huge pattern
volumes without guaranteeing not missing important
patterns. For a smaller budget (in time or number of
patterns), we claim that non-exhaustive methods can pro-
duce collections of patterns better adapted to the task of
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the second step. Interestingly, a non-exhaustive method
can even guarantee a certain quality on the second step.

3. Runtime issue The exhaustive mining of all patterns
requires to explore the search space in a certain fashion
that extracts either very general patterns first (breadth-
first search) or very similar patterns to each other (depth-
first search). For having patterns regularly covering the
search space, it is necessary to wait for the end of the
extraction step before starting the model construction.
As this first step is very time-consuming, it prevents the
user to have an immediate answer.

In order to cope with these issues, we propose an approach for
pattern-based outlier detection that does not rely on exhaus-
tive mining. This paper extends the previous version [14] by
taking into account an anytime constraint i.e., a terminating
condition based on a budget in time or patterns rather than a
maximum error. However, the maximum error is still com-
municated to the user to help stop the process at the right time.

This paper revisits the calculation of the FPOF with an
anytime constraint by benefiting from recent pattern sam-
pling techniques. Our goal is not to propose a new outlier
detection factor. Rather, we want to better approximate, and
at anytime, the FPOF. Although this factor has several limi-
tations, it remains popular and our approach can be applied
to other. Furthermore, the main limitation of FPOF is clearly
its computational cost that raises the three above issues. To
tackle this problem, our proposal is to propose an anytime
algorithm, i.e., algorithm that can be interrupted at any point
of time to supply an answer whose quality increases with
computational time [4]. To this purpose, the key idea of our
proposal is to mine a pattern sample instead of mining the
exhaustive collection of frequent patterns. We then reformu-
late the FPOF by considering the current sample of patterns.
Using Bennett’s inequality, this method guarantees a maxi-
mum error for a given confidence at anytime. Experimental
study shows the efficiency of our sampling-based method
on benchmarks coming from UCI Machine Learning repos-
itory and FIMI repository by considering evaluation criteria
of anytime algorithms [32]:

— Accuracy The result of our sampling-based anytime algo-
rithm converges to the exact FPOF when time tends
to infinity. In particular, the Kendall’s tau which eval-
uates the similarity between the rankings induced by
the approximate and exact FPOF increases rapidly and
smoothly with pattern budget.

— Certainty The error estimated stemming from Bennett’s
inequality is relatively close to the true error. The end-
user therefore has an objective interestingness measure
in order to help stop the algorithm at the right time.

— Stability Even if the proposed algorithm is non-
deterministic, the variability (evaluating by the standard
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deviations of accuracy measures) decreases with sample
size and time. This means that multiple executions give
approximately the same answer.

The outline of this paper is as follows. Section 2 reviews
some related work about outlier detection, pattern sampling
and anytime algorithms. Section 3 introduces the basic def-
initions about the FPOF. Section 4 motivates and states the
problem of its anytime approximate calculation. We intro-
duce our anytime approximate method based on sampling in
Sect. 5. Section 6 provides experimental results. We conclude
in Sect. 7.

2 Related work

2.1 Pattern-based outlier detection

The outlier detection methods are primarily based on the
construction of a model that describes the majority of data
observations. A new data observation is then considered
abnormal when it strongly deviates from this model. In
this paper, we mainly focus on the outlier detection meth-
ods dedicated to categorical data. A broader view of outlier
detection is provided by surveys including [17]. Different
frameworks are dedicated to categorical data for the con-
struction of the model including the Minimum Description
Length framework [2], the probability framework (using Hid-
den Markov Models (HMM) [7], joint probabilities [9] or a
random walk on attributes [28]) and the pattern-based frame-
work [18,20,27]. Pattern-based methods benefit from the
progress of pattern mining made over the past two decades.
The key idea is that as the frequent patterns reflect the distri-
bution of the dataset, they form a representative model of the
dataset. Such methods remain efficient for high-dimensional
spaces unlike other methods dedicated to categorical data.

The first pattern-based approach [ 18] introduced the FPOF
that exploits the complete collection of frequent itemsets
(while [27] uses an opposite approach by considering non-
frequent itemsets). More recently, [20] replaces the collection
of frequent itemsets by the condensed representation of Non-
Derivable Itemsets (NDI) which is more compact and less
expensive to mine. We would go further by showing that the
FPOF proposed in [18] can be approximated efficiently by
extracting a small sample of patterns.

