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Abstract This paper aims to unify image re-ranking and
rank aggregation strategies to enhance the retrieval precision
of content-based image retrieval (CBIR) systems. In gen-
eral, CBIR systems are concerned with the retrieval of a set
of relevant images from large repositories in response to a
submitted query. The primary objective of CBIR systems is
the exact ordering of database images in accordance with
the presented query. To this end, we present a novel image
re-ranking scheme for reordering the initial search results
returned by multiple retrieval models and an efficient rank
list fusion scheme to combine these refined retrieval results to
achieve better performance. The re-ranking algorithm intro-
duced in this work utilizes distance correlation coefficient to
refine the search result generated by a given retrieval model.
It involves two-step clustering of the initial retrieval list fol-
lowed by an adaptive procedure for updating the similarity
scores among images based on the created clusters. Simi-
larly, the Particle SwarmOptimization-based similarity score
fusion framework presented in this work optimally combines
the retrieval results generated bymultipleCBIR systems. The
proposed approach is evaluated on various retrieval tasks
using state-of-the-art low-level and high-level descriptors.
Experimental results show that our model can significantly
enhance the overall effectiveness of CBIR systems.
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1 Introduction

Nowadays, the size of digital image repositories is growing
in an exponential fashion due to the advances in data storage
technologies and image capturing devices. This necessitates
the design of automated models which effectively manages
these large-scale image collections. Content-based image
retrieval (CBIR) has emerged as a widely accepted solution
to tackle this issue and it helps to organize and search digital
image collections by means of their content. The notion of
content either refers to visual properties (e.g., color, texture,
shape etc.) or semantic information (e.g., objects present in
the scene) associated with images. A ranked list of desired
images is returned based on the similarity between the con-
tent description of the given query and the images already
present in the database. In general, a ranking function will
do the trick and the relative ordering of images in the final
list indicate their degrees of relevance to the given query.
However, it should be noted that certain image representation
schemes and distancemeasures are appropriate only for some
image datasets and less suitable for the rest. In other words,
none of these image representation schemes and distance
measures perform consistently well in all circumstances.

Recently, many post-retrieval optimization frameworks
have been proposed to refine the final rankings returned by
CBIR systems. These rank list optimization techniques can
be grouped into three main categories: (i) approaches based
on relevance feedback (RF) [1–6], (ii) fusion models [7–9]
and (iii) re-ranking methods [10–15]. Relevance feedback
incorporates user judgements in the retrieval process. It pro-
vides the opportunity for users to evaluate retrieval results
and then automatically refine the query or similarity mea-
sure on the basis of those evaluations. Conversely, fusion
models either use an aggregated feature descriptor or merge
the retrieval list generated by multiple feature descriptors to
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generate a consensus ranking. On the other hand, image re-
ranking methods attempt to improve retrieval precision by
reordering images based on the initial search results and cer-
tain auxiliary information.

RF is an online learning strategy that generates enhanced
retrieval results based on the feedback fromend-users regard-
ing the relevance of images present in the originally induced
ranking. The primary objective of RF is to learn the needs and
preferences of end-users. To do so, the quality of the search
result for a given query is judged by marking the retrieved
images as being either relevant or not. Then, CBIR systems
exploit this information to improve the retrieval result and
a revised ordering of images is presented back to the user.
This process continues until there is no further improve-
ment in the result or the user is satisfied with the new result.
In recent years, wide varieties of RF algorithms have been
developed and in general these relevance feedback schemes
are classified into twodifferent classes: (i) querymodification
approaches and (ii) methods based on ranking function alter-
ation. The most practiced techniques for query modification
are Query PointMovement (QPM) [1] andQuery EXpansion
(QEX) [16]. However, global optimal results are not easily
obtained with QPM- and QEX-based strategies. In contrast
to querymodification approaches, the second category of rel-
evance feedback schemes modifies the ranking function by
means of weighting strategies [17] or learning models [18].
In spite of their improved performance in image retrieval,
feedback approaches based on ranking function alteration
have many practical limitations. First, they rely on human
judgements and one has to often go through several feed-
back iterations to achieve a better result. In practice, this is
time consuming and computationally complex. Second, user
has to invest extra effort in judging the relevance of images
returned by the CBIR system.

