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Abstract We consider a variant of the stochastic multi-
armed banditwith K armswhere the rewards are not assumed
to be identically distributed, but are generated by a non-
stationary stochastic process. We first study the unique best
arm setting when there exists one unique best arm. Second,
we study the general switching best arm setting when a best
arm switches at some unknown steps. For both settings, we
target problem-dependent bounds, instead of the more con-
servative problem-free bounds. We consider two classical
problems: (1) identify a best arm with high probability (best
arm identification), for which the performance measure by
the sample complexity (number of samples before finding a
near-optimal arm). To this end, we naturally extend the def-
inition of sample complexity so that it makes sense in the
switching best arm setting, which may be of independent
interest. (2) Achieve the smallest cumulative regret (regret
minimization) where the regret is measured with respect to
the strategy pulling an arm with the best instantaneous mean
at each step.

This paper extends the work presented in the DSAA’2015 Long
Presentation paper “EXP3 with Drift Detection for the Switching
Bandit Problem” [1]. Algorithms SER3 and SER4 are original and
presented for the first time.
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1 Introduction

The theoretical framework of the multi-armed bandit prob-
lem formalizes the fundamental exploration/exploitation
dilemma that appears in decision-making problems facing
partial information. At a high level, a set of K arms is
available to a player. At each turn, she has to choose one
arm and receives a reward corresponding to the played arm,
without knowing what would have been the received reward
had she played another arm. The player faces the dilemma
of exploring, that is playing an arm whose mean reward
is loosely estimated in order to build a better estimate, or
exploiting, that is playing a seemingly best arm based on
current mean estimates in order to maximize her cumu-
lative reward. The accuracy of the player policy at time
horizon T is typically measured in terms of sample com-
plexity or of regret. The sample complexity is the number
of plays required to find an approximation of the best arm
with high probability. In that case, the player can stop play-
ing after identifying this arm. The regret is the difference
between the cumulative rewards of the player and the one
that could be acquired by a policy assumed to be opti-
mal.

The stochastic multi-armed bandit problem assumes the
rewards to be generated independently from stochastic dis-
tribution associated with each arm. Stochastic algorithms
usually assume distributions to be constant over time like
with the Thompson Sampling (TS) [17], UCB [2] or Suc-
cessive Elimination (SE) [6]. Under this assumption of
stationarity, TS and UCB achieve optimal upper bounds
on the cumulative regret with logarithmic dependencies on
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T . SE algorithm achieves a near-optimal sample complex-
ity.

In the adversarial multi-armed bandit problem, rewards
are chosen by an adversary. This formulation can model any
form of non-stationarity. EXP3 algorithm [3,14] achieves
an optimal regret of O(

√
T ) against an oblivious opponent

that chooses rewards before the beginning of the game, with
respect to the best policy that pulls the same arm over the
totality of the game. This weakness is partially overcame
by EXP3.S [3], a variant of EXP3, that forgets the past
adding at each time-step a proportion of the mean gain and
achieves controlled regret with respect to policies that allow
arm switches during the run.

The switching bandit problem introduces non-stationarity
within the stochastic bandit problem by allowing means
to change at some time-steps. As mean rewards stay sta-
tionary between those changes, this setting is also qual-
ified as piecewise-stationary. Discounted UCB [13] and
sliding-window UCB [8] are adaptations of UCB to the
switching bandit problem and achieve a regret bound of
O(

√
MT log T ), where M − 1 is the number of distribu-

tion changes. It is also worth citing Meta- Eve [10] that
associates UCB with a mean change detector, resetting the
algorithm when a change is detected. While no analysis
is provided, it has demonstrated strong empirical perfor-
mances.

Stochastic and adversarial Several variants combining
stochastic and adversarial rewards have been proposed by
Seldin and Slivkins [15] or Bubeck and Slivkins [5]. For
instance, in the setting with contaminated rewards, rewards
are mainly drawn from stationary distributions except for
a minority of mean rewards chosen in advance by an adver-
sary. In order to guarantee their proposed algorithm EXP3++

[15] achieves logarithmic guarantees, the adversary is con-
strained in the sense it cannot lowered the gap between arms
more than a factor 1/2. They also proposed another variant
called adversarial with gap [15] which assumes the exis-
tence of a round after which an arm persists to be the best.
These works are motivated by the desire to create generic
algorithms able to perform bandit tasks with various reward
types, stationary, adversary or mainly stationary. However,
despite achieving good performances on a wide range of
problems, each one needs a specific parameterization (i.e.,
an instance of EXP3++ parameterized for stationary rewards
may not performwell if rewards are chosen by an adversary).

Our contribution We consider a generalization of the
stationary stochastic, piecewise-stationary and adversarial
bandit problems. In this formulation, rewards are drawn from
stochastic distributions of arbitrary means defined before the
beginning of the game. Our first contribution is for the unique
best arm setting. We introduce a deceptively simple vari-
ant of the Successive Elimination (SE) algorithm, called
Successive Elimination with Randomized Round-

Robin (SER3), and we show that the seemingly minor
modification—a randomized round-robin procedure—leads
to a dramatic improvement of the performance over the origi-
nal SE algorithm.We identify a notion of gap that generalizes
the gap from stochastic bandits to the non-stationary case and
derive gap-dependent (also known as problem-dependent)
sample complexity and regret bounds, instead of the more
classical and less informative problem-free bounds.We show
for instance inTheorem1 andCorollary 1 thatSER3 achieves
a non-trivial problem-dependent sample complexity scaling
with Δ−2 and a cumulative regret in O(K log(T K/Δ)/Δ)

after T steps, in situations where SE may even suffer from a
linear regret, as supported by numerical experiments (see
Sect. 5). This result positions, under some assumptions,
SER3 as an alternative to EXP3 when the rewards are non-
stationary.

Our second contribution is to manage best arm switches
during the game. First, we extend the definition of the
sample complexity in order to analyze the best arm iden-
tification algorithms when best arm switches during the
game. SER4 takes advantages of the low regret of SER3
by resetting the reward estimators randomly during the
game and then starting a new phase of optimization.
Against an optimal policy with N − 1 switches of the opti-
mal arm (but arbitrarily many distribution switches), this
new algorithm achieves an expected sample complexity of
O(Δ−2

√
N K δ−1 log(K δ−1)), with probability 1 − δ, and

an expected cumulative regret of O(Δ−1
√

N T K log(T K ))

after T time-steps. A second algorithm for the non-stationary
stochastic multi-armed bandit with switches is an alternative
to the passive approach used in SER4 (the random resets).
Second, algorithm EXP3.R takes advantage of the explo-
ration factor of EXP3 to evaluate unbiased estimations of
the mean rewards. Combined with a drift detector, this active
approach resets the weights of EXP3 when a change of best
arm is detected. We finally show that EXP3.R also obtains
competitive problem-dependent regret minimization guaran-
tees in O

(
3NC K

√
T K log T

)
, where C depends on Δ.

2 Setting

We consider a generalization of the stationary stochastic,
piecewise-stationary and adversarial bandit problems where
the adversary chooses before the beginning of the game
a sequence of distributions instead of directly choosing a
sequence of rewards. This formulation generalizes the adver-
sarial setting since choosing arbitrarily a reward yk(t) is
equivalent to drawing this reward from a distribution ofmean
yk(t) and a variance of zero. The stationary stochastic for-
mulation of the bandit problem is a particular case, where the
distributions do not change.
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2.1 The problem

Let [K ] = 1, . . . , K be a set of K arms. The reward
ykt (t) ∈ [0, 1] obtained by the player after playing the arm
kt is drawn from a distribution of mean μkt (t) ∈ [0, 1]. The
instantaneous gap between arms k and k′ at time t is:

Δk,k′(t)
def= μk(t) − μk′(t). (1)

The player competes against an optimal policy, assumed
as optimal (per example, always playing the arm with the
highest mean reward). Let k∗(t) be the arm played by the
optimal policy at time t .

