Int J Data Sci Anal (2016) 2:13-27
DOI 10.1007/s41060-016-0029-7

@ CrossMark

REGULAR PAPER

An open architecture for event-based analytics

Zoran Milosevic! - Weisi Chen? - Andrew Berry! - Fethi A. Rabhi?

Received: 25 June 2016 / Accepted: 4 October 2016 / Published online: 17 October 2016

© Springer International Publishing Switzerland 2016

Abstract Event-based analytics is increasingly gaining
prominence in business and social applications. Despite the
availability of many solutions specializing in event process-
ing systems (e.g. CEP technology), there is currently no
commonly agreed way of describing event and event pat-
tern types, and thus no standardized method for interchange
of event pattern instances between systems. This paper
advocates an open architecture for event-based analytics
comprising acommon model that supports interoperability of
databetween different systems. It introduces the foundational
concepts for describing event patterns including events, event
pattern types and event pattern occurrences. The event pat-
tern meta-model is also formalized using a UML meta-model
to facilitate its adoption and usage across the event analyt-
ics community. The paper provides a case study introducing
several event pattern types from the financial market data ana-
lytics domain. This case study illustrates a number of specific
event pattern types used by finance experts and an application
that requires interoperability between two separate software
component frameworks (a rule-based front-end and a CEP).
Results show that the meta-model concepts are sufficient to
represent and implement a class of real-life business analyt-

B Weisi Chen
chenw @cse.unsw.edu.au; chenweisi.work @ gmail.com

Zoran Milosevic
zoran @deontik.com

Andrew Berry
andyb@deontik.com

Fethi A. Rabhi
f.rabhi @unsw.edu.au
I Deontik Pty Ltd, Brisbane, Australia

School of Computer Science and Engineering, University of
New South Wales, Sydney, Australia

ics solutions. The paper also identified a number of semantic
challenges in developing interoperability solutions for the
event-based processing, in spite of the fact that we needed to
merge only two separately developed event-based conceptual
models.

Keywords Complex event processing - Event-based
analytics - Real-time analytics - Data modelling - Service-
oriented architecture - ADAGE

1 Introduction

The growing availability and access to data offer expand-
ing opportunities for creating new insights through analytics.
These new insights can be developed by applying various
analytics techniques and appropriate tools to discover and
communicate meaningful patterns in data. Our focus in this
paper is on event-based analytics, i.e. analysing a set of events
that are reflecting some changes in real world. Note that
event-based analytics is taken in a broad context covering
both real-time analytics and processing of historical event
data. Examples of event-based analytics include determin-
ing relationships between observations of patient condition
in health care, particular combinations of buy and sell events
in stock trading or correlation between social media postings
and stock market activity.

In a big data context, event-based analytics requires
sophisticated technology infrastructure and techniques. This
includes complex event processing (CEP) [1], visualization
tools, statistics software packages, natural language process-
ing tools, machine learning libraries and so on. Note that
CEP technology primarily allows detection of event pattern
occurrences against events arriving with high velocity, often
from multiple data sources but can be also used for histor-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-016-0029-7&domain=pdf

14

Int J Data Sci Anal (2016) 2:13-27

ical analytics, which is of high value in our case study in
financial event analysis. CEP technology can be regarded as
a form of machine analysis focused on detection of mean-
ingful event occurrences, and which can be augmented with
statistical analysis to support predictive capability. There are
many CEP solutions as well as more general platforms for
event processing systems, but there is currently no standard-
ized way of describing event types and event pattern types,
and thus no standardized method for interchange of event
pattern instances between systems [2]. This presents a prob-
lem when various big data and analytics tools and techniques
need to be linked together.

The main contribution of this paper is in advocating an
open architecture for event-based analytics comprising a
common model that supports interoperability of data between
different systems, as mentioned above. This in turn facili-
tates the definition of wire formats that can be consistently
produced and consumed by those systems. We propose a
meta-model defining key concepts and their relationships
needed to precisely describe events, event pattern occur-
rences, event pattern types and other supporting concepts.
The aim of this meta-model is to support collaboration
between people involved in the design, development and
integration of event processing systems, as well as inter-
operability between systems exchanging information. Such
a meta-model can also provide the basis for the develop-
ment of specific domain models, e.g. for finance, health,
emergency management, utilities, leveraging the power of
model-driven development engineering techniques, and sup-
porting tools such as Eclipse Modelling Framework [3]. Note
that this meta-model can be also considered in the con-
text of growing set of tools and technologies developed to
support real-time analytics requirements, as we have iden-
tified in [4]. This paper provides further detail to the initial
results we presented in [5], including an extensive analysis
of the benefits and some further challenges in developing
interoperability solutions for the event-based processing.
These challenges involve complex semantics issues associ-
ated with the interpretation of event patterns and their impact
on the specification and implementation of event-based sys-
tems. These issues involve timestamp precision and ordering,
bounding candidate matches, implementation of negation as
well as discussion of the intricacies of the pattern expression
semantics chosen to represent event patterns. These chal-
lenges have faced us both during the conceptualization and
implementation efforts.

The primary audience of this paper consists of computer
scientists, solution architects, integrators and implementers
involved in developing real-time analytics solutions. The
ideas can be also of value for data scientists, analysts and
researchers involved in studying data in particular applica-
tion domains, such as domain experts involved in financial
market analysis as discussed in [6] and [7]. These subject

@ Springer

matter experts can work together with computer scientists in
defining rules that specify relationships between event occur-
rences of interest. This was indeed the approach taken in
performing the finance case study described at the end of the
paper.

This paper is structured as follows. The next section
presents the motivation for this work arising from new
opportunities and challenges related to event-based analyt-
ics including real-time aspects, with particular emphasis on
supporting business analytics and data science requirements.
Section 3 introduced our concept of an open architecture and
interfaces to support event-based analytics. Section 4 intro-
duces the foundational concepts for describing event patterns
including events, event pattern types and event pattern occur-
rences and formalizes the concepts through an event pattern
meta-model. Section 5 provides a case study introducing sev-
eral event pattern types from the financial market trading
(equity) domain and describes a prototype implementation
using the EventSwarm software framework [8,9]. Section 6
presents results based on performing three different data
analysis scenarios. Finally, Sect. 7 discusses related work
and Sect. 8 summarizes key findings and describes our future
work.

2 Motivation

This research was motivated by the need to better support
researchers and data scientists in the finance domain who
are interested in discovering important relationships between
trading events. These scientists needed a fast and flexible
way of identifying and defining new event pattern types in
order to detect opportunities or threats associated with market
trading. For example, some event patterns can be associated
with detecting unusual spikes in price or volume of a specific
stock, or identifying particularly poor or outstanding perfor-
mance of a stock compared to others in its sector. This type
of analysis can be conducted in real time or as part of batch
processing (historical analysis).

The complexity of financial market behaviour also requi-
res that such pattern types support a wide range of pattern
constructs, including mathematical, statistical and logical
relationships between and across events, often within a
specific time window of interest. Further, for real-time appli-
cations in particular, the high velocity of trading requires
an automated way of detecting trading event pattern occur-
rences and an easy way to define the corresponding event
pattern types. Real-time requirements often require modify-
ing traditional statistics and machine learning algorithms for
the intricacies of real-time requirements, e.g. continual eval-
uation of standard deviation or regression over sliding time
window.