The above-mentioned limitations motivated the develop-
ment of unsupervised strategies in which the goodness, of
multiple feature descriptors or their retrieval results, is com-
bined during query time for better retrieval efficiency. One
of the widely accepted solutions toward this direction is the
fusion model, and it generally falls into two main categories
namely early fusion and late fusion approaches [19]. In early
fusion, multiple image descriptors are composed to form a
single feature vector before indexing starts and the similar-
ity between images is measured in terms of this aggregated
feature. On the other hand, approaches based on late fusion
are further split into two major groups: (i) similarity score-
based rank list fusion and (ii) order based rank list fusion. In
similarity score-based rank list fusion, the similarity scores
of distinct image descriptors are merged by means of an
aggregation function to form the final search result. The
aggregation function exploits the knowledge derived from
multiple rank lists for computing a more accurate ordering
of images. Alternatively, order-based rank list fusion models

provide a revised retrieval result as a function of the position
in which images appear in different rank lists. Since the fea-
ture characteristics and algorithmic procedures of individual
methods are entirely different, feature level fusion is highly
challenging. Therefore, late fusion tends to be more robust
and gives better performance in terms of precision for the
retrieval operation as compared to early fusion techniques.

Another widely accepted solution which enhances the
retrieval effectiveness without much human intervention is
image re-ranking. It is basically a post-processing analysis in
which the similarity between images is recalculated with the
help of an initial ranking list and some auxiliary information.
In general, auxiliary information can be anything that helps
the ranking function to refine the original retrieval list and is
derived from the initial retrieval list in a completely unsuper-
visedmanner. This, in turn, improves the retrieval precision to
a large extend. In past fewyears, considerable research efforts
have been devoted toward the design of efficient image re-
ranking algorithms. Based on how the auxiliary information
is extracted from the initial ranked list, the re-ranking meth-
ods can be further classified into the following categories:
clustering-based re-ranking [10,20], pseudo-relevance feed-
back (PRF) [21–24] and graph-based approaches [25–27].
All these approaches will be discussed in more detail later in
this paper.

To summarize, lots of efforts have beenmade in the past to
devise a variety of re-ranking and rank aggregation methods.
Even though some promising results have been obtainedwith
these formulations, there is still scope for future research to
improve their retrieval precision.Moreover,most of the exist-
ing formulations disregard the possibility of combining the
advantages of these two methods for the retrieval task. To
this end, novel approaches for image re-ranking and rank
aggregation are proposed. Further, the feasibility of combin-
ing re-ranking and rank aggregation methods to obtain more
accurate retrieval results is also explored. The formulated
model works in the following fashion. First, the newly intro-
duced image re-ranking algorithm is applied separately to
the retrieval list returned by state-of-the-art image descrip-
tors and then these refined lists are combined by the proposed
rank aggregation algorithm. The main contributions of this
paper are:

1. Adistance correlation coefficient-based image re-ranking
scheme to update the retrieval list generated by a given
CBIR system.

2. A Particle Swarm Optimization-based rank aggregation
framework to aggregate the retrieval list generated by
multiple CBIR systems.

3. An approach for combining the results of re-ranking and
rank aggregation aiming at improving the effectiveness
of CBIR systems.
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The remainder of this paper is organized as follows.
Sect. 2 summarizes the related works in re-ranking and rank
aggregation-based image retrieval. Section 3 will introduce
the notations and definitions used in this paper. The pro-
posed image re-ranking scheme is described in Sect. 4. The
formulation of the PSO-based rank list fusion framework is
explained in Sect. 5. The combination strategy for integrating
the results of the proposed re-ranking and rank aggregation
algorithms is discussed in Sect. 6. The experimental evalu-
ation of the proposed image re-ranking and rank list fusion
algorithms are presented in Sect. 7. Section 8 enumerates the
research outcome and also outlines the directions for future
research.