This paper benefits from FPOF which remains a popular
outlier detection factor despite its known limits. Unlike other
methods, it does not exploit the data structure which is often
used to improve the detection of abnormal data: an organi-
zation as attribute-value [2,9,28] and in a most original way,
sequentiality [7]. Moreover, recent experiments [28] have
shown that the FPOF is not well-suited for identifying abnor-
mal data when data are noisy or attributes have very different
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distributions. Finally, the main flaw of FPOF that we already
discussed in the introduction is its computational cost. In
addition, it is necessary to wait until the end of the execution
to know what are the outliers. Note that even, non-pattern-
based outlier detection methods which are polynomial with
the dataset size suffer from the same drawbacks. By offering
an anytime algorithm, our proposal gives a first result in a
short response time and if there is enough time, it converges
to a result as good as would give the original FPOF method.

2.2 Pattern sampling

Previous methods for pattern-based outlier detection enu-
merates exhaustively all patterns satisfying a given selection
predicate, called constraint [24] (e.g., minimal frequency).
As mentioned in introduction, it is recognized that constraint-
based pattern mining leads to threshold and runtime issues
which are sometimes a severe bottleneck. Recently, there
has been a resurgence in pattern mining for non-exhaustive
methods [12] through pattern sampling [6,8]. Pattern sam-
pling aims at accessing the pattern space £ by an efficient
sampling procedure simulating a distribution 7 : £ — [0, 1]
that is defined with respect to some interestingness measure
m: mw(.) = m(.)/Z where Z is anormalizing constant (formal
framework and algorithms are detailed in [6]). In this way, the
user has a fast and direct access to the entire pattern language
and with no parameter (except possibly the sample size).
Pattern sampling has been introduced to facilitate interactive
data exploration [31]. As constraint-based pattern mining,
pattern sampling problem has been declined for different lan-
guages like itemsets [6] and graphs [15], and different inter-
estingness measures including support [6,15], area [6,26],
discriminative measure [6,15] or utility measure [6,25,26].

To the best of our knowledge, there are only two proposals
benefiting from pattern sampling to instantly build pattern-
based global models: representative set of patterns [8] and
tiling [26]. In this paper, we investigate the use of pattern
sampling for assigning an outlier score to each transaction (a
kind of model). But we go further by refining this model over
time to finally tend to the exact model. With a lower (pattern
or time) budget than that of an exhaustive method, we obtain
a higher quality with a bounded error.

2.3 Anytime algorithms for pattern mining

Introduced in the field of real-time system design [4,32], any-
time algorithms have more recently been used in the field of
data mining [3,5,11,16,23], and more specifically for pattern
mining [30]. Most of the time, anytime algorithms have been
used to build global models (e.g., classifiers, clusterings or
rankings) when the computation time required to obtain a first
model is very important. One approach to build global models
using anytime algorithms is to enumerate the set of all possi-

ble solutions and keep anytime the best solution, i.e., the best
global model. For example, using depth-first-search-based
algorithms, this approach has been used to build Bayesian
networks [23], or to extract groups with maximum cover-
age from spatiotemporal data of mobile users [30]. Another
approach to build global models using anytime algorithms
is to compute first a rough solution and then to refine this
solution over time. For example, this approach is used in
[5] to build an anytime density-based clustering algorithm
and in [16] to provide high quality subspace clusterings of
data streams. This approach is also used in this paper to
extract outliers. Indeed, using pattern sampling, our algo-
rithm refines the FPOF of transactions over time.

To the best of our knowledge, only the works in [3] address
the problem of outlier detection using anytime algorithms.
In [3], the authors propose an anytime algorithm to deter-
mine within any period of time whether an object in a data
stream is anomalous or not. The more time is available, the
more reliable the predictions are. Compared to this work,
in this paper, we do not propose an algorithm to detect out-
liers in data streams, but in very large datasets. However, we
have the same property, meaning that the accuracy of our
predictions (a transaction is an outlier or not) increases with
time. Finally, to the best of our knowledge, only the works
in [30] use anytime algorithms for pattern mining. Neverthe-
less, compared to our work, this work solves a very different
problem, i.e., finding groups of users with maximum cover-
age in the context of spatiotemporal data mining.

3 Frequent-pattern-based outlier detection

3.1 Basic definitions

Let Z be a set of distinct literals called ifems, an itemset (or
a pattern) is a subset of Z. The language of itemsets corre-
sponds to £ = 27, A transactional dataset is a multiset of
itemsets of £. Each itemset, usually called transaction, is a
data observation. For instance, Table 1 gives three transac-
tional datasets with 4 or 5 transactions #; described by until
4 items A, B, C and D.