Int J Data Sci Anal (2016) 2:13-27

15

There are many existing CEP solutions, e.g. Apama [10],
but the main problem with them is high costs and difficulty
in adapting them to specific domains. For the types of the
users that we are targeting one would need an open approach
with an ability to leverage existing technologies such as R
[11,12], Web services, REST [11], JSON [13], Open Calais
[14], Amazon Kinesis [15], cloud analytics from Azure [16].

The open architecture suggested in this paper extends an
earlier architecture that was based on the ADAGE framework
[6,7]. It provides extended analysis features owing to the abil-
ity to integrate complex event processing services to detect
patterns of interest from event data. This allows event pattern
detection to occur in real time. Through applying these capa-
bilities to stock market data and other relevant data sources,
market participants can detect current or emerging insights
into support trading and operational decisions.

3 Proposed open architecture

As mentioned earlier, the proposed open architecture is an
extension of the one presented in [6,7]. In the original archi-
tecture, there are three types of services (see Fig. 1) that
can be flexibly composed into a workflow to support event
processing for data analysis, namely

— Event import service: the service to extract and process
native event data from event data repositories. (Input:
event data query; Output: simple events).

— Event processing service: the service to transform imp-
orted event data in a variety of ways; examples are
removal of duplicate events, handling data quality issues,
combining two sets of processed data together; each of
this transformation is essentially producing new infor-
mation which can be regarded as a high-level event [1]
(Input: events; Output: (high-level) events).

— Event export service: the service to transform processed
data into alternate formats suitable for external applica-
tion use. For example, processed data can be converted
into comma separated value (CSV) files so that it can be
imported into spreadsheets; also, charts can be created
from processed data and saved as image. (Input: high-
level events; Output: csv/image).

One significant limitation of this architecture is that high-
level events generated by an “event processing service” do

Event Event Event
Processing Export

Import
Service Service Service

Event Data Simple CS;:":: or

Repository Events Visualisation

Fig. 1 Initial ADAGE architecture

Event
Export
Service

Event
Event Pattern
Occurrences

Import
Service
Event Data Simple
Repository Events
a common event
pattern meta-model

Fig. 2 Extended ADAGE: CEP capability

not contain detailed information regarding how they are gen-
erated, i.e. what pattern occurrence was detected in relation
to this high-level event, and which simple events constitute a
high-level event. Further, since the services in this architec-
ture are developed by different people, and they use various
techniques (e.g. different programming languages) during
the development, it is almost impossible to track how a high-
level event was originally detected and possibly change some
pattern detection parameters.

The proposed architecture addresses this limitation by
splitting the event processing services into two separate type
of services (Fig. 2):

— Event pattern detection service: the service to detect
occurrences of event patterns (Input: events; Output:
event pattern occurrences)

— Event pattern processing service: the service to process
event pattern occurrences and convert them to high-level
events with all detailed information of the generation of
the high-level events, i.e. the final output required by the
user (Input: event pattern occurrences; Output: events).

With this refinement, the extended architecture has the
ability to capture detailed information about high-level
events, while retaining the original advantages, e.g. automa-
tion of data analysis, and the flexibility of building work-
flows.

In order to capture high-level event details, we propose
a common event pattern meta-model, which is described in
Sect. 4. For event processing service developers, it is eas-
ier to implement services without thinking about how to
represent the event pattern occurrences detected. For event
export service developers (e.g. visualization developers), the
event pattern occurrences provide further valuable informa-
tion including the details of how the high-level events are
constructed. For external developers who want to invoke
these services (e.g. to develop a rule-based system that needs
to detect event pattern occurrences), the model provides the
basis for defining a wire format for the event pattern occur-
rences. For domain experts, with a more informative output
such as visual representation based on the event pattern
meta-model, the tracking of high-level event generation is
facilitated. In addition, if two services that require data inter-
change have different data models, the common meta-model

@ Springer

16

Int J Data Sci Anal (2016) 2:13-27

makes it easier to relate those models and support different
wire formats that reflect the same underlying meta-model.

4 Event pattern meta-model

This section introduces several fundamental concepts that
will be formalized in the context of an event pattern meta-
model that was developed to support interoperability for
event-based analytics, and initially proposed in [5]. These
fundamental concepts are based on the relevant concepts
from the RM-ODP standard [17], which provides precise def-
initions of foundational behavioural concepts such as actions,
interactions, events and services in distributed systems, aug-
mented with the definition of event patterns described in [1]
and [2].

Note that the RM-ODP standard includes the descrip-
tion of various behavioural constraints, including deontic
policy constraints [18], which are important for monitoring
conditions associated with business policies [19]. These are
not addressed in this paper but are described in detail else-
where [18,20,21]. The fundamental concepts for behaviour
are required to ensure establishing a common understanding
about modelling and downstream implementation of distrib-
uted systems and applications. This agreement on standard
concepts is a necessary condition to ensuring interoperability
among people and systems, in an open environment.

RM-ODP defines action as “something that happens”.
Every action of interest for modelling purposes is associated
with at least one object. The set of actions associated with an
object is partitioned into internal actions and interactions. An
internal action always takes place without the participation
of the environment of the object. An interaction takes place
with the participation of the environment of the object. Note
here that “Action” means “action occurrence” not “action
type”. That is to say, different actions within a specification
may be of the same type but still distinguishable in a series
of observations. Depending on context, a specification may
express that an action has occurred, is occurring or may occur
[17].

4.1 Overview of the proposed meta-model

Event is described as “the fact that an action has taken place”.
When an action occurs, the information about the action that
has taken place is captured in an event and that event becomes
part of the state of the system. An event may subsequently
be communicated in interactions, and this communication is
called an event notification: it carries the information about
the action from the object that performs or observes it to other
objects that have a need to take action as a result of it [17].
Our interest is in using event processing systems to
facilitate analytics activities, such as identifying data qual-

@ Springer

ity issues, performing exploratory analytics and ultimately
developing an infrastructure to support predictive analytics
in real time. The use of a special kind of event process-
ing systems, i.e. Complex Event Processing (CEP) systems,
allows the application of sophisticated techniques to define
and detect interesting combination of events that have spe-
cific business meaning. The definition of such a combination
of events is referred to as an event pattern type, and a CEP
engine is thus utilized to detect occurrences of specific com-
binations of events that satisfy event pattern types. Such a
combination is referred to as an event pattern occurrence.
It is typically the combination itself, rather than individual
events that carry business semantics.

An event pattern type is defined as a “template specifying
one or more combinations of events”. Given any collection of
events, a CEP detection engine can find one or more subsets
of those events that match a particular pattern type and thus
satisfy this pattern type [2].

The event pattern meta-model formalizes the concepts
of event type, event pattern type, event pattern occurrences
and related concepts, using a UML meta-model, depicted
in Fig. 3. The structure and informal semantics of events
and event patterns are thus expressed as a combination of
abstract syntax of the meta-model and narrative definition
of the semantic concepts. Note that the concepts proposed
as part of the RM-ODP framework have a formal semantics
[22], but this is not discussed in this paper. There have been
some other attempts for providing mathematic- and logic-
based formalism for event pattern types and their detection,
most notably [23]. Such formalism of detection semantics
can constrain expressiveness, particularly in relation to par-
allel behaviour and time, without necessarily assisting in
interoperability. Through providing narrative “hooks”, our
model allows formalism to be added as required to support
implementation.

This meta-model represents a conceptual model focusing
on that part of complex event processing that is concerned
with describing events and event patterns (including event
pattern types and event pattern occurrences). The meta-
model does not capture other elements more related to the
processing of events such as filtering, event aggregation,
channels for notifications. These are necessary elements for
deploying any CEP implementation, but the focus of this
paper is on the use of CEP event pattern matching as a data
analysis or machine analytics technique.