2.2 The notion of sample complexity

In the literature [12], the sample complexity of an algorithm
is the number of samples needed by this algorithm to find a
policy achieving a specific level of performance with high
probability. We denote δ ∈ (0, 1] the probability of failure.
For instance, for the best arm identification in the stochastic
stationary bandit (that is when ∀k∀t, μk(t) = μk(t + 1) and
k∗(t) = k∗(t + 1)), the sample complexity is the number of
sample needed to find,with a probability at least 1−δ, the arm
k∗ with themaximummean reward. Analysis in sample com-
plexity is useful for situations where the knowledge of the
optimal arm is needed to make one impact-full decision, for
example to choose which one of several possible products to
manufacture or for buildinghierarchicalmodels of contextual
bandits in a greedy way [7], reducing the exploration space.

Definition 1 (Sample complexity)Let A be an algorithm. An
arm k is epsilon optimal ifμk ≥ μ∗ −ε, with ε ∈ [0, 1]. The
sample complexity of A performing a best arm identification
task is the number of observations needed tofind an ε-optimal
arm with a probability of at least 1 − δ.

The usual notion of sample complexity—the minimal
number of observations required to find a near-optimal arm
with high probability—is well adapted to the case when there
exists a unique best arm during all the game, but makes
little sense in the general scenario when the best arm can
change. Indeed, after a best arm change, a learning algo-
rithm requires some time-steps before recovering. Thus, we
provide in Sect. 4 a meaningful extension of the sample com-
plexity definition to the switching best arm scenario. This
extended notion of sample complexity now takes into account
not only the number of time-steps required by the algorithm
to identify a near-optimal arm, but more generally the num-
ber of time-steps required before recovering a near-optimal
arm after each change.

2.3 The notion of regret

When the decision process does not lead to one final decision,
minimizing the sample complexitymay not be an appropriate
goal. Instead, we may want to maximize the cumulative gain
obtained through the game which is equivalent to minimize
the difference between the choices of an optimal policy and
those of the player. We call this difference, the regret. We
define the pseudocumulative regret as the difference of mean
rewards between the arms chosen by the optimal policy and
those chosen by the player.

Definition 2 (Pseudocumulative regret)

T∑

t=1

μk∗(t)(t) − μkt (t). (2)

Usually, in the stochastic bandit setting, the distributions of
rewards are stationary and the instantaneous gap Δk,k′(t) =
μk(t) − μk′(t) is the same for all the time-steps.

There exists a non-reciprocate relation between the mini-
mization of the sample complexity and the minimization of
the pseudocumulative regret. For instance, algorithm UCB

has an order optimal regret, but it does not minimize the
sample complexity. UCB will continue to play suboptimal
arms, but with a decreasing frequency as the number of plays
increases. However, an algorithm with an optimal sample
complexity, like Median Elimination [6], will also have
an optimal pseudocumulative regret (up to some constant fac-
tors).More details on the relation between both lower bounds
can be found in [4,9].

Therefore, the algorithms presented in this paper slightly
differ according to the quantity to minimize, the regret or the
sample complexity. For instance, when the target is the regret
minimization, after identifying the best arm, the algorithms
continue to sample it, whereas in the case of sample complex-
ity minimization, the algorithms stop the sampling process
when the best arm is identified. When best arm switches are
considered, algorithms minimizing the sample complexity
enter a waiting state after identifying the current best arm
and do not sample the sequence for exploitation purposes
(sampling the optimal arm still increases the sample com-
plexity). However, they still have to parsimoniously collect
samples for each action in order to detect best arm changes
and face a new trade-off between the rate of sampling and
the time needed to find the new best arm after a switch.

3 Non-stationary stochastic multi-armed bandit
with unique best arm

In this section, we present algorithm Successive Elim-

ination with Randomized Round- Robin (SER3, see
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Algorithm 1), a randomized version of Successive Elim-

ination which tackles the best arm identification problem
when rewards are non-stationary.

3.1 A modified successive elimination algorithm

We elaborate on several notions required to understand the
behavior of the algorithm and to relax the constraint of sta-
tionarity.

3.1.1 The elimination mechanism

The elimination mechanism was introduced by Successive

Elimination [6]. Estimators of the rewards are built by
sequentially sampling the arms. After τmin turns of round-
robin, the elimination mechanism starts to occur. A lower
boundof the rewardof the best empirical arm is computed and
comparedwith anupper boundof the rewardof all other arms.
If the lower bound is higher than one of the upper bounds,
then the associated arm is eliminated and stop being consid-
ered by the algorithm. Processes of sampling and elimination
are repeated until the elimination of all arms except one.

Algorithm 1 Successive Elimination with Random-

ized Round- Robin (SER3)

input: δ ∈ (0, 0.5], ε ∈ [0, 1), τmin = log K
δ

output: an ε-approximation of the best arm
S1 = [K ], ∀k, μ̂k(0) = 0, t = 1, τ = 1
While |Sτ | > 1
Shuffle Sτ

For each k ∈ Sτ do
Play k
μ̂k(τ ) = τ−1

τ
μ̂k(τ − 1) + yk (t)

τ
t = t + 1

End for
kmax = argmaxk∈S μ̂k(τ )

If τ ≥ τmin
Remove from Sτ+1 all k such as:

μ̂max(τ ) − μ̂k(τ ) + ε ≥
√
2

τ
log

(
4K τ 2

δ

)
(3)

End if
If |Sτ | = 1 and the algorithm performs a sample complexity mini-
mization task

Return the last element of Sτ

End if
τ = τ + 1

End while

3.1.2 Hoeffding’s inequality

Successive Elimination assumes that the rewards are
drawn from stochastic distributions that are identical over
time (rewards are identically distributed). However, the
Hoeffding inequality used by this algorithm does not require

Table 1 A sequence of mean rewards tricking a deterministic bandit
algorithm

μk(t) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

k = 1 0.6 1 0.6 1 0.6 1

k = 2 0.4 0.8 0.4 0.8 0.4 0.8

stationarity and only requires independence. We remember
the Hoeffding inequality:

Lemma 1 (Hoeffding’s inequality [11]) If X1, X2, . . . , Xτ

are τ independent random variables and 0 ≤ Xi ≤ 1 for all
(i = 1, 2, . . . , τ ), then for ετ > 0

P

(∣∣∣∣∣

t∑

i=1

Xi

τ
− E

[
t∑

i=1

Xi

τ

]∣∣∣∣∣
≥ ετ

)

≤ 2 exp
(
−2ε2τ τ

)
.

Thus, we can use this inequality to calculate confidence
bounds of empirical means computed with rewards drawn
from non-identical distributions.

3.1.3 Randomization of the round-robin

We illustrate the need of randomization with an example
tricking a deterministic algorithm (see Table 1).

The best arm seems to be k = 1 as μ1(t) is greater than
μ2(t) at every time-step t . However, by sampling the arms
with a deterministic policy playing sequentially k = 1 and
then k = 2, after t = 6 the algorithm has only sampled
rewards from a distribution of mean 0.6 for k = 1 and of
mean 0.8 for k = 2. After enough time following this pattern,
an elimination algorithm will eliminate the first arm. Our
algorithm SER3 adds a shuffling of the arm set after each
round-robin cycle to Successive Elimination and avoids
this behavior.

3.1.4 Uniqueness of the best arm

The best arm identification task assumes a criteria identifying
the best arm without ambiguity. We define the optimal arm
as:

k∗ = arg max
k∈[K ]

T∑

t=1

μk(t). (4)

As an efficient algorithm will find the best arm before
the end of the run, we use Assumption 1 to ensure its
uniqueness at every time-step. First, we define some nota-
tions. A run of SER3 is a succession of round-robin. The
set [τ ] = {(t1, |S1|), . . . , (tτ , |Sτ |)} is a realization of SER3,
and ti is the time-step when the round-robin i th of size |Si |
starts (ti = 1 + ∑i−1

j=1 |S j |). As arms are only eliminated,
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Fig. 1 Two examples of sequence of mean rewards a Assumption 1
is satisfied as the mean gap remains positive. b Assumption 1 is not
satisfied. This sequence involves a best arm switch as the mean gap
becomes non-positive

|Si | ≥ |Si+1|. We denote T(τ ) the set containing all possible
realizations of τ round-robin steps. Now, we can introduce
Assumption 1 that ensures the best arm is the same at any
time-step.