Pattern discovery takes advantage of interestingness mea-
sures to evaluate the relevancy of a pattern. The support of
a pattern X in the dataset D is the proportion of transactions
covered by X [1]: supp(X,D) = |{t € D: X C t}|/|D|. A
pattern is said to be frequent when its support exceeds a user-
specified minimal threshold. The set of all frequent patterns
for o as minimal threshold in D is denoted by F, (D):

Fo(D)={X € L:supp(X,D) > o}
In the following, we manipulate pattern multisets which

are collections of patterns admitting several occurrences of
the same pattern. The representativeness of a pattern multiset
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Table 1 Three toy datasets with

slight variations Trans.  Ttems

D
t A B
%) A B
2} A B
14 C

ol
t A B
%) A B
13 A B
14 C
15 A B

D"
f A B D
t A B D
13 A B D
14 C

P, denoted by Supp (P, D), is the sum of the support of each
pattern in P:

Supp(P, D) = Z supp(X, D)
XeP

The range of Supp(P, D) is [0, |P|]. Given a cardinality,
high representativeness means the multiset contains very
common patterns of the dataset. For comparing the content
of two pattern multisets, we use the semi-join, denoted by
P>>P1, that returns all the patterns of P, occurring in Py :

PP ={XePr:X e P}
For instance, {A, AB, A, D}>{C, A, B} = {A, A}
3.2 Frequent pattern outlier factor

Intuitively, a transaction is more representative when it con-
tains many patterns which are very frequent within the
dataset. In contrast, an outlier contains only few patterns and
these patterns are not very frequent. The FPOF [18] formal-
izes this intuition:

Definition 1 (FPOF) The FPOF of a transaction ¢ in D is
defined as follows:

Supp(2', D)

t,D) =
Jpoi ¢, D) max,ep Supp(2*, D)

The range of fpof is [0, 1] where 1 means that the trans-
action is the most representative transaction of the dataset,
while a value near 0 means that the transaction is an out-
lier. Other normalizations (denominator) are possible like
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Supp(L, D) or >,.p Supp(2', D). Whatever the normal-
ization method, two transactions remain ordered in the same
way (so it does not affect the Kendall’s tau that we use to
evaluate our method). Under a certain Markov model, the
score fpof (t, D) is also the proportion of time that an ana-
lyst would dedicate to study the transaction ¢ considering the
collection of frequent itemsets [13].

In the first dataset provided by Table 1, #; is covered by ¢
(supp(@, D) = 1)and, A, B and A B whose support equals to
0.75(Supp({9, A, B, AB}, D) = 3.25), whilet4 is only cov-
ered by ¢ and C (Supp ({4, C}, D) = 1.25). Consequently,
fpof(t1,Dy) = 3.25/3.25 and fpof (14, D) = 1.25/3.25.
In this example, #4 appears to be an outlier. It is easy to see
that increasing the frequency of the patterns covering the
first transactions (e.g., dataset D) decreases the FPOF of
t4. Similarly, increasing the number of patterns covering the
first transactions also decreases the FPOF factor of #4 (e.g.,
dataset D”).

4 Problem formulation
4.1 Exact FPOF computation problem

Given a dataset D, the outlier detection problem consists in
computing the FPOF for each transaction ¢ € D. In practice,
this exact calculation of the FPOF was performed by mining
all patterns appearing at least once in the dataset (i.e., with
o = 1/|D)|) [18]. Of course, this expensive task is not possi-
ble for very large datasets. Recently, it has been demonstrated
that the FPOF can be reformulated in order to calculate the
exact FPOF in polynomial time [14].

To calculate the FPOF of a transaction ¢, Definition 1 for-
mulates the problem in terms of frequent patterns appearing
in r. The idea is to reformulate this factor by consider-
ing what each transaction u brings to the transaction .
For instance, in dataset D, the FPOF of the first transac-
tion relies on Supp({¥, A, B, AB}, D) which is equal to
{4, A, B,AB, ¥,A,B,AB, #,A,B,AB, (#}|/4. Each
subset {#, A, B, AB} or {#} results from the intersec-
tion of patterns covering #; with those covering another
transaction u € D. Thereby, Supp({¥, A, B, AB}, D) =
{Uuep 2" N20/1D1 = {Uuep 2"™}/IDI. Given a
dataset D, this observation leads to reformulate the frequent
pattern outlier factor as follows for all transaction ¢ € D:

tNu
ZMED 2| |
max,ep >, ep 21074

fpof(t,D) =

From a conceptual point of view, it is interesting to note
that ultimately, the FPOF of a transaction is just the sum
of its similarity with each of transactions (where similarity
between 7 and u is 2/!Ml). This measure is therefore very
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Table 2 Time comparison of two exact methods for calculating FPOF

D Exhaustive Time (s) Non-enumerative time (s)
chess 439.5 1.1

connect 748.5 577.7

mushroom 0.4 5.9

pumsb Time out 1,970.5

retail 8.7 5,969.9

sick 0.8 0.5

close to traditional methods relying on pair-wise distance
among data observations.