2 Prior work

This section summarizes the state-of-the-art research in
image retrieval using re-ranking and rank aggregation-based
strategies. In Sect. 2.1, the existing approaches for image re-
ranking are discussed in detail and Sect. 2.2 outlines various
rank list fusion methods.

2.1 Image re-ranking

A comprehensive review of various image re-ranking tech-
niques such as pseudo-relevance feedback, graph-based and
clustering-based approaches are provided in this section.
Pseudo-relevance feedbackbased re-ranking is entirely based
on the assumption that only the top-ranked images in the
retrieval list are considered as relevant to the given query.
These top-ranked images are termed as pseudo-relevant. This
is in contrast to RF-based rank list refinement where users
explicitly provide feedback by labeling the results as rele-
vant or irrelevant. Then these pseudo-relevant images can
be either used to train a statistical model by which images
in the original retrieval list can be re-arranged according
to the confidence scores yielded by the learned model or
provided as feedback to the retrieval system for query re-
formulation. It should be noted that the pseudo-relevance
assumption still preserves the unsupervised nature of the re-
ranking process. To this end, Shen et al. [14] proposed k-NN
re-ranking which automatically refines the initial rank list
using the k-nearest neighbors of the given query. Alterna-
tively, Qin et al. [28] take advantage of k-reciprocal nearest
neighbors to identify the set of relevant images for re-ranking.
However, themain limitation of this approach is how to select
the pseudo-relevant images from the initial ranked list and
how to efficiently employ these images for the re-ranking
task.

More recently, graph-based approaches for image re-
ranking are gaining increasing popularity. In graph-based
re-ranking, a similarity graph G = (V, E) is constructed

over the initial retrieval list with each node v ∈ V corre-
sponds to an image in the data set and an edge e ∈ E denotes
the similarity among images. The graphG is created in such a
way that visually similar images are neighbors inG and their
similarity scores are close to each other. Then, the technique
of link analysis can be employed to find out the contextual
patterns embedded in G to re-order the original retrieval list.
Jing et al. [29] applied PageRank algorithm on image sim-
ilarity graph to re-arrange the initial retrieval list. They use
the stationary probability of the randomwalk as an improved
similarity score for the re-ranking operation. In a similar fash-
ion, Hsu et al. [11] proposed the notion of context graph and
employed random walk along this newly formulated con-
text graph to re-rank the initial search result of large-scale
product image dataset. On the contrary, Tian et al. [13] for-
mulated re-ranking as a global optimization problem within
a Bayesian framework. That is, they modeled the re-ranking
problem from the probabilistic perspective and derived an
optimal re-ranking function based on Bayesian analysis.

On the other hand, clustering-based image re-ranking
algorithms relies on the fact that an initial retrieval list
can be further partitioned into relevant and irrelevant ones
using appropriate clustering algorithms. After this prelimi-
nary grouping, images in the cluster that are similar to the
given query are placed on top of the retrieval list to enhance
the retrieval precision. In this direction, Park et al. [10]
employed Hierarchical Agglomerative Clustering (HAC) to
analyze the initial retrieval list and the ordering of images in
individual group are adjusted in accordance with the distance
of the query image to the resulting clusters. However, the
clustering-based approaches have the following limitation:
(i) how to perform clustering in the initial ranked list and (ii)
how to rank the clusters and images within each cluster.

To overcome these limitations, several advanced strate-
gies have been proposed and the most notable among them
is image correlation-based re-ranking techniques. The tra-
ditional re-ranking methods only consider pairwise image
similarity, and they completely ignore the correlation among
images in the whole dataset. However, correlation-based
approaches aims to improve the retrieval effectiveness by
replacing the pairwise image similarity calculation using
global affinity measures which incorporate the correspon-
dence among all the images in the database. In this regard,
graph transduction [30], diffusion process [31], affinity learn-
ing [32] and context-based algorithms [15,33,34] have been
introduced. Among all these approaches, context-based re-
ranking is more prominent and it requires special attention.