4.2 Main concepts
4.2.1 Event
As introduced above, the concept of event signifies the fact

that some action has happened in the real world. In an infor-
mation system, an event is thus a record of some action

Int J Data Sci Anal (2016) 2:13-27

17

Fig. 3 Event pattern
meta-model

class Meta Model

+conforms to I’T

EventType

nsme: string

i (2

+function for | 1..*

Functor Type

datatype: string
name: string

+implements

+defined by'1.."

+conforms to
Simpl 'veanype} Simple Event
0:* 0%

conforms to
- - AtomicData

AtomicDataType 0.

1\+defined by

+conforms to

0.3
HighLevelEvent
0. 0.

HighLevelEventType

1 +matches | 1 +captures | 1..

Schema

1

EventPatternOcurrence

0.7 [+mastches

0.

EventPatternimplementation | *implements

EventPatternType

1. 1

that occurred in the real world and it captures information
about this occurrence. An event conforms to an event type as
defined in the following section.

4.2.2 Event type

An event type characterizes a set of events that share par-
ticular properties. Typically, this includes information such
as:

— when the action occurred, e.g. at particular point in time
(instantaneous) or during particular interval (in which an
action has start and end time associated with its occur-
rence)

— what action the event signifies, e.g. trade buy or sale,

— the source, that is, where the action happened or was
observed, e.g. on particular network, device or particular
software component

— event id, typically assigned by an information system
when it creates or receives the events
— other application- or domain-specific data.

We model event type as an abstract type with two concrete
classes: simple event type and high-level event type. These
are used to distinguish two key properties of event types
and their corresponding instances. The following sections
describe these two event types in terms of their components
and corresponding instances.

4.2.3 Simple event

A simple event is an event that signifies an occurrence of a
single action. While in many cases a simple event is instanta-
neous, e.g. News event, it can also have duration, e.g. Intraday
trade event. A simple event typically has data modelled as an
AtomicData element.

@ Springer

18

Int J Data Sci Anal (2016) 2:13-27

4.2.4 AtomicData

This modelling element is a generic attribute that captures
business-related data associated with an event, e.g. informa-
tion about price of stock trade, volumes of trade. It is referred
to as “atomic” to signify the fact that event captures infor-
mation about single action occurrence.

4.2.5 AtomicDataType

This modelling element specifies the type of AtomicData,
defined by the format of data (e.g. CSV) and schema for the
data (e.g. column definitions).

4.2.6 Functor

The concept of functor is inspired by the functional pro-
gramming community and is introduced to provide access
to relevant information captured in an event regardless of its
wire format or schema. For example, there may be events
capturing stock-related announcements from different data
streams, e.g. Twitter, ASX, Google News, but we want to
extract the relevant stock code in a consistent way for all
streams. Thus we define a functor for each data source that
satisfies a StockCode functor type.

4.2.7 Functor type

A Functor Type describes functions over events that return
a value of a particular data type and semantics extracted or
derived from an event instance (Event). As shown in Fig. 4,
typically, the value is extracted from the AtomicData ele-
ment of an event, implying that functor instances are aware
of the format and schema of the AtomicData element. Spe-
cific functor instances can then be defined to access different
data sources with different formats or schemas such as price
or news item identifiers from providers such as Thomson
Reuters. In many respects, a Functor Type is a generaliza-
tion of the more usual notion of “attribute” that allows us to
abstract over the way a CEP implementation accesses data in
events, and also focus our modelling and programming effort
on the data necessary for rule definition. Unused data can be
ignored. This is particularly important for data arriving from
different sources with different schemas and wire formats,
as it allows us to establish relationships across different data
streams in an abstract but unambiguous and implementable
manner.

4.2.8 Event pattern occurrences, event pattern types and
high-level events

An event pattern type concept defines a specific relation-
ship between events of some business significance. An event

@ Springer

generate (part of) | (Extracted)
Event

access return the value for attributes

Event Data Repository
(i.e. Data Source like
Thomson Reuters)

d . Atomic Data
letermines

with the info of data
format/schema

Fig. 4 How a functor works

Event Pattern
Occurrence

consist of Event

—

Can be High Level Simple
abstracted into Event Event

Event Data
Repository

extracted from

Fig. 5 Relationship between events and event pattern occurrences

pattern type is used to specify relationship, data and time
constraints across constituent events. There may be different
type of pattern expression languages, combining mathemat-
ical, logical, statistical and various temporal constructs to
define an event pattern. There are also a number of different
event patterns types that were, for example, identified in [2].
An event pattern occurrence signifies the occurrence of a
set of events which are related through some expression. The
form of this expression is defined by an EventPatternType.
A high-level event is an event derived from event pattern
occurrences rather than obtained from a data source. It is
used to simplify event pattern occurrences so that they be
used in further analysis. A high-level event may include high-
level events as well as simple events as part of that event
combination. These relationships are illustrated in Fig. 5.

4.2.9 Event pattern representation

An event pattern representation refers to the way events are
interlinked within a specific implementation of an EventPat-
ternType. The implementation described in this paper makes
use of the concept of a pattern directed acyclic graph or P-
DAG, as shown in Fig. 6 and described next.

4.3 Pattern DAG (P-DAG)

When designing the implementation of event pattern types,
we consider the constituent events in an event pattern type,
and the dependency between constituent events, including
the temporal order of events, as the key factors. Thus, we
adopt a directed acyclic graph called P-DAG (Pattern DAG)
as a specific implementation of an event pattern type. P-DAG
is thus used as an expression for specifying occurrences of
a certain event pattern type. The advantage of P-DAG is that

Int J Data Sci Anal (2016) 2:13-27

Fig. 6 Event Pattern Type
implementation: PDAG
expressions

class P-DAG

+contained by Event
1.7

+contains [0..*

+conforms to

0.*

Node

1 |+contains

+source

+target

PDAG Instance

+contains |1 0..*|+conforms to

+defined in
[~

Edge

0.*

+source |1 1

L*
0..* | +conforms to
+target

\ L
PDAG Type
1

0.°* 0. B

Edge Type

ordering semantics | *defined in

tinstance of | FyentPatternImplementation

description
pseudo code

1.0 1

1

0.

it can capture constituent events in an event pattern type as
well as the dependencies between them. This leads to an
easy representation of the event pattern type in a graphical
way that is easy to understand for both developers and end
users.

Formally, a P-DAG instance is defined as a DAG of Edge
Types (E) connecting Node Types (V) as follows:

e P-DAG=< N, E >

e N =< nj, m,... > n; is a set of event(s), n; =<
e, e, ...> e isanevent (i =1,2,...)

e E=<edge|,edge,,... >
edge; is an edge between an ordered pair of nodes; edge;
is defined by the ordering semantics (source, target and
the ordering option); source and target are two nodes
in the P-DAG instance, which specify the order of two
nodes ordering options specifies additional rules of the
ordering, e.g. the start time of the source node must be
earlier than the start time of target node

To sum up, a node depicts a constituent event in an event
pattern occurrence; an edge represents the ordering depen-
dencies between nodes (constituent events).

In a P-DAG, N is a non-empty set of nodes depicting all
constituent events in an event pattern occurrence. The number
of events represented by a node is called Node Cardinality.
By default, a node denotes a single event; otherwise, a box

with an annotation indicating the cardinality of the node will
be attached to the box. The cardinality is an integer range,
which can be from O to infinity.