Table 2 reports the running time required for calculating
the exact FPOF using the classical exhaustive method [18]
and the non-enumerative method [14] (respectively the
2nd and the 3rd column) based on the experimental set-
ting described in Sect. 6. Note that the exact exhaustive
method (as baseline) benefits from LCM which is one of
the most recognized frequent itemset mining algorithm. The
non-enumerative method is effective and rivals the exact
exhaustive one. Its main advantage is to calculate the exact
FPOF with datasets where the exact exhaustive method fails
(e.g., pumsb where the execution was aborted after Sh).

However, even with a polynomial method, Table 2 shows
that the exact calculation remains time-consuming. It is clear
that the exact FPOF calculation cannot be guaranteed in a
short response time. Thus, it makes sense to propose approx-
imate algorithms for the FPOF computation.

4.2 Approximate FPOF computation problem

Let us focusing on a classical approach used in the litera-
ture to approximate the FPOF. Instead of using the complete
collection of patterns, FPOF is usually approximated with
a collection of frequent patterns i.e., with a higher minimal
support threshold:

Definition 2 (o-Exhaustive FPOF) Given a minimal sup-
port threshold o, the o-exhaustive FPOF of a transaction ¢
in D is defined as follows:

Supp(F,(D)>2', D)
max,ep Supp(Fe(D)>2%, D)

fpofe(t,D) =

The approximation becomes accurate with very low mini-
mal support thresholds. Figure 1 (top) plots the Kendall’s tau
of fpof, in comparison with fpof for some benchmarks'.
Unfortunately, this approximate method suffers from two
issues. When the minimal support threshold becomes very

! Tt is the proportion of pairs of transactions which would be ranked
similarly with the approximate FPOF and with the true FPOF (see Sect. 6
for a formal definition).

1 . T T T T T T T T T
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0.8 |- . .
0.7 \\4/7 . ’ -1
- :
S 06 ]
w
T 05 -
2
[} 04 I~ N _
2 )
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Minimal support threshold
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Fig. 1 Kendall’s tau and number of patterns with minimal support
threshold

low, the number of patterns (see the bottom plot of Fig. 1)
and the extraction time explode. Sometimes the extraction
of additional patterns leads to a deterioration of the results
(inaccuracy issue). Furthermore, the approximation error is
not estimated. The user does not know whether the returned
approximate FPOF is far from the exact FPOF (uncertainty
issue). With a smaller budget, we claim that it is possible to
approximate more precisely FPOF while having a bound on
the error.

4.3 Anytime FPOF computation problem

Figure 1 shows that the Kendall’s tau varies significantly
depending on the dataset for a same minimal support thresh-
old. It means that this threshold is not easy to fix for obtaining
a good compromise between efficiency and quality. It clearly
hinders the user interactivity. Therefore, it seems interesting
to rephrase the approximate FPOF problem by opting for an
anytime perspective. In this context, the method informs the
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user with a feedback on the maximum error on the current
approximate FPOF. Then, the user will choose the right time
to stop the method.

Given a dataset D and a real §, return at anytime k a func-

tion fpofy approximating the FPOF and a maximum bound
€ such that:

— | fpof(t, D) — J/‘[;\oﬁ(t, D)| < ¢ for each transaction
t € D, with confidence 1 — § and
— €41 = € where limk_>+oo ¢ = 0.

This problem aims at assigning at anytime an approxi-
mate FPOF to each transaction by guaranteeing a maximum
error €; with the probability 1 — §. Note that, in the fol-
lowing, we will express all budgets in patterns (denoted by
k, here). The requirement of returning a maximum bound
that monotonically decreases and converges to 0 avoids the
drawbacks described in the above approach based on fre-
quent patterns where the accuracy of the approximation may
decrease (despite a higher pattern budget) and where the cer-
tainty is unknown.

S Anytime sampling method

This section addresses the above problem by using pattern
sampling. First, we propose a method for approximating
FPOF from a pattern sample drawn according to frequency.
Then we show how to estimate the error of this approx-
imation. Finally, we detail our sampling-based anytime
algorithm.

5.1 Pattern sampling for FPOF

In Sect. 4, we showed that the use of the most frequent pat-
terns is insufficient to approximate accurately FPOF. The
most frequent patterns do not measure the singularity of
each transaction that also relies on more specific patterns
(whose frequency varies from small to average). Conversely
do not considering frequent patterns would also be a mistake
because they contribute significantly to FPOF. A reasonable
approach is to select patterns randomly with a probability
proportional to their weight in the calculation of FPOF. Typ-
ically, in the dataset D of Table 1, the itemset AB is 3 times
more important than itemset C in the calculation of FPOF
due to their frequency.