Assumption 1 (Positive mean gap) For any k ∈ [K ] − {k∗}
and any [τ ] ∈ T(τ ) with τ ≥ τmin, we have:

Δ∗
k ([τ ]) = 1

τ

τ∑

i=1

ti +|Si |−1∑

j=ti

Δk∗,k( j)

|Si | > 0. (5)

Assumption 1 is trivially satisfied when distributions are
stationary, is quite weak (see, e.g., Fig. 1b) and can toler-
ate a large noise when τ is high. As the optimal arm must
distinguish itself from others, instantaneous gaps are more
constrained at the beginning of the game. It is quite simi-
lar to the assumption used by Seldin and Slivkins [15] to be
able to achieve logarithmic expected regret on moderately

Fig. 2 Cumulative regret of SER3, SE,UCB and EXP3 on Problem 1

Fig. 3 Cumulative regret of SER3, UCB and EXP3 on Problem 2

contaminated rewards, i.e., the adversary does not lower the
averagedgap toomuch.Another analogy canbedonewith the
adversarial with gap setting [15], τmin representing the time
needed for the optimal arm to accumulate enough rewards
and to distinguish itself from the suboptimal arms.

Figure 1a illustrates Assumption 1. In this example the
mean of the optimal arm k∗ is lower than the second one on
time-steps t ∈ {5, 6, 7}. Thus, even if the instantaneous gap is
negative during these time-steps, themean gapΔ∗

k ([τ ]) stays
positive.Theparameter τmin protects the algorithm from local
noise at the initialization of the algorithm. In order to ease
the reading of the results in the next sections, we here assume
τmin = log K

δ
.

Assumption 1 can be seen as a sanity-check assump-
tion ensuring that the best arm identification problem indeed
makes sense. In Sect. 4, we consider themore general switch-
ing bandit problem. In this case, Assumption 1 may not be
verified (see Fig. 1b) and is naturally extended by dividing the
game in segments wherein Assumption 1 is satisfied (Figs. 2,
3 and 4).
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Fig. 4 Cumulative regret of SER4, SW–UCB, EXP3.S, EXP3.R and
Meta- Eve on Problem 3

3.2 Analysis

All theoretical results are provided for ε = 0 and therefore
accept only k∗ as the optimal arm.

Theorem 1 (Sample complexity of SER3) For K ≥ 2, δ ∈
(0, 0.5], and τmin = log K

δ
, the sample complexity of SER3

is upper bounded by:

O

(
K

Δ2 log

(
K

δΔ

))

where Δ = min[τ ],k 1
τ

∑τ
i=1

∑ti +|Si |−1
t=ti

Δk∗,k (t)
|Si | .

The proof is given in “Proof of Theorem1 andTheorem2”
of Appendix 2.

Guarantee on the sample complexity can be transposed in
guarantee on the pseudocumulative regret. In that case, when
only one arm remains in the set, the player continues to play
this last arm until the end of the game.

Corollary 1 (Expected pseudocumulative regret of SER3)
For K ≥ 2, and δ = 1/T , and τmin = log(K T ), the expected
pseudocumulative regret of SER3 is upper bounded by:

min

(

O

(
K − 1

Δ
log

(
K T

Δ

))
, O

(√

T K log
T

K

))

The proof is given in “Proof of Corollary 1” of Appendix
2.

These guarantees are the same as the original Successive
Elimination performed with a deterministic round-robin on
arms with stationary rewards. Indeed, when reward distribu-

tions are stationary, we have for all t and all [τ ]:

1

τ

τ∑

i=1

ti +|Si |−1∑

t=ti

Δk∗,k(t)

|Si | = Δk∗,k(t) = Δk∗,k(t + 1). (6)

However, in a non-stationary environment satisfying
Assumption 1 Successive Elimination will eliminate the
optimal arm if the adversary knows the order of its round-
robin before the beginning of the run and exploits this
knowledge against the learner, thus resulting in a linear cumu-
lative regret. Our modification of SE algorithm allows SER3
to perform on near adversarial sequence of reward while
achieving a gap-dependent logarithmic pseudocumulative
regret.

Remark These logarithmic guarantees result from Assump-
tion 1 that allows to stop the exploration of eliminated arms.
They do not contradict the lower bound for non-stationary
bandit whose scaling is in Ω(

√
T ) [8] as it is due to the cost

of the constant exploration for the case where the best arm
changes.

3.3 Non-stationary stochastic multi-armed bandit with
budget

We study the casewhen the sequence fromwhich the rewards
are drawn does not satisfy Assumption 1.

The sequence of mean rewards is build by the adversary
in two steps. First, the adversary choose the mean rewards
μk(1), . . . , μk(T ) associated with each arm in such a way
that Assumption 1 is satisfied. The adversary can then apply
a malus bk(t) ∈ [0, μk(t)] to each mean reward to obtain
the final sequence. The mean reward of the arm k at time t
is μk(t) − bk(t). The budget spent by the adversary for the
arm k is Bk = ∑T

t=1 bk(t). We denote B ≥ argmaxk Bk the
upper bound on the budget of the adversary.

Algorithm SER3 can be modified to perform a best arm
identification task when Assumption 1 is not satisfied but
B is known. To achieve that, we replace the condition of
elimination (Inequality (3) in Algorithm 1) is replaced by
the following:

μ̂max(τ ) − μ̂k(τ ) + ε ≥ B

τ
+ 2

√
1

2τ
log

(
4K τ 2

δ

)

This new algorithm is called Successive Elimina-

tion with Round- Robin Randomized and Budget

(SER3.B).

Theorem 2 For K ≥ 2, δ ∈ (0, 0.5], and τmin = log K
δ

, the
sample complexity of SER3.B is upper bounded by:

O

(
K

Δ2

(
log

K

δΔ
+ B

))
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where Δ = min[τ ],k 1
τ

∑τ
i=1

∑ti +|Si |−1
t=ti

Δk∗,k (t)
|Si | .

The proof is given in “Proof of Theorem1 andTheorem2”
of Appendix 2.

4 Non-stationary stochastic multi-armed bandit
with best arm switches

The switching bandit problem has been proposed by Gariv-
ier et al. [8] and assumes means to be stationary between
switches. In particular, algorithm SW–UCB is built on this
assumption and is a modification of UCB using only the
rewards obtained inside a sliding window. In our setting, we
allow mean rewards to change at every time-steps and con-
sider that a best arm switch occurs when the arm with the
highest mean change. This setting provides an alternative to
the adversarial bandit with budget, when B is very high or
unknown.

The optimal policy is the sequence of couples (optimal
arm, time when the switch occurred):

{(k∗
1 , 1), . . . , (k

∗
N , TN )}, (7)

with k∗
n 	= k∗

n+1 andΔk∗
n ,k(t) > 0 for any k ∈ [K ]−{k∗

n} and
any t ∈ [Tn, Tn+1). The optimal policy starts playing the arm
k∗

n at the time-step Tn . Time-steps Tn when switches occur
are unknown to the player.

4.1 Successive Elimination with Randomized
Round-Robin and Resets (SER4)

Definition 1 of the sample complexity is not adapted to the
switching bandit problem. Indeed, this definition is used to
measure the number of observations needed by an algorithm
to find one unique best arm. When the best arm changes
during the game, this definition is too limiting. In Sect. 4.1.1
we introduce a generalization of the sample complexity for
the case of switching policies.

4.1.1 The sample complexity of the best arm identification
problem with switches

A cost associated is added to the usual sample complexity.
This cost is equal to the number of iterations after a switch
during which the player does not know the optimal arm and
does not sample.