While judging image similarity, context-based re-ranking
algorithms integrate various sources of supplementary infor-
mation. Initially, Pedronette and Torres [33] proposed Dis-
tance Optimization Algorithm (DOA) for image re-ranking.
It is basically an iterative clustering approach based on the
distance correlation measure. In essence, DOA exploits the
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fact that if two images are similar their distances to the rest of
the images in the dataset and the corresponding retrieval lists
when these two images supplied as query should be identi-
cal. Later on, RL-Sim algorithm is introduced by Pedronette
and Torres [15] for image re-ranking. It is basically an itera-
tive approach where the distance between images is updated
in each step based on the similarity of the retrieval lists of
the database images. More recently, Pedronette et al. [34]
developed Reciprocal K-NN Graphs Based Manifold Learn-
ing (RKNN-ML) algorithm for image re-ranking. In their
approach, the affinity between ranked lists of database images
is encoded in the form of k-reciprocal neighborhood graph
and manifold learning is further used to update the similarity
between images.

The re-ranking algorithm proposed in this paper incorpo-
rates contextual information for reordering an initial retrieval
list. The contextual information is encoded in the form of dis-
tance correlation coefficient. The correspondence between
two images is determined on the basis of their similarity
scores to the rest of the images in the database. Distance
correlation coefficient is a numerical measure to character-
ize the strength of the correspondence of similarity scores
between images. Therefore, distance correlation coefficient-
based image re-ranking scheme updates the similarity score
between images in an adaptive fashion by considering the
correlation statistics. The proposed algorithm has another
important advantage that it performs equallywell in low-level
and high-level descriptor-based image retrieval systems.

2.2 Rank list fusion

The objective of rank list fusion is the aggregation of outputs
from different but complementary retrieval models to gen-
erate a more comprehensive retrieval result. In conventional
CBIR systems, the search result is generated based on the
similarity score computed from a single feature descriptor.
On the contrary, in rank list fusion, an integrated ordering of
the search results from multiple retrieval models is accom-
plished bymeans of a fusion algorithm. Generally, the fusion
algorithm is designed in such a way that optimizes the over-
all retrieval performance. The fusion algorithms mainly use
the following information to get a consensus ranking: (i) the
rank positions assigned to images in individual retrieval list
or (ii) the similarity scores of the database images returned
by different models.

Rank position-based fusion makes use of order informa-
tion of images from various retrieval lists to realize rank
list aggregation. Early efforts in order-based rank list fusion
completely depend on heuristic algorithms. For example, the
Borda Count (BC) method [35] in which images with the
highest rank on each retrieval list gets n votes, where n is
the size of the image collection. Each subsequent rank posi-
tion gets one vote less than the previous. The votes across

multiple rank lists are then summed up, sorted and presented
as the final aggregated list. In contrast to this, the Recipro-
cal Rank Fusion (RRF) [9] scheme employs the mean of the
harmonic means of the ranking information across different
models to generate the final result. Nowadays, probabilistic
models on permutations, such as the Mallows model [36]
and the Plackett–Luce model [37], have been widely used to
solve the problem of order-based rank list fusion. Most of
these approaches rely on a probability distribution built over
the space of different rankings of images to get an enhanced
retrieval result. Another good practice is the use of Kemeny
Optimal Aggregation (KOA) [7] which tries to optimize
the average Kendall–Tau distance between the fused result
and the original retrieval lists. Kendall–Tau distance counts
the pairwise disagreements between two retrieval lists. In
practice, position-based rank aggregation methods are com-
putationally efficient, but retrieval precision of a desired level
is not achieved by any of these models. Therefore, we focus
on similarity score-based aggregation in this paper.

Similarity score-based fusion follows a different strategy
to combine the search results returned by different retrieval
models. An earliest attempt toward direction is the Markov
chain-based approaches. Here, images belongs to various
rank lists are represented by the nodes of a directed graph and
the transition probabilities among these nodes are defined in
terms of the relative ranking of images in various retrieval
lists. Then, a fused ranking is obtained by computing a
stationary distribution on the Markov chain. Dwork et al.
[7] proposed several Markov chain-based methods for rank
aggregation, namely, MC1, MC2, MC3, and MC4. These
methods differ from each other in the way the transition
probabilities are calculated. It should be noted that all these
models perform reasonablywell for rank lists of varying size.