In recent years, pattern sampling techniques have been
proposed to randomly draw patterns in proportion to their
frequency [6]. Such approaches are ideal to bring us a well-
adapted collection of patterns. Of course, it remains the
non-trivial task of approximating FPOF starting from this
collection. This is what provides the following definition:
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Definition 3 (k-Sampling FPOF) Given an integer k > 0, a
k-sampling FPOF of a transaction ¢ in D is defined as follows:

|Sk(D)x2'|
max,ep | Sk (D)2

fpofi(t, D) =

where Sk (D) is a sample of k patterns drawn from D accord-
ing to support: (D) ~ supp(L, D).

It is important to note that |.| is used here instead of
Supp(., D) as done in Definition 1. As the sampling tech-
nique already takes into account the frequency when it draws
patterns, it is not necessary to involve the support here.
Indeed, the draw is with replacement for the correct approxi-
mation of FPOF (without this replacement the most frequent
patterns would be disadvantaged). It induces that the same
pattern can have multiple occurrences within the sample
Sk (D).

For the same sample size k and for the same transaction
t, it is possible to calculate different values of a k-sampling
FPOF due to S (D). But, the higher the threshold &, the less
the difference between values stemming from two samples
is high. Furthermore, the greater the sample size k, the better
the approximation:

Property 1 (Convergence) Given a dataset D, a k-sampling
FPOF converges to the FPOF for each transaction t € D.

Proof Sy (D) ~ supp(L, D) means that there exists a con-
stant @ > 0 such that VX € L, limg_ o |Sk(D)>{X}] =
asupp(X, D). Then, for each transaction ¢, we obtain that:
limg s o0 | Sk (D)2 = o D yer supp(X, D) =
aSupp(2', D). By injecting this result into Definition 3, we
conclude that Property 1 is right. O

Beyond convergence, the interest of this approach is the
speed of convergence far superior to that of the o -exhaustive
frequent pattern outlier factor as shown in the experimental
study (see Sect. 6). This speed is accompanied by a good effi-
ciency due to a reasonable complexity of pattern sampling:

Property 2 (Complexity) A k-sampling FPOF of all trans-
actions can be calculated in time O (k x |Z| x |D)).

Proof Pattern sampling according to frequency is performed
intime O (|Z| x|D|+k(|Z|+1n|D))) [6] and the FPOF calcu-
lation for all transactions consists in finding the transactions
containing each sampled pattern. Thus, it is calculated in time
O(k x |Z| x |D)). O

Given a number of patterns k& (which is the allocated pat-
tern budget), a k-sampling FPOF is therefore effective to
calculate an accurate approximation. The next section goes
further by ensuring certainty of this approximation.
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5.2 Bounding the error

This section shows how to provide a feedback for helping
the user in his/her decision to stop the algorithm. The idea
is to draw a sample and to bound the maximum error of
FPOF using a statistical result known as Bennett’s inequal-
ity. This maximum error is provided to the end-user given an
initial confidence. If he/she judges that the quality is suffi-
ciently good, he/she interrupts the algorithm that returns an
approximate FPOF based on the current sample. Otherwise,
the sampling FPOF is refined by increasing the sample size
and so on.

We use Bennett’s inequality to estimate the current error
because it is true irrespective of the probability distribution.
After k independent observations of real-valued random vari-
able r with range [0, 1], Bennett’s inequality ensures that,
with confidence 1 — §, the true mean of r is at least ¥ — ¢
where 7 and o are respectively the observed mean and vari-
ance of the samples and

In(1/8)

25 m(i/s)
=Vt

In our case, the random variable is the average number
of patterns within a sample Sy ~ supp(L, D) that cover the
transaction ¢. Itis denoted by covg, (#) and defined as follows:
covg, (1) = |Sp>2"|/k. Tt is easy to see that a k-sampling
FPOF factor can be rewritten using covg,: fpofi(t,D) =
covg, (1) /max,ep covg, (v). Using Bennett’s inequality and
the above definition enables us to bound FPOF:

Property 3 (FPOF Bounds) Given a dataset D and confi-
dence 1 -6, the FPOF of transaction t is bounded as follows:

covg, (1) — &

max [o, e ] < fpof(t.D)

mp (1)
covg, (t) + €
S min Sk( ) + t ,
covg, (1) — €
My (1)

where S ~ supp(L, D), u = argmax,ep covs, (v) and

& = 26, In(1/8)/k + In(1/8)/(3k) with &; which is the

empirical standard deviation of covs, (t).