Definition 3 (Sample complexity with switches) Let A be an
algorithm. The sample complexity of A performing a best
arms identification task for a segmentation {Tn}n=1..N of [1 :

T ], with T1 = 1 < T2 < · · · < TN < T , is:

N∑

n=1

Tn+1−1∑

t=Tn

max(s(t), 1�kt 	=k∗
n�), (8)

where s(t) is a binary variable equal to 1 if and only if the
time-step t is used by the sampling process of A, kt is the
arm identified as optimal by A at time t, k∗

n is the optimal
arm over the segment n and TN+1 = T + 1.

In order to clarify Definition 3, we detail the different
states achievable by an algorithm of best arms identification
and their impact on the sample complexity. Two states are
achievable during a task of minimization of the sample com-
plexity:

– s(t) = 1 if the algorithm is sampling an arm during the
time-step t . In the case of SER4, s(t) = 1 when |Sτ | 	= 1
and the sample complexity increases by one.

– s(t) = 0 if the algorithm submits an arm as the optimal
one during the time-step t . In the case of SER4, s(t) = 0
when |Sτ | = 1. The sample complexity increases by one
if kt 	= k∗(t).

In the context of SER4, the sample complexity is the num-
ber of time-steps during which the arm set does not only
contain the optimal arm.

4.1.2 Algorithm

In order to allow the algorithm to choose another arm when
a switch occurs, at each turn, estimators of SER3 are reseted
with a probability ϕ ∈ [0, 1] and a new task of best arm
identification is started. We name this algorithm Succes-

sive Elimination with Randomized Round- Robin

and Resets (SER4).

4.1.3 Analysis.

We now provide the performance guarantees of SER4

algorithm, both in terms of sample complexity and of pseu-
documulative regret.

The following results are given in expectation and in high
probability. The expectations are taken with regard to the
randomization of the resets. The sample complexity or the
pseudocumulative regret achieved by the algorithm between
each resets (given by the analysis of SER3) still results in
high probability.

Theorem 3 (Expected sample complexity of SER4) For
K ≥ 2, δ = 1/T , τmin = log K

δ
and ϕ ∈ (0, 1], the expected

sample complexity of SER4 w.r.t. the randomization of resets
is upper bounded by:
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Algorithm 2 Successive Elimination with Random-

ized Round- Robin and Resets (SER4)

input: δ ∈ (0, 1], ε ∈ [0, 1), ϕ ∈ [0, 1)
S1 = [K ], ∀k, μ̂k(0) = 0, t = 1, τ = 1
While t ≤ T
Shuffle Sτ

For each k ∈ Sτ do
If |Sτ | 	= 1 or If the algorithm performs a regret minimization task
Play k

μ̂k(τ ) = τ−1
τ

μ̂k(τ − 1) + ykt (t)
τ

End if
t = t + 1

End for
kmax = argmaxk∈S μ̂k(τ )

Remove from Sτ+1 all k such as:

μ̂max(τ ) − μ̂k(τ ) + ε ≥ 2

√
1

2τ
log

(
4K τ 2

δ

)

τ = τ + 1
t = t + 1
With a probability ϕ

St = [K ]
∀k, μ̂k(t) = 0
τ = 1

End with a probability
End while

O

(
ϕK

δΔ2 log

(
K

δΔ

)
+ N

ϕ

)

with a probability of at least 1 − δ.

The proof is given in “Proof of Theorem 3” of Appendix
2.
We tune ϕ in order to minimize the sample complexity.

Corollary 2 For K ≥ 2, δ = 1/T , τmin = log K
δ

, Δ ≥ 1
K T

and ϕ =
√

Nδ

K log( K
δ

)
, the expected sample complexity ofSER4

w.r.t. the randomization of resets is upper bounded by:

O

⎛

⎝ 1

Δ2

√
N K log( K

δ
)

δ

⎞

⎠ .

Remark 2 Transposing Theorem 3 for the case where ε ∈
[ 1

K T , 1] is straightforward. This allows to tune the bound by
setting ϕ = ε

√
(Nδ)/(K log(T K )).

This result can also be transposed in boundon the expected
cumulative regret. We consider that the algorithm continues
to play the last arm of the set until a reset occurs.

Corollary 3 (Expected cumulative regret ofSER4)For K ≥
2, and δ = 1/T , τmin = log(K T ), Δ ≥ 1

K T and ϕ =√
N

T K log(K T )
, the expected cumulative regret of SER4 w.r.t.

the randomization of resets is upper bounded by:

min

(

O

(√
N T K log(K T )

Δ

)

, O

(

T 2/3

√

N K log
T

K

))

.

(9)

The proof is given in “Proof of Corollary 3” of Appendix
2.

Remark 3 A similar dependency in
√

T Δ−1 appears also in
SW–UCB (see Theorem 1 in [8]) and is standard in this type
of results.

4.2 EXP3 with resets

SER4 and other algorithms from the state of the art [3,8,13]
use a passive approach through forgetting the past. In this
subsection, we propose an active strategy which consists in
resetting the reward estimations when a change of the best
arm is detected. A supposed advantage of this approach is
to let the algorithm converge on a longer time period, as
it is reset only when a switch is detected, and thus build a
more accurate estimate of the reward distributions. First, we
describe the adversarial bandit algorithm EXP3 [3], which
will be used by proposed algorithm EXP3.R between detec-
tions. We then describe the drift detector used to detect
changes of the best arm. Finally, we combine the both to
obtain EXP3.R algorithm.

Algorithm 3 EXP3
The parameter γ ∈ [0, 1] controls the exploration and the probability
to choose an action k at round t is:

pk(t) = (1 − γ )
wk(t)

∑k
i=1 wi (t)

+ γ

K
, (10)

where theweightwk(t)of each action k is computed from the unbiased
cumulative reward estimator X̂k(t):

wk(t) = exp(
γ

K
X̂k(t)), (11)

with

X̂k(t) =
t∑

j=tr

xk( j)

pk( j)
�k = k( j)�, (12)

where tr is the time-steps when the algorithm is initialized.

4.2.1 EXP3 algorithm

EXP3 algorithm (see Algorithm 3) minimizes the regret
against the best arm using an unbiased estimation of the
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cumulative reward at time t for computing the choice prob-
abilities of each action. While this policy can be viewed as
optimal in an actual adversarial setting, in many practical
cases the non-stationarity within a time period exists but is
weak and is only noticeable between different periods. If an
arm performs well in a long time period but is extremely bad
on the next period, EXP3 algorithm can need a number of
trial equal to the first period’s length to switch its most played
arm.

4.2.2 The detection test

The detection test (seeAlgorithm4) uses confidence intervals
to estimate the expected reward in the previous time period.
The action distribution in EXP3 is a mixture of uniform and
Gibbs distributions. We call γ -observation an observation
selected though the uniform distribution. Parameters γ , H
and δ define the minimal number of γ -observations by arm
needed to call a test of accuracy ε with a probability 1 − δ.
They will be fixed in the analysis (see Corollary 4), and the
correctness of the test is proven inLemma2.Wedenote μ̄k(I )
the empirical mean of the rewards acquired from the arm k
on the interval I using only γ -observations and Γmin(I) the
smallest number of γ -observations among each action on the
interval I . The detector is called only when Γmin(I ) ≥ γ H

K .
The detector raises an alert when the action kmax with the
highest empirical mean μ̂k(I − 1) on the interval I − 1 is
eliminated by an other on the current interval.