Later on, graph fusion techniques [26,27] have been
widely adopted for similarity score-based rank list fusion.
In graph-based fusion, the search results from individual
retrieval models are formally represented with a graphical
structure known as image graph. In general, an image graph
is a weighted undirected graph where each node represents
an image and the edges encode the similarity or affinity
between images. For each retrieval model, an image graph
centered on the query is constructed whose remaining ver-
tices correspond to the images in the retrieval list. Edges are
included in the graph based on the pairwise affinity between
images. Finally, these multiple image graphs are merged to
form a single one and an efficient ordering of the candidate
images is obtained with the use of graph-based ranking algo-
rithms. Wang et al. [26] formulated the task of rank fusion as
an optimization problem involving normalized graph Lapla-
cian regularization term. An iterative optimization procedure
known as manifold ranking is then used to estimate rele-
vance score of all the images in the dataset. Zhang et al. [27]
calculated the edge weights of image graphs by means of
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Jaccard similarity coefficient and multiple image graphs are
then fused by simply accumulating the edge weights and link
analysis is performed to get the final ordering of the candidate
images.

More recently, numerous unweighed and weighted rank
list fusion models have been introduced. For instance, Fox
and Shaw [38] introduced a family of unweighed combina-
tion strategies for rank list fusion such as CombSUM, Comb-
MIN, CombMAX, CombANZ and CombMNZ. CombSUM
arrange images based on the sum of the similarity scores
of the individual models, while CombMIN and Comb-
MAX strategies consider the maximum andminimum scores
secured by individual images for preparing the final ranking.
Conversely, the fused similarity in CombMNZ is derived as
the sum of the scores generated by individual model (i.e.,
CombSUM)multiplied by the total number of retrieval mod-
els. CombANZ is similar to CombMNZ except that, instead
of multiplying, we divide CombSUM by the total number of
retrieval models.

In contrast to the above-mentioned approaches, Jain and
Vailaya [39] introduced aweighted combination of the shape-
and color-based image descriptors for the construction of an
improved rank list. Later on, a detailed analysis of various
similarity score-based rank list fusion schemes is reported
by Depeursinge and Muller [40]. They established the fact
that if reasonable weights, for similarity scores arrived at
with different retrieval frameworks, have been obtained, then
weighted model is the best method for all situations. How-
ever, most of the existing rank list fusion algorithms give
equal weights to the similarity scores returned by the con-
stituent models. This assumption does not always hold true.
In practice, for a given query, the retrieval list generated by
a particular model is sometimes found to be superior than
the rest. In other words, the significance of each retrieval
list is query specific. Hence, it is not reasonable to equally
rate the ranking lists generated by multiple retrieval models.
Weighted adaptive fusionmodels, where the similarity scores
returned by different retrieval models are assigned different
weights basedon thegivenquery can somehowovercome this
issue. In this paper, we analyze the retrieval results generated
bydifferentmodels in response to the submitted query to infer
reasonable fusion weights for the corresponding similarity
scores. To find a preferred solution, an optimization problem
is formulated and is resolved using a PSO-based algorithm.

3 Notations and definitions

The basic notations used throughout this paper and the for-
mal definitions of image re-ranking and rank aggregation
problems are provided in this section.

LetC = {I1, I2, . . . , In} be the collection of images in the
given dataset and f ∈ R

d be the feature descriptor used to

characterize individual images in C. Let S : f × f → R

denote the similarity function used to measure the corre-
spondence between images in C. Then, the similarity scores
S(I j , Ik) among all pairs of images (I j , Ik) ∈ C yield a simi-
larity matrix Sn×n and is finally used to generate a ranked list
of images Rq in response to a given query Iq . The retrieval
list Rq can be viewed as a permutation of the images in the
datasetCwhere an image I j is placed on top of another image
Ik if and only if S(Iq , I j ) < S(Iq , Ik).