Proof Givenaconfidence 1 —§ and atransactiont € D, Ben-
nett’s inequality gives that covg, (1) — €, < Supp(2',D) <
covs, (t) + € with ¢, = /267 In(1/8)/k +In(1/8)/(3k). In
particular, this inequality holds for u = arg max,cp covs, (v)
and then we obtain:

covg, (1) — &

Supp(2!, D) _ covs, (t) + ¢
covs, (u) +¢€, — Supp2",D) ~ covs, (1) — €,

As the FPOF lies within the interval [0, 1], we conclude that
Property 3 is right. O

In other words, Property 3 allows us to approximate the
exact FPOF starting from a sample of patterns randomly
drawn according to frequency. Indeed, the exact FPOF is
between my (t) and My (¢) and the current k-sampling FPOF
approximates it with a maximum bounded error (My (1) —
my(t))/2. Rather than presenting to the end-user this esti-
mated error for each transaction, we provide the average
maximum error in experimental study (see Sect. 6). Nev-
ertheless, we can go further by approximating the Kendall’s
tau that is often used in practice to estimate the quality of a
ranking. The Kendall’s tau compares the ranking stemming
from an approximate method f with that stemming from the
exact FPOF as follows:

[{(t,u) € D? : sgn(f (t)— f (w)) =sgn(fpof (t)— fpof w)}|

o(f)= o

Using the lower and upper bounds for each transaction stem-
ming from Property 3, we can compute the pessimistic value
of the Kendall’s tau considering the current sample:

Property 4 (Kendall’s tau Bound) Given a dataset D and
confidence 1 — §, the Kendall’s tau of a k-sampling FPOF,
denoted by T(fpofi), is lower bounded as follows:

{(t,1)€D? : my(t) > My (t') v My (1) <myi (t')}
D2

= t(fpofi)

Proof This property is a direct corollary of Property 3. For
each pair of transactions r and 1/, we are sure that the ranking
of the approximate method is correct when the lower bound
of one transaction is higher than the upper bound of the other.
Property 3 provides these bounds. O

Property 4 enables us to bound the true Kendall’s tau of our
approach. Unfortunately, it is not possible to estimate similar
bounds about evaluation metrics that rely on the ground truth
because this ground truth is obviously not known in advance
by the approximate approach. For instance, it is impossi-
ble to estimate the false alarm rate or the detection rate as
these measures require to know the true outliers. An outlier
threshold « is used in order to define these true outliers in
the experimental section (see Sect. 6.2).

Properties 3 and 4 provide bounds which are used in the
algorithm of the next section.

5.3 Anytime algorithm

Algorithm 1 returns, at anytime, an approximate FPOF of all
transactions of the dataset D by guaranteeing a bounded error
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Algorithm 1 Anytime FPOF Computation

Input: A dataset D, a confidence 1 — §

Output: A k-sampling FPOF of all transactions in D with an estimated
error for a confidence 1 — §

l:é<~1;8«0

2: repeat
3: § <« SU{X} where X ~ supp(L,D) //add a pattern in the
sample

4:  m < argmax;ep covs(t) //selectthe most covered transaction
// estimate the maximal error on covs
5: € <« /207 In(1/8)/|S| + In(1/8)/(3|S|) for each t € D
// estimate the maximal error on FPOF
6: € <« max;ep{min{l; (covs(t) + €)/(covs(m) — ey)} —
covs (1) /covs(m)}
7. € <«  maxiepicovs(t)/covs(m) — max{0; (covs, (1) —
€r)/(covs(m) + em)}; €}
8: Print the estimated bounds about error per transaction and
Kendall’s tau as feedback
9: until The user stops the process
10: return (covs(t)/ max,ep covs(u))iep

with confidence 1 — §. Basically, the main loop (lines 2-9) is
iterated until that the user interrupts the process (line 9). Lines
4-7 calculate the maximal error € using Property 3, and line
8 prints the current approximated bounds described in the
previous section as feedback for helping the user. When the
user interrupts the process, line 10 returns the k-sampling
FPOF with the current sampling S. Otherwise, one more
pattern is drawn (line 3) and so on.

As desired in Sect. 4.3, Algorithm 1 approximates the
FPOF of all transactions for a pattern budget k:

Property 5 (Correctness) Given a dataset D and a confi-
dence 1 — 3§, Algorithm 1 returns for all pattern budgets k the
k-sampling FPOF fpofy that approximates the exact FPOF
such that:

— | fpof (t, D) — fpofi(t, D)| < € for each transaction
t € D, with a confidence of 1 — & and
- limk4)+m € = 0.

where €, = max;cp(My(t, D) — my(t, D))/2.

Proof This property is a direct corollary of Property 3. The
proposed bounds justify the above definition of error €; and
ensure that | fpof (¢, D) — fpofi(t, D)| < €, fort € D with
1 — § as confidence. Furthermore, as the bounds are refined
when the budget k increases, it gives that limy_, ;o €x = O.

O

Next section also provides experiments showing that
€x+1 < € even if it is not possible to formally prove this
result due to the empirical variance that may increase.