Algorithm 4 DriftDetection(I)
Parameters: Current interval I
kmax = argmax

k
μ̂k(I − 1)

ε =
√

K log( 1
δ
)

2γ H

return
�∃k, μ̂k(I ) − μ̂kmax (I ) ≥ 2ε

�

4.2.3 EXP3.R algorithm

Coupled with a detection test, EXP3 algorithm has several
advantages. First in a non-stationary environment, we need
a constant exploration to detect changes where a suboptimal
arm becomes optimal and this exploration is naturally given
by the algorithm. Second, the number of breakpoints is higher
than the number of best arm changes (M ≥ N ). This means
that the number of resets needed by EXP3 is lower than the
one needed by a stochastic bandit algorithm such as UCB.
Third, EXP3 is robust against test failures (non-detection) or
local non-stationarity.We call EXP3.R algorithmobtained by
combining EXP3 and the drift detector. First, one instance
of EXP3 is initialized and used to select actions. When the

count of γ H
K γ -observations per arm is fulfilled, the detection

test is called. If in the corresponding interval, the empirical
mean of an arm exceeds by 2ε the empirical mean of the
current best arm, then a drift detection is raised. In this case,
weights of EXP3 are reset. Then a new interval of collect
begins, preparing the next test. These steps are repeated until
the run ends (see Algorithm 5).

Algorithm 5 EXP3 with Resets
Parameters: Reals δ, γ and Integer H
I = 1
for each t = 1, . . . , T do
Run EXP3 on time step t
if Γmin(I ) ≥ γ H

K then
if Dri f t Detection(I ) then
Reset EXP3

end if
I = I + 1

end if
end for

4.2.4 Analysis

In this section we analyze the drift detector, and then, we
bound the expected regret of EXP3.R algorithm.

Assumption 2 (Accuracy of the drift detector) During each
of the segments S where k∗

S is the optimal arm, the gap
between k∗

S and any other arm is of at least 4ε with

ε =
√

K log( 1
δ
)

4γ H
. (13)

Lemma 2 guarantees that when Assumption 1 holds and
the interval I is included into the interval S, then, with high
probability, the test will raise a detection if and only if the
optimal action k∗

S eliminates a suboptimal action.

Lemma 2 (Arm switches are detected) When Assumption 2
holds and I ⊆ S, then, with a probability 1 − 2δ, for any
k 	= k∗

S:

μ̂k∗
S (I ) − μ̂k(I ) ≥ 2

√
K log( 1

δ
)

2γ H
⇔ μk∗

S (I ) ≥ μk(I ). (14)

The proof is given in “Proof of Lemma 2” of Appendix 2.
Theorem 4 bounds the expected cumulative regret of

EXP3.R.

Theorem 4 (Expected cumulative regret of EXP3.R) For
any K > 0, 0 < γ ≤ 1, 0 ≤ δ < 1

2 , H ≥ K and N ≥ 1
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when Assumption 2 holds, the expected cumulative regret of
EXP3.R is

G∗ − E[GEXP3.R] ≤ (e − 1)γ T

+
(
N − 1 + K δT

H + K δ
)

K log(K )

γ

+ (N − 1)H K

(
1

1 − 2δ
+ 1

)
. (15)

The proof is given in “Proof of Theorem 4” of Appendix
2.

In Corollary 4 we optimize parameters of the bound
obtained in Theorem 4.

Corollary 4 (Expected cumulative regret of EXP3.R) For
any K ≥ 1, T ≥ 10, N ≥ 1 and C ≥ 1 when Assumption
1 holds, the expected cumulative regret of EXP3.R run with
input parameters

δ =
√
log T

K T
, γ =

√
K log K log T

T
and H = C

√
T log T

(16)

is

G∗ − E[GEXP3.R]) ≤ (e − 1)
√

T K log K log T

+ N
√

T K log K

+ (C + 1)K
√

T log K

+ 3NC K
√

T log T . (17)

The proof is given in “Proof of Corollary 4” of Appendix
2.

According to C , the precision ε is:

ε =
√

1

2C

√√√√√
log
√

K T
log T

log T

√
K

log K
. (18)

Notice that, when T increases,

√
log
√

K T
log T

log T

√
K

log K tends

toward a constant.

5 Numerical experiments

We compare our algorithm with the state of the art. For
each problem, K = 20 and T = 107. The instantaneous
gap between the optimal arm and the others is constant,
Δ = 0.05, i.e., the mean of the optimal arm is μ∗(t) =

μ(t) + Δ. During all experiments, probabilities of failure of
Successive Elimination (SE), SER3 and SER4 are set
to δ = 0.05. Constant explorations of all algorithms of the
EXP3 family are set to γ = 0.05. Results are averaged over
50 runs. On problems 1 and 2 (Figs. 2 and 3), variances are
low (in the order of 103) and thus not showed. On problem
3 (Fig. 4), variances are plotted as the gray areas under the
curves.

5.1 Problem 1: sinusoidal means

The index of the optimal arm k∗ is drawn before the game
and does not change. The mean of all suboptimal arm is
μ(t) = cos(2π t/K )/5 + 0.5.

This problem challenges SER3 against SE, UCB and
EXP3. SER3 achieves a low cumulative regret, successfully
eliminating suboptimal arms at the beginning of the run. Con-
trarily,SE is trickedby the periodicity of the sinusoidalmeans
and eliminates the optimal arm. The deterministic policy of
UCB is not adapted to the non-stationarity of rewards, and
thus, the algorithm suffers from a high regret. The unbiased
estimators of EXP3 enable the algorithm to quickly converge
on the best arm. However, EXP3 suffers from a linear regret
due to its constant exploration until the end of the game.

5.2 Problem 2: decreasing means with positive gap

The optimal arm k∗ does not change during the game.
The mean of all suboptimal arms is μ(t) = 0.95 −
min(0.45, 10−7t).

On this problem, SER3 is challenged against SE, UCB
and EXP3. SER3 achieves a low cumulative regret, success-
fully eliminating suboptimal arms at the beginning of the
run. Contrarily to problem 1, mean rewards evolve slowly
and Successive Elimination (SE) achieves the same level
of performance than SER3. Similarly to problem 1, UCB
achieves a high cumulative regret. The cumulative regret of
EXP3 is low at the end of the game but would still increase
linearly with time.

5.3 Problem 3: decreasing means with arm switches

At every turn, the optimal arm k∗(t) changes with a prob-
ability of 10−6. In expectation, there are 10 switches by
run. The mean of all suboptimal arms is μ(t) = 0.95 −
min(0.45, 10−7(t[mod 106]).

On problem 3, SER4 is challenged against SW–UCB,
EXP3.S, EXP3.R and Meta- Eve. The probability of reset
of SER4 is ϕ = 5−5. The size of the window of SW–UCB
is 105. The historic considered by EXP3.R is H = 4 × 105,
and the regularization parameter of EXP3.S is α = 10−5.

SER4 obtains the lowest cumulative regret, confirming the
random resets approach to overcome switches of best arm.

123



Int J Data Sci Anal (2017) 3:267–283 277

SW–UCB suffers from the same issues as UCB in previous
problems and obtains a very high regret. Constant changes
of mean cause Meta- Eve to reset very frequently and to
obtain a lower regret than SW UCB. EXP3.S and EXP3.R

achieve both low regrets but EXP3.R suffers from the large
size of historic needed to detect switches with a gap ofΔ. We
can notice that the randomization of resets in SER4, while
allowing to achieve the best performances on this problem,
involves a highest variance. Indeed, on some runs, a reset
may occur lately after a best arm switch, whereas the use of
windows or regularization parameters will be more consis-
tent.

6 Conclusion

We proposed a new formulation of the multi-armed bandit
problem that generalize the stationary stochastic, piecewise-
stationary and adversarial bandit problems. This formulation
allows to manage difficult cases, where the means rewards
and/or the best arm may change at each turn of the game.
We studied the benefit of random shuffling in the design of
sequential elimination bandit algorithms.We showed that the
use of random shuffling extends their range of application
to a new class of best arm identification problems involv-
ing non-stationary distributions, while achieving the same
level of guarantees than SE with stationary distributions.
We introduced SER3 and extended it to the switching ban-
dit problem with SER4 by adding a probability of restarting
the best arm identification task. We extended the definition
of the sample complexity to include switching policies. Up
to our knowledge, we proved the first sample complexity-
based upper bound for the best arm identification problem
with arm switches. The upper bound over the cumulative
regret of SER4 depends only of the number N − 1 of arm
switches, as opposed to the number of distribution changes
M − 1 in SW–UCB (M ≥ N can be of order T in our set-
ting). Algorithm EXP3.R also achieves a competitive regret
bound. The adversarial nature of EXP3 makes it robust to
non-stationarity, and the detection test accelerates the switch
when the optimal arm changes while allowing convergence
of the bandit algorithm during periods where the best arm
does not change.
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Appendix 1: A summary of the contributions

We provide in Tables 2 and 3 a brief summary of the exist-
ing results regarding the performance of a few algorithms,
together with the contributions of this article, that are indi-
cated in bold.