As mentioned earlier, a P-DAG is only meant to represent
temporal dependencies between constituent event nodes and
is primarily designed to provide additional information about
an event pattern occurrence. This information has been used
for different purposes, such as visualization [24].

S Implementation and case study

This section illustrates a testing application implemented
to validate our proposed method, which requires interop-
erability between two separate software components (i.e. a
rule-based front-end [25,26] and a CEP). In addition, this
section also illustrates a case study that involves financial
data analysis using this implementation. The reason why the
finance domain is selected for the case study is that finan-
cial market data are representative as a type of event data
and that finance experts frequently look into patterns in data
to gain insights into the implications out of data, or to help
make financial decisions. In this case study, a number of spe-
cific event pattern types were defined and implemented as
required by non-IT finance experts, and one of the finance
experts used the application to find occurrences of these event
pattern types.

@ Springer

20

Int J Data Sci Anal (2016) 2:13-27

Fig. 7 Implementation

; ()
environment H X
=

Domain expert

Run application

Front-End

5.1 Testing application

Figure 7 shows the implementation of an analytics applica-
tion (AA) developed to support domain experts interested in
implementing a decision-support system based on different
event pattern types.

The application has two components. A Front-End is used
by the domain expert to manage the process of data analysis.
The second component (EventSwarm) is used as an event
pattern detection service. It is important to note that both
the Front-End component and EventSwarm component inter-
act via concepts that are compliant with the meta-model
introduced in the previous section. The front-end application
provides the capability to manage event processing rules for
financial market data in an incremental way. The GUIs and
all business logic of the application are implemented using
Java. The rules are stored in a PostgreSQL database.

The following steps were applied in deploying and testing
the event pattern types used in the case study:

1. A number of finance experts specify a set of interesting
event pattern types. The specifications of the event pattern
types are communicated in a natural language in writing
or verbally to an IT expert.

2. The IT expertimplements the rules for detecting the event
pattern types in EventSwarm and makes them available
for invocation by the Front-End application. Rules in
EventSwarm are implemented as Ruby classes in a Rails
application.

@ Springer

h (]
Describe event pattern tvpes t‘i
to be implemented =
IT expert

Implement event pattern types: A, B, C

The event pattern type to be detected
_—ABICT———__

EventSwarm

Occurrences of the selected event pattern type

@ & ©

\._.v~/

Implemented event
pattern types

3. Using the Front-End, the one of the finance experts selects
a desired event pattern type (e.g. duplicate dividend rule
with a specific ID) from the list of event pattern types
that have been implemented, and provides a data file to
be analysed (e.g. SGB.csv data set). The Front-End then
passes these parameters to EventSwarm using an HTTP
GET request to a configurable URL. Alternatively, the
finance expert can conduct event pattern detection tasks
via the EventSwarm pattern detection service GUIL.

4. The EventSwarm engine then returns detected event pat-
tern occurrences in JSON format reflecting the model
described in Sect. 4. Finally, the occurrences are further
processed by the Front-End, meanwhile corresponding
high-level events are generated (e.g. a “duplicate div-
idend” event can be generated in accordance with the
information provided by the detected “duplicate divi-
dend” pattern occurrence).

It is worth noting that the results can be both displayed on
the EventSwarm GUI or delivered to a known application
identified by the organization of the finance experts. This
programmatic delivery is done using an HTTP POST request
to a configurable URL.

5.2 EventSwarm

The EventSwarm implements the meta-model concepts from
Sect. 4 and is used as a pattern detection service. It provides

Int J Data Sci Anal (2016) 2:13-27

21

both a user interface and a RESTful interface for matching
patterns against data sets. Upon completion of processing, it
displays the result on the user interface and passes the result
back to the calling application using an HTTP POST request
containing matches encoded using the wire format described
in Sect. 5.4 below.

The EventSwarm service is implemented using Ruby
on Rails on the JRuby platform. The specified patterns
were coded in Ruby and are called in response to requests
from a user or external application. The Ruby “patterns”
are primarily constructors that build a CEP graph using
EventSwarm core constructs. These constructs are provided
through the EventSwarm core Java library with conve-
nient Ruby wrappers to facilitate rapid development. Pattern
matching execution primarily occurs in Java for maximum
performance, although some elements of the earnings pat-
terns are implemented in Ruby. Encoding of results into the
wire format and sending is also implemented in Ruby.

Patterns are matched in an EventSwarm application by
feeding events through one or more processing graphs that
select matching events or sets of events. Processing graph
nodes can include sliding windows, filters, splitters (pow-
ersets) and abstractions. Abstractions are values or data
structures calculated or constructed from the stream of
events, for example, the EventSwarm statistics abstractions
maintains sum, mean, variance and standard deviation over
numeric data extracted from events in a stream. Events can
be added to and removed from the stream by a node, although
downstream nodes can choose to ignore removals. For exam-
ple, asliding window works by instructing downstream nodes
to remove events that have “fallen out” of the window.

5.3 Event patterns and event processing rules
considered

Table 1 describes the event pattern types related to financial
market data analysis case study that have been identified as
candidates for analysis. Note that all these event pattern types
are requested by finance experts who are doing research using
financial market data and are interested in addressing data
quality issues and conducting data processing using these
rules. Also note that each event pattern occurrence can incur
the generation of a high-level event, which stores the detailed
information of this particular event pattern occurrence.

The event processing rules are implemented using four
common designs and one pattern-specific design as described
below.

5.3.1 Simple filters
Some rules were implemented using a simple, single-event

filter that collected events matching one or more static field
values (rules 1, 4, 6 and 7 from Table 1). For example, the

“dividend deleted” rule matched events with a type of “Div-
idend” and a value of “1” in the “Div Delete Marker” field.

5.3.2 Duplicate detectors

Other rules needed to detect duplicates in the data stream
(rules 2 and 5 from Table 1). Duplicate detection can have
high memory and processor overheads because it is neces-
sary to hold a potentially unbounded set of “candidates”,
and each new event has to be compared with all of the
preceding candidates. Thus, we use a candidate filter to mini-
mize the number of candidates and then use the EventSwarm
DuplicateEventExpression to compare candidates
with new events using one or more event comparators. An
example of such a duplicate detector is the “Duplicate div-
idend” pattern, which filters the set of candidates so that
only “Dividend” events are considered, and then compares
candidate stock code, amount and div-ex date to identify
duplicates.

It is important to note that if we were analysing a con-
tinuous stream, we would also use a sliding time window or
sliding N-sized window to avoid infinite buffering of candi-
dates. Use of such sliding windows can decrease the accuracy
of pattern matching because some matches might be missed,
but in most practical scenarios, there is no loss of accuracy
because duplicates are close together in the data stream. For
this implementation, we relied on the finite size of the data
sets analysed rather than using a sliding window.

5.3.3 Simple event sequence

Two rules (rules 8 and 9 from Table 1) matched a simple
sequence of events, with each event in the sequence satisfying
certain static conditions. These rules were implemented using
the EventSwarm SequenceExpression with simple attribute
matchers for each event in the sequence. For example, the
“Earnings event before EOD” used SequenceExpression to
look for an “Earning” event followed by an EOD event. Note
that normally, this will generate a match for any sequence
that satisfies the sequence expression components, meaning
an EOD event would be paired with all previous earnings
events. To ensure that EOD events were only paired with
the most recent earnings event, only one candidate earnings
event was held (i.e. a sliding window of size 1).