@ Springer

Table 3 Performance issue of pattern sampling

D |D| |Z| Avg. number of
patt. per sec.

chess 3196 75 29.0k

connect 67,557 129 1.2k

hepatic 155 45 219.3k

german 1000 76 78.6k

mushroom 8124 119 17.9k

pumsb 49,096 7117 1.7k

retail 88,162 16,470 1.5k

sick 2800 58 29.4k

6 Experimental study

The goal of this paper is not to define a new outlier detec-
tion factor, but to improve the computing of FPOF that is
well established. For this reason, we do not provide new
experiments showing the interest and the limits of FPOF for
detecting outliers as this aspect is already detailed in the liter-
ature (see related work in Sect. 2). Experiments exclusively
focus on the study of the quality of the approximate FPOF
provided by our sampling-based anytime algorithm in com-
parison with the exact FPOF used as reference. The exact
FPOF is computed by the polynomial method described in
Sect. 4.1.

Experiments are conducted on datasets coming from the
UCI Machine Learning repository? and the FIMI repository>.
Table 3 gives the main features of datasets in the first 3
columns. All experiments are performed on a 2.5 GHz Xeon
processor with the Linux operating system and 2 GB of RAM
memory. Algorithms are implemented in C++ language.

In the following, we only consider budgets in patterns,
but considering the average number of sampled patterns per
second (see the last column of Table 3), it is easy to con-
vert pattern budgets into time budgets due to the linearity of
pattern sampling.

6.1 Anytime approximation vs the state-of-the-art
approximation

This section compares the abilities of the two below methods
to approximate the exact FPOF according to a given pattern
budget k:

— Baseline: This method relies on o -Exhaustive FPOF (see
Definition 2) where o is defined for considering the set
of top-k frequent patterns.

2 archive.ics.uci.edu/ml.

3 fimi.ua.ac.be.
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Fig. 2 Kendall’s tau per transaction with a time budget

— Sampling-based method: This method draws k patterns
according to frequency and then approximates the exact
FPOF based on the formula of Definition 3.

More precisely, we confront these two methods consider-
ing 3 quality criteria: (1) Accuracy: regularity and rapidity of
the convergence; (2) Certainty: precision of the lower bounds
and (3) Stability: reproducibility of the approximate FPOF
for the same sample size. For this purpose, in Fig. 2, we recall
that the Kendall’s tau for comparing the ranking stemming
from an approximate method f with that stemming from the
exact FPOF (calculated with an exact method):

{7, u) e D* = sgn(f (1) — f () =sgn(fpof (1) — fpof )}
DI

(f)=

Figure 2 reports the Kendall’s tau of the sampling-based
method (in plain line, anytime) and the baseline (in dashed
line, baseline) according to a given pattern budget. We also
report the lower bound of the Kendall’s tau computed using
Property 4 (in dotted line, lower bound). For the sampling-
based method which is not deterministic, each reported
evaluation measure is the arithmetic mean of 10 repeated
measurements with its confidence interval.

In the same way, we also compute the average error per
transaction between the approximate FPOF f and the exact
FPOF:

2ep | f (1, D) — fpof (., D)|
DI

e(f, D)=

Figure 3 reports this average error per transaction for the
sampling-based method (in plain line, anytime) and the base-
line (in dashed line, baseline) according to a given pattern
budget. In Fig. 3, we also report the upper bound of the aver-
age maximum error per transaction (in dotted line, upper
bound) that is computed online using Property 3.

Accuracy To assess the speed of the convergence, we con-
sider the increase of the Kendall’s tau and the decrease of the
true error. As expected, the two approximate methods con-
verge to the exact FPOF when the pattern budget increases,
but the convergence of the sampling-based anytime method is
smoother and faster. Indeed, while the FPOF error of the base-
line may increase by considering more patterns (see german
or mushroom in Fig. 3, for instance), the higher the pattern
budget &, the better the approximation of the sampling-based
method.

In certain datasets, when the pattern budget is small, the
baseline is more effective considering the Kendall’s tau espe-
cially (e.g., hepatic or german). As it considers the most
frequent patterns first (in particular, items), it tends to cover
more rapidly the entire dataset. It would be appropriate to
propose a hybrid method where items are considered before
using sampling.