In both tables, T is the time horizon, assumed to be known,
K is the number of arms, Δ is the gap, and δ is the proba-
bility of success of the algorithm. C is quantity similar to
the gap, described in Sect. 4.2.4. Finally, M is the number of
breakpoints (the mean reward of an arm changes) and N the
number of best arm switches.

Appendix 2: Technical results

Proof of Theorems 1 and 2

Proof Theorem 1 is a special case of Theorem 2. For Theo-
rem 1, for every k and every t , B = 0, Bk = 0 and bk(t) = 0.

The proof consists of threemain steps. Thefirst stepmakes
explicit the conditions leading to the elimination of an arm
from the set. The second step shows that the optimal armwill
not be eliminated with high probability. Finally, the third step
shows that a suboptimal arm will be eliminated after at most
a critical number of steps τ ∗, which then allows to derive an
upper bound on the sample complexity.

Step 1 Conditions for the elimination of an arm
From Hoeffding’s inequality, for any deterministic round-
robin length τ and arm k we have:

P
(|μ̂k − E[μ̂k]| ≥ ετ

) ≤ 2 exp
(
−2ε2τ τ

)
.

where E denotes the expectation with respect to the distribu-
tion Dy . By setting

εt =
√

1

2τ
log

(
4K τ 2

δ

)
, we have:

P
(|μ̂k − E[μ̂k(τ )]| ≥ εt

)

≤ 2 exp

⎛

⎝−2

√
1

2τ
log

(
4K τ 2

δ

)2

τ 2

⎞

⎠

= δ

2K τ 2
.

ApplyingHoeffding’s inequality for each round-robin size
τ ∈ N

�, applying a standard union bound and using that∑∞
τ=1 1/τ

2 = π2/6, the following inequality holds simulta-

neously for any τ with a probability at least 1 − δπ2

12K :

μ̂k(τ ) − ετ ≤ E[μ̂k] ≤ μ̂k(τ ) + ετ . (19)

Let Si ⊂ {1, . . . , K } be the set containing all the arms
that are not eliminated by the algorithm at the start of the
i th round-robin. By construction of the algorithm, an arm k′
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Table 2 Overview of the
different bandit algorithms for
policies with unique best arm

Algorithms Regret Sample complexity Non-stationarity

State of the art

UCB O
(
Δ−1K log(T )

)
X No

SE O
(
Δ−1K log(T K/Δ)

)
O
(
Δ−2K log(T K/Δ)

)
No

EXP3 O
(√

K T log K
)

X Yes

EXP3++ O(Δ−1K log3 T ) + Õ(Δ−3) X Yes

Our contribution

SER3 O
(
Δ−1K log(T K/Δ)

)
O
(
Δ−2K log(T K/Δ)

)
Yes

Table 3 Overview of the different bandit algorithms for policies with switching best arm

Algorithms Regret Sample complexity Non-stationarity between breakpoints

State of the art

SW–UCB O
(
Δ−1√MT log T

)
X No

EXP3.S O
(√

N K T log(K T )
)

X Yes

Our contributions

SER4 O
(
Δ−1

√
N K T log(K T )

)
O
(
Δ−2

√
N K δ−1 log(K δ−1)

)
Yes

EXP3.R O
(
3NC K

√
T K log T

)
X Yes

remains in the set of selected arms as long as for each arm
k ∈ Sτ − {k′}:

μ̂k(τ ) − ετ < μ̂k′(τ ) + ετ and τ ≥ τmin (20)

Combining (19) and the left inequality of (20), it holds on
an event Ω of high probability

E[μ̂k(τ )] − 2ετ < E[μ̂k′(τ )] + 2ετ . (21)

We denote tτ , the time-step where the τ th round-robin
starts (tτ = 1+∑τ−1

i=1 |Si |). Let us remind thatT(τ ) is the set
containing all possible realizations of τ sequences of round-
robin. Each arm k is played one time during each round-robin
phase, and thus, τ observations per arm are available after
τ th round-robin phases. The empirical mean reward μ̂k(τ )

of each arm k after the τ th round-robin is:

μ̂k(τ ) =
∑

r∈T(τ )

1�r=[τ ]�
τ

tτ +|Sτ |−1∑

j=1

yk( j)1�k=k j �. (22)

Decomposing the second sum in round-robin phases and
taking the expectation with respect to the reward distribution
Dy we have:

EDy [μ̂k(τ )]

=
∑

r∈T(τ )

�r = [τ ]�
τ

τ∑

i=1

ti +|Sτ |−1∑

j=ti

(μk( j) − bk(t))�k = k j �.

(23)

Taking the expectation of Eq. (23) with respect to the ran-
domization of the round-robin we have:

E[μ̂k(τ )] =
⎛

⎝
∑

r∈T(τ )

�r = [τ ]�
τ

τ∑

i=1

ti +|Sτ |−1∑

j=ti

μk( j)

|Si |

⎞

⎠− Bk

τ
.

(24)

Now, under the event Ω for which (21) holds for k and k′,
we deduce by using (24) that

∑

r∈T(τ )

�r = [τ ]�
τ

⎛

⎝
τ∑

i=1

ti +|Sτ |−1∑

j=ti

μk( j)

|Si | −
τ∑

i=1

ti +|Sτ |−1∑

j=ti

μk′( j)

|Si |

⎞

⎠

< 4ετ + Bk

τ
− Bk′

τ
+ B

τ
. (25)

Let us introduce the following mean-gap quantity

Δk,k′([τ ]) =
∑

r∈T(τ )

1�r=[τ ]�
τ

×
⎛

⎝
τ∑

i=1

ti +|Sτ |−1∑

j=ti

μk( j)

|Si | −
τ∑

i=1

ti +|Sτ |−1∑

j=ti

μk′( j)

|Si |

⎞

⎠.

Replacing the value of εt in (25), it comes

Δk,k′([τ ]) < 4

√
1

2τ
log

(
4K τ 2

δ

)
+ Bk

τ
− Bk′

τ
+ B

τ
,
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Δk,k′([τ ])2 <
8

τ
log

(
4K τ 2

δ

)
+ Bk

τ
− Bk′

τ
+ B

τ
. (26)

An arm will be eliminated if (26) becomes false and if
τ ≥ τmin.

Step 2 The optimal arm is not eliminated
For k′ = k∗ et k 	= k∗, in theworst case Bk = 0 and Bk′ = B.
After injecting those quantities in (26), we have:

Δk,k′([τ ])2 <
8

τ
log

(
4K τ 2

δ

)
. (27)

By assumption (Δk,k∗([τ ]) is negative after τmin), (27) is
always true when τ ≥ τmin,implying that the optimal arm
will always remain in the set with a probability of at least
1 − δ

K for all τ .

Step 3 The elimination of suboptimal arms
If the arm k′ still remains in the set, it will be eliminated if
inequality (26) is not satisfied and if τ ∗ ≥ τmin.

Let us consider k = k∗, k′ 	= k∗, and define the quantity

Δk([τ ]) =
∑

r∈T(τ )

1�r=[τ ]�
τ

×
⎛

⎝
τ∑

i=1

ti +|Sτ |−1∑

j=ti

μk( j)

|Si | −
τ∑

i=1

ti +|Sτ |−1∑

j=ti

μk′( j)

|Si |

⎞

⎠ .