5.3.4 Conditional event sequence

A number of sequence patterns (rules 10, 11, 12, 13 and 14
from Table 1) were implemented where the events of each
candidate sequence needed to satisfy an additional condition
defining necessary relationships between the events in the
sequence. In EventSwarm, we implement this by first match-
ing the sequence, then applying the inter-event condition as

@ Springer

22

Int J Data Sci Anal (2016) 2:13-27

Table 1 Implemented event pattern types

Name

Event Pattern Description

10

11

12

13

14

Dividend event

Duplicate dividends

Missing EOD event on dividend
Ex Date

Div Missing Div Amt or Ex Date
Dividends with different Div IDs
Status is not “APPD”

Delete Marker is not “0”
Earning before End Of Day

12-month earning before End Of
Day

Two 6-month earnings before End
Of Day

Two 3-month earnings and one
6-month earning before End Of
Day

One 3-month earning and one
9-month earning before End Of
Day

Four 3-month earnings before End
Of Day

One 9-month earning and one
3-month earning before End Of
Day

An event is a “Dividend” event

Two events with Type “Dividend” have the same timestamp, the same “Div Amt.”
(Dividend amount) and the same “Div Ex Date” (Dividend ex date)

No “End Of Day” event exists with “Div Ex Date” of a “Dividend” event as the
timestamp

An event with the type “Dividend” has null or empty value in the field “Div Amt.” or
“Div Ex Date”

A pair of duplicate dividends (pattern type No. 4) have different “Div Mkt Lvl ID”
(Dividend market-level ID)

A “Dividend” event has a value other than “APPD” (Approved) in the field “Payment
Status”

A “Dividend” event has “1” in the field “Div Delete Marker”

E — EOD An event with type “Earning” (E) happens before an event with
type “End Of Day” (EOD). (Find only one closest occurrence for each EOD if it
exists)

Ej2 — EOD An event with type “Earning” (E{2) happens before an event with
type “End Of Day” (EOD) with:

The “EPS Period Length” of both Ej; is 12. (Find only one closest occurrence for
each EOD if it exists.)

Eﬁ(z) — E(,(l) — EOD Two events EG(]) and E6(2) with type “Earning” (Eﬁ(z)
before Eg (1)) happen before an event with type “End Of Day” (EOD) with:

The “EPS Period Length” of both E¢(1y and Eg(3) is 6;
Eg(2).epsEndDate + Eg(2).epsLength = Eg(1y.epsEndDate
Find only one closest occurrence for each EOD if it exists

E32) — E31) — E¢ — EOD Three events with type “Earning” (E3(2) before
E3(1) before Eg) happen before an event with type “End Of Day” (EOD) with:

The “EPS Period Length” of E3(2) and E3(j) is 3; The “EPS Period Length” of Eg is 6;
E3(2).epsEndDate + E3(2).epsLength = E3(jy.epsEndDate

E3(1).epsEndDate + E3(1).epsLength = E¢.epsEndDate

Find only one closest occurrence for each EOD if it exists

Ez — E9 — EOD Two events E3 and Eg with type “Earning” (E3 before Eg)
happen before an event with type “End Of Day” (EOD) with:

The “EPS Period Length” of Ej is 3, and the “EPS Period Length” of Eg is 9;
Es.epsEndDate 4 E3.epsLength = Eg.epsEndDate
Find only one closest occurrence for each EOD if it exists

E3(4) — E3(3) — E3(2) — E3(1) — EOD Four events E3(]), E3(2), E3(3), and
E3(4) with type “Earning” (E3(4) before E3(3) before E3(2) before E3(1)) happen
before an event with type “End Of Day” (EOD) with:

The “EPS Period Length” of E3(1), E3(2), E3(3), and E3(4) is 3;
E3(;).epsEndDate + E3(;).epsLength = E3(;_1).epsEndDate(i = 2, 3, 4)
Find only one closest occurrence for each EOD if it exists

E9y — Ez3 — EOD Two events E3 and Eg with type “Earning” (Eg9 before E3)
happen before an event with type “End Of Day” (EOD) with:

The “EPS Period Length” of E3 is 3, and the “EPS Period Length” of Eg is 9;
+Eg.epsLength = E3.epsEndDate

Find only one closest occurrence for each EOD if it exists

“EPS” (finance term) in this table stands for “Earnings Per Share”

@ Springer

Int J Data Sci Anal (2016) 2:13-27

23

a filter on the candidate sequence matches. For example, the
“Bi yearly earnings before EOD” required that the two earn-
ings events that started the sequence were contiguous in time.
This was matched by looking for a sequence of two 6-month
earnings events followed by an EOD event, then filtering the
resulting sequences to match only those sequences where the
earnings events were contiguous in time.

A duplicate event filter was used in front of these expres-
sions to ensure that duplicate earnings events were removed
and only a single match was generated for each earnings
period.

5.3.5 Event not present in history

The “Dividend without a valid EOD for the div ex date” pat-
tern (rule 3 from Table 1) required that we identify cases
where a “Dividend” event div-ex date (the end date of the
period for which the dividend was paid) did not have a valid
EOD event for the div-ex date. The “Dividend” event nor-
mally occurs within a month of the div-ex date. To implement
this pattern, we maintained an EventSwarm sliding time win-
dow to hold the last 31 days of valid EOD events (i.e. at least
one month), then for each matching “Dividend” event, the
time window was searched to determine whether it contained
an EOD event that matched the div-ex date.

Some elements of this expression were implemented in
Ruby because no combination of existing EventSwarm com-
ponents could implement the relatively obscure semantics.
Note that this pattern implies negation, which is not easily
implemented in CEP systems generally. See the evaluation
in Sect. 6.2.3 further discussion of negation.

5.4 Wire format

The wire format used to express patterns is a direct reflection
of the P-DAG model described in Sect. 4. It uses JSON [13]
for simple and efficient cross-platform processing. A sample
of a JSON file that saves event pattern occurrences is shown
in Fig. 8. Each JSON file contains a number of event pattern
occurrences that match a particular event pattern type. Each
occurrence contains a description of the event pattern type
and a P-DAG instance, which consists of a number of nodes
and edges. Each node consists of the event type, id, source,
start time, end time and a list of other atomic data. Each edge
consists of ordering, source and target.

6 Results
6.1 Evaluation

Experiments were conducted by one of the finance experts
who had specified the event pattern types with the assistance

of an IT expert. The finance expert used the Front-End to
define the following three different data analysis scenarios:

— Detecting occurrences of event pattern type No. 2 (1 event
pattern type involved)

— Detecting occurrences of event pattern types No. 1-7
(Handling data quality issues of dividend events; 7 simple
event pattern types involved)

— Detecting occurrences of event pattern types No.8, 10-14
(Calculating earnings; 6 more sophisticated event pattern
types involved)

These analysis processes were also implemented as a local
bespoke program for comparison purposes. For all the three
scenarios, the analysis processes produced identical results in
both cases. This indicates that the interoperability between
the Front-End and EventSwarm was successfully achieved
due to the fact that the underlying data models in both the
Front-End and EventSwarm are built on the same meta-
model.

The finance expert and the Front-End developer have also
reported a number of advantages from driving the detec-
tion of event pattern occurrences using the concepts from
the meta-model. In particular, the meta-model facilitates
portability, allowing the Front-End to consume the output
of EventSwarm and thus leverage its ability to detect certain
types of patterns without being locked with a particular EPS.
Indeed, the invoking platform can call other EPSs to detect
other types of patterns without the need to adapt to the output
type specified by that EPS. Further, some additional imple-
mentation benefits the EventSwarm platform provides have
also been reported, including:

— simple and easy-to-use API: developers can easily inte-
grate EventSwarm into their own applications.