Certainty Only the sampling-based method provides guar-
antees on the approximate FPOF computed at anytime for
helping the end-user to interrupt the algorithm and to ana-
lyze the result. In Fig. 3, we observe that the lower bound of
the Kendall’s tau is quite pessimistic (i.e., it is always much
lower than the true Kendall’s tau). Similarly, the true average
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Fig. 3 Average FPOF error per transaction with a time budget

error per transaction of the approximate method is lower than
the estimated one (see Fig. 3). This difference results from the
Bennett’s inequality that makes no assumption about the dis-
tribution. It is also interesting to note that for 2 datasets (i.e.,
for chessand connect), the average error per transaction
of the baseline is always above the estimated error. It means
that the use of the most frequent itemsets is a worse strategy
than a random uniform sampling. Conversely, the sampling
strategy based on frequency has higher results, and in addi-
tion, this method offers some guarantees on the certainty of
the approximation.

Stability To measure the stability of the sampling-based any-
time method, we consider the confidence intervals of the
Kendall’s tau and the average error per transaction in Figs. 2
and 3. Of course, the smaller the confidence interval, the bet-
ter the result. Although the sampling-based method is not
deterministic, the obtained results are really stable. For cer-
tain datasets (e.g., german or mushroom), the instability
increases in a first phase and then gradually dwindles in a
second phase. The first phase is the progressive coverage of
all transactions by at least one pattern that brings instability
(the approximate FPOF goes from 0 (no approximation) to 1
(first rough approximation). In the second phase, the newly
drawn patterns refine preliminary approximations.

6.2 ROC analysis of anytime approximation

In the previous section, all transactions are considered equiv-
alently, while in practice the final goal is to detect outliers
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Table 4 Confusion matrix of four possible outcomes of a prediction

Predicted normal

fpofi(t,D) > B

Predicted outliers

fpofi(t, D) =< B

Outliers True positive False negative
fpof(t,D) <« (TP) (FN)
Normal False positive False negative
fpof(t,D) >« (FP) (TN)

(transactions having the lowest approximate FPOF). We now
evaluate the accuracy of the approximation with a fixed pat-
tern budget when the FPOF threshold varies between 0 and 1.
Outlier detection algorithms are often evaluated using ROC
analysis [29]. In this context, given a threshold «, we con-
sider that all transactions having an exact FPOF (computed
with an exact method) below « are the outliers of the dataset
(while other are normal transactions). At the same time, we
predict that a transaction is an outlier when its approximate
FPOF (computed with our sampling-based anytime method)
is below B. Table 4 describes the four possible outcomes
between ground truth and prediction. Thereby, we define the
false positive rate (denoted by FPR) and the true positive rate
(denoted by TPR) as follows:

_FP
" FP+ TN

P

FPR R= —«+—
TP + FN

The FPR and TPR are also referred, respectively, as the false
alarm rate and the detection rate.

For a budget of 10k patterns, Fig. 4 reports the receiver
operating characteristic (ROC) curves of the sampling-based
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Fig. 4 ROC analysis of sampling-based anytime method according to @ € {0.1, 0.2, 0.3}

method by varying the minimal FPOF threshold g for differ-
ent ground truths o € {0.1, 0.2, 0.3}. Note that there is no
outlier for « = 0.1 in german.

Whatever the choice of the threshold « that determines the
true outliers, the sampling-based approximation works well
overall. The method tends to quickly isolate outliers (i.e., the
detection rate increases very quickly when the false alarm
rate is low). We even see it isolates even better the outliers
when they are very few (i.e., with the lowest value of «, here
0.1).

7 Conclusion and discussion

We revisited the FPOF calculation with an anytime constraint
by benefiting from the recent advances in pattern sampling.
Our approximate method using a sampling technique outper-
forms exhaustive method based on the most frequent patterns.
It also provides additional guarantees on the result with a
maximum bound on the error using the Bennett’s inequality.
The experiments have shown the interest of this approach in
terms of accuracy (fast and smooth convergence to the exact
FPOF), certainty (reasonable estimated error) and stability
(good reproducibility of approximations) compared to the
usual exhaustive approach where the most frequent patterns
are mined.

Despite the challenge of anytime constraint, our pro-
posal therefore combines the proven power of pattern-based
methods by adding a guarantee on the quality of results
thanks to sampling techniques. Of course, there is still room

for improvement in particular the approach could take into
account the frequent items to have a more reliable approxima-
tion at the very beginning. But, as FPOF has disadvantages,
it would be interesting to apply this approach with other
outlier detection methods dedicated to categorical data. For
pattern-based methods, a similar design based on sampling
according to frequency can be exploited. For other methods, it
is really less natural to determine which space should be sam-
pled for achieving an approximation. However, we also think
our sampling-based anytime approach can be generalized to
other measures involving patterns (e.g., CPCQ index [22]) or
pattern-based models (e.g., CBA [21]). We would also like to
adapt this approach to integrate the user feedback. In the case
of FPOF, it consists in showing the transactions considered
as the most probable outliers to the user at the very beginning
of the process. By confirming or not that the shown transac-
tions are outliers, the sampling process should focus its effort
on other less known transactions.
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