In the worst case, Bk∗ = B et Bk = 0. Using equation
(26) we obtain the condition to invalidate to eliminate the
arm of index k:

Δk,k′([τ ])2 <
8

τ
log

(
4K τ 2

δ

)
+ 2B

τ
. (28)

Let us also introduce for convenience the critical value

τ ∗
1 = 642

Δk([τ ])2 log
(

16K

δΔk([τ ])
)

.

Notice that τ ∗
1 ≥ τmin, satisfying one of the two conditions

needed to eliminate an arm.
We introduce the following quantity

C1(t) = 8

τ
log

(
4K τ 2

δ

)
.

For τ = τ ∗
1 , we derive the following bound

C1(τ
∗
1 ) = 8Δk([τ ])2

642 log 16K
δΔk ([τ ])

×
(
log

4K

δ
+ 2 log

64

Δk([τ ])2

+2 log log
16K

δΔk([τ ])
)

,

= 8Δk([τ ])2
642 log 16K

δΔk ([τ ])

×
(
log

4K

δ
− 4 logΔk([τ ]) + 24 log 2

+2 log log
16K

δΔk([τ ])
)

,

≤ 8Δk([τ ])2
642 log 16K

δΔk ([τ ])

×
(
4 log

16K

δΔk([τ ]) + 24 log 2

+2 log log
16K

δΔk([τ ])
)

.

We remark that for X > 8 we have

24 log 2 + 2 log log X < 8 log X.

Hence, provided that for K ≥ 2, δ ∈ (0, 0.5] and
Δk([τ ]) > 0, we have 4K

δΔk ([τ ]) > 8 and

C1(τ
∗
1 ) ≤ 8Δk([τ ])2

642 log 16K
δΔk([τ ])

(
16 log

16K

δΔk([τ ])
)

≤ Δk([τ ])2
512

. (29)

As C1(τ
∗
1 ) is strictly decreasing with regard to t , (29) is

true for all τ > τ ∗
1 .

When t > τ ∗
1 , it exists C2(t) such as:

Δk([τ ])2 = C1(t) + C2(t).

For invalidating 28, we must find a value τ ∗
2 > τ ∗

1 such
as:

τ ∗
2 ≥ 4B

C2(t∗2 )
(30)

AsC2(τ ) = Δk([τ ])2−C1(τ ), we haveC2(τ ) ≥ Δk([τ ])2−
Δk ([τ ])2

512 and:

τ ≥ 2048B

511Δk([τ ])2

For τ = τ ∗
2 with:

τ ∗
2 = 642

Δk([τ ])2 log
(

16K

δΔk([τ ])
)

+ 5B

Δk([τ ]2) . (31)
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(30) is true, invalidating (28) and invalidating (26) and
involving the elimination of the suboptimal arms k with a
probability at least 1 − δ/K .

We conclude the proof by summing over all the arms,
taking the union bound and lower bounding all Δk([τ ]) by

Δ = min[τ ]∈T(τ ),k

∑

r∈T(τ )

�r = [τ ]�
τ

×
⎛

⎝
τ∑

i=1

ti +|Sτ |−1∑

j=ti

μk( j)

|Si | −
τ∑

i=1

ti +|Sτ |−1∑

j=ti

μk′( j)

|Si |

⎞

⎠ .

(32)

��

Proof of Corollary 1

Proof We first provide the proof of the distribution-
dependent upper bound.

The pseudocumulative regret of the algorithm is:

R(T ) =
∑

k 	=k∗

τ∑

i=1

ti +|Si |−1∑

t=ti

Δk∗,k(t)1�k=kt �. (33)

Taking in each round-robin the expectation of the corre-
sponding random variable kt with respect to the randomiza-
tion of the round-robin (denoted by Ekt ), it comes:

E[R(T )] = E

[ ∑

k 	=k∗

τ∑

i=1

ti +|Si |−1∑

t=ti

Ekt [Δk∗,k(t)1�k=kt �]
]

= E

[ ∑

k 	=k∗

τ∑

i=1

ti +|Si |−1∑

t=ti

Δk∗,k(t)

|Si |
]
.

E[R(T )] = E

[ ∑

k 	=k∗
τ
1

τ

τ∑

i=1

ti +|Si |−1∑

t=ti

Δk∗,k(t)

|Si |
︸ ︷︷ ︸

Δ∗
k

]

= E

[ ∑

k 	=k∗
τΔ∗

k

]
. (34)

The penultimate step of the proof of Theorem 1 allows
us to upper bound τ with the previously introduced critical
value τ ∗ on an event of high probability 1 − δ, while the
cumulative regret is controlled by the trivial upper bound T
on the complementary event of probability not higher than δ,
leading to:

E[R(T )] ≤
∑

k 	=k∗

64

Δ2
k

log

(
4K

δΔk

)
Δk + δT . (35)

We conclude the proof of the distribution-dependent upper
bound by setting δ = 1/T and:

E[R(T )] = O

(
K − 1

Δ
log

(
K T

Δ

))
, (36)

with Δ = min[τ ],k 1
τ

∑τ
i=1

∑ti +|Si |−1
t=ti

Δk∗,k(t)
|Si | .

We now upper bound the regret in the worst case in order
to derive a distribution-independent bound. To this end, we
consider a sequence that ensures that, with high probability,
no suboptimal arm is eliminated by the algorithm at the end
of the T rounds, while maximizing the instantaneous regret.
According to (21) an arm is not eliminated as long as

E[μ̂k(τ )] − E[μ̂k′(τ )] < 4ετ . (37)

By injecting (37) in (34) and replacing ετ by its value√
2
τ
log
(
4K τ 2

δ

)
we obtain:

E[R(T )] <
∑

k 	=k∗
τ4

√
2

τ
log

(
4K τ 2

δ

)
+ δT . (38)

The non-elimination of suboptimal arms involves τ = T
K ,

and by setting δ = 1
T , we obtain the distribution-independent

upper bound:

E[R(T )] < (K − 1)
T

K
4

√
K

T
log

(
4T 3

K

)
+ 1, (39)

E[R(T )] = O

(√

T K log
T

K

)

. (40)

��

Proof of Theorem 3

Proof In order to prove Theorem 3, we consider the follow-
ing quantities:

– The expected number of times when the estimators are
reseted: Nreset = ϕT .

– The sample complexity needed to find the best arm

between each reset is SSER3 = O
(

K
Δ2 log(

K
δΔ

)
)
.

– The time before a reset that follows a negative binomial
distribution of parameters r = 1 and p = 1 − ϕ. Its
expectation is upper bounded by 1/ϕ.

– The number of arm switches: N − 1.

The sample complexity of SER4 is the total number of
time-steps spent sampling an arm added to the time between
each switch and reset.
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Taking the expectation with respect to the randomization
of resets, we obtain an upper bound on the expected number
of suboptimal plays given by

O

(
ϕT K

Δ2 log

(
K

δΔ

)
+ N

ϕ

)
. (41)

The first term is the expectation of the total number of
time-steps required by the algorithm in order to find the best
arms at its initialization and then after each reset of the algo-
rithm. The second term is the expected total number of steps
lost by the algorithm when not resetting the algorithm after
the N − 1 arm switches.

Weobtain the final statement of theoremby setting T = 1
δ
.

��

Proof of Corollary 3

Proof Converting Corollary 2 into a distribution-dependent
upper bound on the cumulative regret is straightforward by
setting δ = 1

T , replacing the sample complexity in the proof
of Theorem 3 by the cumulative regret and using the upper
bound of Corollary 1.

E[R(T )] = O

(
ϕT K

Δ
log

(
K T

Δ

)
+ N

ϕ

)
. (42)

Setting ϕ =
√

N
T K log(K T )

and assuming Δ ≥ 1
K T we

obtain the final statement of theorem:

E[R(T )] = O

(√
N T K log(K T )

Δ

)

. (43)

We also derive a distribution-independent upper bound.
We introduce some notations, Nreset is the number of resets,
τ reseti is the number of round-robin phases between the i th
and the (i + 1)th resets and Ln is the number of time-steps
before a reset after the nth arm switch.