— very fast and efficient complex event processing. The
average speed of processing is more than 10,000 events
per second (remote invocation time inclusive) on Thom-
son Reuters Tick History daily data provided by Sirca.
This is almost as fast as a bespoke program dedicated to
a fixed event processing process and executed locally.

— implementing event pattern types is generally very fast.
It normally takes less than a day to implement 5 event
pattern types.

— JSON as the output format is well structured and it is
convenient for developers to parse and further analyse
the results.

Last but not least, the results produced by the testing appli-
cation (based on the extended ADAGE architecture) contain
detailed information about high-level events, which could
not be achieved by the old ADAGE architecture.

@ Springer

24

Int J Data Sci Anal (2016) 2:13-27

{"AllOccurrences": {"Occurrence2": {"EventPatternInstance": { "PDAG
Instance":{"nodes":{"nl":{"SircaTRTH Dividend":{"startTime":"2008
-10-29 14:00:00.000, +
lO“,“id“:SBl,"source":"TR_Stream","endTime“:“ZOOB—lO—ZS|
13:59:55.999, +

10", "atomicDataList": {"atomicData (DivAmt) ":0.594, "atomicData (RIC)"
:"SGB.AX", "atomicData (DivExDate)":"18-
Nov-08"}}},"n2": {"SircaTRTH Dividend":{"startTime":"2008-10-29
14:00:00.000, +
lO",“id":582,"source":"TR_Stream",“endTime“:“2OOB—10—29
13:59:59.995, +

10", "atomicDataList": {"atomicData (DivAmt) ":0.94, "atomicData (RIC) "

Ex Date

| uul

":{"PDAG

EPO10236140jso

:"SGB.AX", "atomicData (DivExDate)":"18-
Nov-08"}}}},"edges": {"edgel": {"ordering": "start(n2) >=
start(nl)", "source": {"node":"n2"}, "target":{"node":"n1"}}}}, "Code
":"Two events with Type \u2018Dividend\u201S have the same
timestamps, the same \u2018Div Zmt.\u2019 and the same \u2018Div

\u2015."}, "Occurrence_id":1}, "Occurrencel": { "EventPatternInstance

Instance":{"nodes":{"nl":{"SircaTRTH Dividend":{"startTime":"2008
-10-29 14:00:00.000, +

n 10", "id":580, "source":"TR_Stream", "endTime":"2008-10-29
13:59:59.995, +

10", "atomicDataList": {"atomicData (DivAmt) ":0.94, "atomicData (RIC) "
:"SGB.AX", "atomicData (DivExDate)":"18-
Nov-08"}}},"n2": {"SircaTRTH Dividend":{"startTime":"2008-10-29
14:00:00.000, +
lO","id":583,"sou:ce":"TR_Stream","endTime“:"2008—10—29
13:59:59.999, +

10", "atomicDataList": {"atomicData (DivAmt) ":0.94, "atamicData (RIC) "
:"SGB.AX", "atomicData (DivExDate)":"18-
Nov-08"}}}},"edges": {"edgel": {"ordering":"start(n2) >=
start(nl)", "source": {"node":"n2"}, "target": {"node":"n1"}}}}, "Code
":"Two events with Type \u2018Dividend\u2019% have the same

Fig. 8 Sample JSON file of pattern occurrences

6.2 Limitations

The experiments did, however, highlight complex semantic
issues in pattern specification, implementation and repre-
sentation. Key examples are identified in the following
subsections.

6.2.1 Timestamp precision and ordering

Some of the data sets processed had timestamps with a
precision of 1 day (i.e. no time component). Thus strict
“before” relationships in patterns would not fire unless dates
were different. For example, if one searched for a divi-
dend announcement followed by an end-of-day event, the
pattern would only match end-of-day events on subsequent
days. This is a general problem of precision in timestamps:
sequence patterns can only match for events separated by a
period greater than or equal to the timestamp precision. So
if timestamp precision is 1 second, events separated by less
than 1 second cannot be distinguished in time and thus cannot
be sequenced.

6.2.2 Bounding candidate matches

A pattern that requires two or more events to match (e.g. A
AND B) requires the solution to hold candidate A matches
for subsequent pairing with B events. For a continuous data
stream, an explicit or implied bound is required to make the
pattern scalable, because each A event needs to be held as a

@ Springer

candidate match until it can be determined that no further B
events are possible. Thus to make the required storage finite,
we need a bound on the number of A events held as candidates
(e.g. in the last hour) or through an indicator that implies no
further B events are possible (e.g. end-of-data-set).

6.2.3 Negation

Negation can be particularly difficult to implement in CEP
systems. Consider the example NOT(A). Over a continu-
ous data stream, at what point can we assert that A has
not occurred? Similar to the problem of candidate matches
for sequence or conjunction queries, we need an explicit or
implied bound for the evaluation semantics. For example,
we could evaluate the pattern at regular intervals (i.e. every
hour) or evaluate it over a limited time window (e.g. in the
last hour). A further complication with negation is in decid-
ing what to report as the match. What is the pattern matched
by NOT(A)? Is it the set of events that has occurred? Or is
it an empty result? This question becomes even harder to
answer when conjunctions are used with negation. Thus a
general pattern specification language that permits negation
must provide mechanisms and semantics to address these
issues.

6.2.4 Edge semantics

The P-DAG model for event pattern occurrences defines
edges between events which reflect a strict “before” rela-

Int J Data Sci Anal (2016) 2:13-27

25

tionship between events. This is simple to implement and
very general because it bears no relationship to the pattern
specification. At present, the wire format also does not iden-
tify node types. Thus it can be difficult for a domain expert
to determine which event matched which element of a pat-
tern without re-evaluating the pattern constraints locally (i.e.
outside of EventSwarm).

It is anticipated that domain experts defining pattern types
will need to associate events with “placeholders” in the pat-
tern type. For example, if a pattern A — B AND A’ — C
(A == A’) is evaluated against a data stream, the domain
expert needs to know which event matched A, A’, B and C,
respectively. To do this requires the association of explicit
edge semantics with the pattern specification and/or explicit
labelling of nodes, assuming re-use of node types (e.g. A,
A’). This adds considerable complexity to pattern specifica-
tion, the implementation and the wire format. The required
semantics, likely complexity and implementation effort are
currently being investigated.

7 Related work

Event-based analytics is increasingly gaining prominence in
business and social applications as a result of the need to
deal with the volume and diversity of data and the need to
act instantly in response to data triggers [27]. This is fuelled
by the growing audience for data insights, increasing use
of cloud computing and commodity infrastructure, and the
proliferation of new data sources, such as social media and
mobile devices [4]. Event-based analytics requires sophis-
ticated infrastructure and techniques. According to a recent
survey of the technology landscape [4], there are different
layers in the technologies stack comprising infrastructure
platforms, e.g. Tibco [28], IBM [29], Oracle [30], Azure [16],
data processing platforms, e.g. Hadoop [31], Storm [32],
Kafka [33], data analytics services, e.g. Drools Fusion [34],
Esper [35] and advanced tools, e.g. statistical, machine learn-
ing, text processing tools. For the types of the users that we
are targeting one would need an open approach with an abil-
ity to leverage existing technologies such as R [11,12], Web
services, REST [11], JSON [13], Open Calais [14], Amazon
Kinesis [15], cloud analytics from Azure [16].