When the resets are fixed, the expected cumulative regret
is:

E[R(T )] < E

[
Nreset+1∑

i=1

(K − 1)τ reseti 4

√
2

τ reseti

log

(
4(τ reseti )2

δ

)

+
N∑

n=1

Ln + δT

]

, (44)

E[R(T )] < E

⎡

⎢⎢⎢⎢⎢
⎣

Nreset+1∑

i=1

(K − 1)4

√

2τ reseti log

(
4(τ reseti )2

δ

)

︸ ︷︷ ︸
f (τ reseti )

⎤

⎥⎥⎥⎥⎥
⎦

+E

[ N∑

n=1

Ln

]
+ δT . (45)

At this point, we note that {τ reseti }i is an i.i.d sequence
of random variables and that Nreset is a random stopping
time with respect to this sequence. Moreover, f is a concave
function. We can thus apply Wald’s equation followed by
Jensen’s inequality and deduce that

E

[
Nreset+1∑

i=1

f (τ reseti )

]

≤ E[Nreset + 1]E[ f (τ reset1 )]

≤ E[Nreset + 1] f (E[τ reset1 ]).

We upper bound log(
4(τ reseti )2

δ
) by log( 4T 2

δK 2 ) and set δ = 1
T .

AsE[Nreset] = ϕT ,E[τ reset1 ] = 1
ϕK andE[Ln] ≤ 1

ϕ
, we have

E[R(T )] < 4(ϕT + 1)

√
2

ϕ
K log

(
4T 3

K 2

)
+ N

ϕ
+ 1. (46)

The previous equation makes appear a trade-off in ϕ, and

we set ϕ =
√

N
T 2/3 .

Finally we have shown that

E[R(T )] = O

(

T 2/3

√

N K log
T

K

)

. (47)

��

Proof of Lemma 2

Proof We justify our detection test by considering an obser-
vation of a reward through γ -exploration as a drawing in
an urn without replacement. More specifically, when all the
necessary observations are collected, the detection test pro-
cedure is called. During the interval, rewards were drawn
from m different distributions of mean μk

0(I ), . . . , μk
m(I ) .

We denote ti the steps where the mean reward starts being
μk

i (I ) and tm+1 the time-step of the call. When the test is
called, all xk(t) have a probability (ti+1 − ti )/(tm+1 − t0)
to be drawn from the distribution of mean μk

i (I ). The mean
μk(I ) of the urn corresponding to the action k is:

μk(I ) =
m∑

i=1

ti+1 − ti
tm+1 − t0

μk
i (I ). (48)

At each time-step, by assumption , the mean reward of the
best arm is away by 4ε from any suboptimal arms. Conse-
quently, the difference between the mean reward of the urn
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of the optimal arm k∗ and that of an another arm k is at least
4ε if the best arm does not change during the interval.

μk(I ) ≤
m∑

i=1

ti+1 − ti
tm+1 − t0

(μ
k∗

S
i − 4ε) ≤ μk∗

S (I ) − 4ε. (49)

The following arguments prove the equivalence between
the detection and the optimality of k∗

S with high probability.
Applying the Serfling inequality [16], we have:

P(μ̂k∗
S (I ) + ε ≥ μk∗

S (I )) ≤ e
−2nε2

1− n−1
U ≤ e−2nε2 = δ (50)

and

P(μ̂k(I ) − ε ≤ μk(I )) ≤ δ, (51)

where n = γ H
K is the number of observation and U the size

of the urn.

μk∗
S (I ) − μk(I ) ≥ 4ε (52)

and with probability at least 1 − 2δ,

μ̂k∗
S (I ) + ε ≥ μk∗

S (I ) (53)

and

μ̂k(I ) − ε ≤ μk(I ) (54)

Summing (52), (53) and (54) we obtain:

μ̂k∗
S (I ) − μ̂k(I ) ≥ 2ε? (55)

This ensures, with high probability, a positive test if μ̂kmax is
not the optimal arm.

Reciprocally, we also have

μ̂k(I ) − μ̂k∗
S (I ) ≤ −2ε. (56)

ensuring, with high probability, a negative test if μ̂kmax is the
optimal arm. ��

Proof of Theorem 4

Proof First we obtain the main structure of the bound. In the
following, L(T ) denotes the expected number of intervals
after a best action change occurs before detection and F(T )

denotes the expected number of false detections up to time T .
Using the same arguments as [18] we deduce the form of the
bound with drift detector from the classical EXP3 bound. If
there are N−1 changes of best arm.Therefore the expectation
of the number of resets over an horizon T is upper bounded

by N − 1 + F(T ). The regret of EXP3 on these periods is
(e − 1)γ T + K log K

γ
[3]. While our optimal policy plays the

armwith the highest mean, the optimal policy of EXP3 plays
the arm associatedwith the actual highest cumulative reward.
As

TS+1−1∑

t=TS

xk∗
S
(t) ≤ max

k

TS+1−1∑

t=TS

xk(t), (57)

the gain of our optimal policy is upper bounded by the gain
EXP3 optimal policy. Summing over each periods we obtain
(e − 1)γ T + (N−1+F(T ))K log K

γ
.

The regret also includes the delay between a best arm
change and its detection. To evaluate the expected size of the
intervals between each call of the detection test, we consider
an hypothetical algorithm that collects only the observations
of one arm and then proceeds on the next arm until collect-
ing all the observations. The γ -observation is drawn with a
probability γ

K , and γ H
K observations are needed per action.

The expectation of the number of failures before collecting
γ H
K γ -observations follows a negative binomial distribution
of expectation

γ H

K

(
1 − γ

K

) K

γ
= H − γ H

K
. (58)

The expectation of the number of steps at the end of the
collect is the number of success plus the expected number of
failures:

γ H

K
+ H − γ H

K
= H. (59)

Summing over all arms gives a total expectation of H K .
Because our algorithm collects γ -observations from any arm
at any step, on a same sequence of drawings, our algorithm
will collect the required observations before the hypotheti-
cal algorithm. By consequence, the expectation of the time
between each query of the detection test is upper bounded
by H K and lower bounded by H , the expected time of col-
lect for one arm. There are N − 1 best action changes, and
the detections occur at most �L(T )�H K time-steps after the
drifts. Finally, there are also at most N − 1 intervals where
the optimal arm switches. In these intervals we do not have
any guarantee on the test behavior due to this change. In the
worst case, the test does not detect the drift and we set the
instantaneous regret to 1.

G∗ − E[GEXP3.R] ≤ (e − 1)γ T

+ (N − 1 + F(T ))K log K

γ
+(N − 1)H K (�L(T )�+1).

(60)
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We now bound F(T ) and L(T ). Confidence intervals hold
with probability 1 − δ, and they are used K times at each
detection test. The maximal number of calls of the test up to
time horizon T is T

H + 1. Using the union bound we deduce
F(T ) ≤ K δ( T

H + 1). L(T ) is the first occurrence of the
event detection after a drift. When a drift occurs, Lemma 2
ensures the detection happens with a probability 1− 2δ. We
have L(T ) ≤ 1

1−2δ .

G∗ − E[GEXP3.R] ≤ (e − 1)γ T

+
(
N − 1 + K δT

H + K δ
)

K log K

γ

+ (N − 1)H K

(
1

1 − 2δ
+ 1

)
. (61)

��

Proof of Corollary 4

Proof We set δ =
√

log T
K T and H = C

√
T log T in Theo-

rem 4

G∗ − E[GEXP3.R] ≤ (e − 1)γ T

+ (N − 1 + (C + 1)
√

K )K log K

γ

+ 3(N − 1)C K
√

T log T . (62)

Finally, setting γ =
√

K log K log T
T we obtain:

G∗ − E[GEXP3.R] ≤ (e − 1)
√

T K log K log T

+ N
√

T K log K + (C + 1)K
√

T log K

+ 3NC K
√

T log T . (63)
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