There are many approaches that allow multiple technolo-
gies and tools to be used together to define complex analytics
processes. The most important effort in providing “inte-
grated solutions” that link such heterogeneous tools is in the
area of scientific workflow management systems or SWfMSs
[36]. Such systems (e.g. Taverna [37], Kepler [38], Galaxy
[38], Grid Nexus [39]) provide facilities for the composi-
tion of workflows that abstract at least some of the technical
details of data analysis and allow domain experts to focus
on what workflow components are required and not how

the components will be executed. However, current SWfMs
are “not abstract enough” [40]. Non-technical users struggle
to construct workflows that involve complex control-flow
operations such as repeating iterations of tasks or defining
parallel tasks. The ADAGE Framework [6] gives a set of
architectural guidelines based on service-oriented computing
principles that restrict the choice of services depending on
their role in the analytics pipeline. This idea has been applied
in facilitating the definition of event data analysis processes.
However, the underlying event model was based on a sim-
ple event model [41] that mirrors the ubiquitous row—column
CSV format used by finance experts. This model could not
cope with event-based analytics involving patterns of event
instances, which we refer to as event pattern occurrences.
The main contribution of this paper is to address this limita-
tion by proposing a common event pattern meta-model (see
Sect. 4) as it will enable the exchange of high-level events and
event pattern occurrences between different systems. This
meta-model has been formalized as a UML meta-model to
facilitate its adoption and usage across the event analytics
community.

8 Conclusions and future work

This paper has advocated an open architecture approach to
support better interoperability of various analytics tools con-
cerned with event-based analytics. The paper was motivated
by needs identified in our previous work to support event-
based analysis in financial market, in particular the need
to express high-level events, in terms of different type of
relationships between events. While this previous work was
focused on historical analysis of events, the architecture and
tools currently being developed [42] can be also applied
to real-time analytics applications. The central part of our
interoperability approach is the development of a precise
event-based meta-model which was refined through exten-
sive testing [4,42], while leveraging the increasing popularity
of the Event Swarm CEP engine, in several vertical domains
[8,9,43].

The meta-model presented in this paper includes a mini-
mal set of modelling concepts related to the specification of
event types, event pattern types, event pattern occurrences
and related concepts. The meta-model was developed based
on the foundational behavioural concepts from the RM-ODP
standards, augmented with a number of concepts needed
to support event pattern matching semantics for real-time
analytics applications. The use of functors to access indi-
vidual constituents of event instances provides an additional
abstraction mechanism for integrating existing event models
and event-based repositories.

We have shown that these concepts are sufficient to rep-
resent and implement a class of business analytics solutions
for a number of use cases in finance related to market trad-

@ Springer

26

Int J Data Sci Anal (2016) 2:13-27

ing. In particular, the CEP EventSwarm framework, which
is compliant with these concepts, allowed quick deployment
of new rules, even of significant complexity, while deliver-
ing high-performance execution of these rules in real time.
The software was deployed in a cloud environment, and its
services were invoked through the Front-End application,
which is also compliant with the meta-model. This financial
case study has also identified a number of semantic diffi-
culties inherent in CEP platforms and EPS languages, and
we believe this is an important result in its own right. The
issues identified in Sect. 6.2 suggest that a general-purpose
EPS language has limited value for domain experts due to the
inherent complexity of pattern specification and the difficulty
of scaling without explicit bounds. It also supports our deci-
sion to focus on a meta-model for capturing pattern matches,
which provides interoperability without constraining the pat-
tern specification and matching semantics. With regard to
future development of EPS languages for domain experts,
our evaluation suggests that domain experts would be better
served by limited, domain-specific pattern languages with
a tractable matching semantics predetermined (e.g. implied
bounds, sequence and negation semantics that reflect natural
data constraints, node labelling).

It should be noted that the semantic issues identified in
Sect. 6.2 are not addressed in the recent event process-
ing formalism published in [23] nor in RETE-based rule
implementation environments like Drools [34]. A broad
discussion of EPS languages and platforms, including the
associated limitations and complexities, can be found in [44].
The programmer-oriented approach applied by EventSwarm,
which is to make core constructs available in a general-
purpose programming language, provides agility, exten-
sibility and accessibility. In particular, it allows existing
application development frameworks like Rails to be used in
the construction of CEP applications. The native availability
of database, user interface, testing and deployment capabili-
ties, coupled with the wide availability of third-party modules
makes this a compelling approach to building robust, usable
and production-quality applications [42]. These languages
and platforms do not, however, address the needs of domain
experts in specifying patterns.

In future, we plan to implement a full set of rules listed in
Sect. 5.2. By then, we will conduct experiments with more
representative researcher candidates, so that our work will
become more solid. We also plan to look at more com-
plex event pattern occurrences related to cross-correlation
between stock market events and the social media postings,
in order to be able to develop new insights into relation
between streams of events coming from different sources. We
will continue to monitor developments in event pattern for-
malisms and leverage these developments to create suitable
and tractable domain-specific languages for pattern defini-
tion.

@ Springer

Acknowledgments We would like to thank the Smart Services Coop-
erative Research Centre in Australia for sponsoring our research project
and Sirca for providing data used in the case study.

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

1. Luckham, D.: The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison Wes-
ley Professional, Reading (2002)

2. Etzion, O., Niblett, P.: Event Processing in Action. Manning Pub-
lications Co., Greenwich (2011)

3. EMF: Eclipse Modeling Framework (EMF). http://www.eclipse.
org/modeling/emf/ (2015)

4. Milosevic, Z., Chen, W., Berry, A., Rabhi, F.A.: Real-Time Analyt-
ics. In: Buyya, R., Calheiros, R.N., Dastjerdi, A.V. (eds.) Big Data:
Principles and Paradigms. Morgan Kaufmann/Elsevier (2016)

5. Milosevic, Z., Berry, A., Chen, W., Rabhi, FA.: An event-based
model to support distributed real-time analytics: finance case study.
In: Enterprise Distributed Object Computing Conference (EDOC),
2015 IEEE 19th International, 21-25 Sept. 2015, pp. 122-127

6. Yao, L., Rabhi, F.A.: Building architectures for data-intensive sci-
ence using the ADAGE framework. Concurr. Comput. Pract. Exp.
27(5), 1188-1206 (2014). doi:10.1002/cpe.3280

7. Rabhi, FA., Yao, L., Guabtni, A.: ADAGE: a framework for sup-
porting user-driven ad-hoc data analysis processes. Computing
94(6), 489-519 (2012). doi:10.1007/500607-012-0193-0

8. Deontik: EventSwarm. http://deontik.com/Products/EventSwarm.
html (2015)

9. Berry, A.,Milosevic, Z.: Real-time analytics for legacy data streams
in health: monitoring health data quality. In: Paper presented at the
17th IEEE International Enterprise Distributed Object Computing
Conference (EDOC), Vancouver (2013)

10. SoftwareAG: Apama. http://www.softwareag.com/corporate/
products/apama_webmethods/analytics/overview/default.asp
(2015)

11. Wikipedia: REST. https://en.wikipedia.org/wiki/Representational _
state_transfer

12. R: The R Project for Statistical Computing. http://www.r-project.
org/ (2015)

13. ECMA: The JSON Data Interchange Standard. http://
www.ecma-international.org/publications/files/ECMA-ST/
ECMA-404.pdf (2015)

14. Calais, O.: http://new.opencalais.com (2015)

15. Kinesis, A.: https://aws.amazon.com/kinesis/ (2015)

16. Azure. https://azure.microsoft.com/en-us/documentation/articles/
stream-analytics-introduction/ (2015)

17. ITU-T/ISO: ITU-T X.902 | ISO/IEC 10746-2, Information Tech-
nology Open Distributed Processing Reference Model — Founda-
tions. (2010)

18. ISO/IEC: ISO/IEC IS 15414, Information technology - Open dis-
tributed processing - Reference model - Enterprise language, 3rd
edn. (2015)

19. OMG: Semantics of Business Vocabularies and Rules. http://www.
omg.org/spec/SBVR/ (2015)

20. Linington, P., Milosevic, Z., Tanaka, A., Vallesillo, A.: Building
enterprise systems with ODP. In: Linington, P.F., Milosevic, Z.,
Tanaka, A., Vallecillo., A. (eds.) An Introduction to Open Distrib-
uted Processing, 1st edn. CRC Press, Chapman Hall (2011)

21. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking
between business processes and business contracts. In: Paper pre-
sented at the EDOC (2006)

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://dx.doi.org/10.1002/cpe.3280
http://dx.doi.org/10.1007/s00607-012-0193-0
http://deontik.com/Products/EventSwarm.html
http://deontik.com/Products/EventSwarm.html
http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/default.asp
http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/default.asp
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.r-project.org/
http://www.r-project.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://new.opencalais.com
https://aws.amazon.com/kinesis/
https://azure.microsoft.com/en-us/documentation/articles/stream-analytics-introduction/
https://azure.microsoft.com/en-us/documentation/articles/stream-analytics-introduction/
http://www.omg.org/spec/SBVR/
http://www.omg.org/spec/SBVR/

Int J Data Sci Anal (2016) 2:13-27

27

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.
32.
33.
34.

ISO/IEC-IS-10746-4: Information Technology—Open Distributed
Processing—Reference Model: Architectural Semantics (1998)
Hallé, S., Varvaressos, S.: A formalization of complex event stream
processing. In: Paper presented at the EDOC (2014)

Perry, R.T., Kutay, C., Rabhi, F.: Using complex events to represent
domain concepts in graphs. In: Kim, J.K. (ed.) Information Science
and Applications, pp. 303-311. Springer, Berlin Heidelberg (2015)
Chen, W., Rabhi, F.: An RDR-based approach for event data analy-
sis. In: Paper presented at the Third Australasian Symposium on
Service Research and Innovation (ASSRI’13), Sydney, Australia
Chen, W., Rabhi, F.A.: Enabling user-driven rule management in
event data analysis. Inf. Syst. Front. 18(3), 511-528 (2016). doi: 10.
1007/s10796-016-9633-2

Luckham, D.: Event Processing for Business: Organizing the Real-
Time Enterprise. Wiley, Hoboken (2012)

TIBCO: TIBCO BusinessEvents. http://www.tibco.com/products/
event-processing/complex-event-processing/businessevents/
default.jsp (2015)

IBM: InfoSphere Streams. http://www-03.ibm.com/software/
products/en/infosphere-streams/ (2015)

Oracle: CQL. http://docs.oracle.com/cd/E17904_01/apirefs.1111/
€12048/intro.htm (2015)

Apache: Hadoop. http://hadoop.apache.org/ (2015)

Apache: Storm. http://storm.apache.org/ (2015)

Kafka. https://kafka.apache.org/ (2015)

RedHat: Drools Fusion. http://drools.jboss.org/drools-fusion.html
(2015)

35.
36.

37.

38.

39.

40.

41.

42.

43.

44,

Esper. http://esper.codehaus.org/ (2015)

McPhillips, T., Bowers, S., Zinn, D., Ludascher, B.: Scientific
workflow design for mere mortals. Future Gener. Comput. Syst.
25, 541-551 (2009)

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Green-
wood, M., Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.:
Taverna: a tool for the composition and enactment of bioinformat-
ics workflows. Bioinformatics 20(17), 3045-3054 (2004). doi:10.
1093/bioinformatics/bth361

Kepler. https://kepler-project.org (2015)

Nexus, G.: http://www.gridnexus.com/ (2015)

Withers, D., Kawas, E., McCarthy, L., Vandervalk, B., Wilkinson,
M.: Semantically-guided workflow construction in Taverna: the
SADI and BioMoby plug-ins. In: 4th international conference on
Leveraging applications of formal methods, verification, and vali-
dation, pp. 301-312 (2010)

Rabhi, FA., G, A., Yao, L.: A data model for processing finan-
cial market and news data. Int. J. Electron. Finance 3(4), 387-403
(2009)

Milosevic, Z., Chen, W., Berry, A., Rabhi, FA.: An event-based
model to support distributed real-time analytics: finance case study.
In: Paper presented at the EDOC (2015)

ASX: guidance-note-8-clean-copy. www.asx.com.au/documents/
about/guidance-note-8-clean-copy.pdf (2015)

Cugola, G., Margara, A.: Processing flows of information: from
data stream to complex event processing. ACM Comput. Surv.
44(3), 1-62 (2012). doi:10.1145/2187671.2187677

@ Springer

http://dx.doi.org/10.1007/s10796-016-9633-2
http://dx.doi.org/10.1007/s10796-016-9633-2
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents/default.jsp
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents/default.jsp
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents/default.jsp
http://www-03.ibm.com/software/products/en/infosphere-streams/
http://www-03.ibm.com/software/products/en/infosphere-streams/
http://docs.oracle.com/cd/E17904_01/apirefs.1111/e12048/intro.htm
http://docs.oracle.com/cd/E17904_01/apirefs.1111/e12048/intro.htm
http://hadoop.apache.org/
http://storm.apache.org/
https://kafka.apache.org/
http://drools.jboss.org/drools-fusion.html
http://esper.codehaus.org/
http://dx.doi.org/10.1093/bioinformatics/bth361
http://dx.doi.org/10.1093/bioinformatics/bth361
https://kepler-project.org
http://www.gridnexus.com/
www.asx.com.au/documents/about/guidance-note-8-clean-copy.pdf
www.asx.com.au/documents/about/guidance-note-8-clean-copy.pdf
http://dx.doi.org/10.1145/2187671.2187677

	An open architecture for event-based analytics
	Abstract
	1 Introduction
	2 Motivation
	3 Proposed open architecture
	4 Event pattern meta-model
	4.1 Overview of the proposed meta-model
	4.2 Main concepts
	4.2.1 Event
	4.2.2 Event type
	4.2.3 Simple event
	4.2.4 AtomicData
	4.2.5 AtomicDataType
	4.2.6 Functor
	4.2.7 Functor type
	4.2.8 Event pattern occurrences, event pattern types and high-level events
	4.2.9 Event pattern representation

	4.3 Pattern DAG (P-DAG)

	5 Implementation and case study
	5.1 Testing application
	5.2 EventSwarm
	5.3 Event patterns and event processing rules considered
	5.3.1 Simple filters
	5.3.2 Duplicate detectors
	5.3.3 Simple event sequence
	5.3.4 Conditional event sequence
	5.3.5 Event not present in history

	5.4 Wire format

	6 Results
	6.1 Evaluation
	6.2 Limitations
	6.2.1 Timestamp precision and ordering
	6.2.2 Bounding candidate matches
	6.2.3 Negation
	6.2.4 Edge semantics

	7 Related work
	8 Conclusions and future work
	Acknowledgments
	References