With this basic introduction, an image re-ranking proce-
dure can be formally defined as a function Ψ (·) that accepts
as input the initial similaritymatrix Sinit of the retrievalmodel
under consideration and provides a more reasonable similar-
ity matrix Snew as follows:

Snew = Ψ (Sinit) (1)

A refined retrieval list is then obtained with this new sim-
ilarity matrix Snew. In practice, the re-ranking function Ψ (·)
exploits certain auxiliary information along with the initial
similarity matrix Sinit to infer a more effective similarity
matrix Snew.

Let F = { f1, f2, . . . , fm} be the set of m image
descriptors for the given image collection C and Ω =
{S1, S2, . . . , Sm} be the corresponding similarity matrices,
then for a given query Iq , a rank aggregation function Φ(·)
unifies these similarity matrices to form an aggregated simi-
larity matrix Sagg as stated below:

Sagg = Φ(Ω) (2)

The aggregation function Φ(·) is defined as Φ : S1 ×
S2 × · · · Sm → Sagg where Sagg is the unified similarity
matrix of the dataset C for the given query Iq . Finally, the
retrieval system returns a better search result on the basis of
the aggregated similarity matrix Sagg.

4 Distance correlation coefficient-based image
re-ranking

The proposed image re-ranking scheme relies on the fact that
retrieval effectiveness of CBIR systems can be considerably
enhanced by exploiting the contextual information hidden in
the similarity matrix. In general, to compute the similarity
scores among images, only pairwise analysis is performed
and inmost cases the relationship among all the images in the
database is completely ignored. The distance optimization
algorithm (DOA) proposed by Pedronette and Torres [33]
update the distance between images based on the correlation
of the similarity scores of their nearest neighbors. In practice,
DOA updates the similarity scores among images based on
the correspondence of their ranked lists. For this, an iterative

123



58 Int J Data Sci Anal (2017) 4:53–81

Algorithm 1 Distance correlation coefficient-based image
re-ranking scheme
Input: The query image Iq , the initial retrieval list Rq and the corre-
sponding similarity matrix Sinit , cluster size K
1: Initialize P1 = [Iq ]; P2 = [φ];Cl1 = [φ];Cl2 = [φ];Cl3 = [φ];
2: for all Id ∈ C do
3: if dCor(Iq , Id ) ≥ θ then
4: P1 = [P1 | Id ]
5: else
6: P2 = [P2 | Id ]
7: end if
8: end for
9: for all Ir ∈ Rq do
10: if Ir ∈ P1 then
11: Cl1 = [Cl1 | Ir ]
12: else if (Ir ∈ P2) AND (r < K ) then
13: Cl2 = [Cl2 | Ir ]
14: else
15: Cl3 = [Cl3 | Ir ]
16: end if
17: end for
18: for all (I j , Ik) ∈ Cl1 do
19: Snew(I j , Ik) = dCor(I j , Ik) ∗ Sinit (I j , Ik)
20: end for
21: for all (I j , Ik) ∈ Cl2 do

22: Snew(I j , Ik) =
(
1 + 1

1−dCor(I j ,Ik ))

)
∗ Sinit (I j , Ik)

23: end for
24: for all (I j , Ik) ∈ Cl3 do
25: Snew(I j , Ik) = 1

dCor(I j ,Ik )
∗ Sinit (I j , Ik)

26: end for
27: return Snew

clustering approach is employed where the correspondence
of retrieval lists is measured in terms of Pearson’s correlation
coefficient.

The proposed image re-ranking scheme is inspired from
DOA with the following modifications. Primarily, the cor-
respondence of the similarity score distribution of any two
images is measured in terms of the distance correlation
coefficient. Secondly and most importantly, it requires one
pass clustering rather than multiple iterations to update the
similarity scores. The update operation is performed in an
adaptive manner using the distance correlation coefficient.

The proposed image re-ranking scheme involves two clus-
tering steps and a query-dependent update procedure for
modifying the similarity score as depicted in Algorithm 1.
The first clustering step is single pass in nature, and it splits
the database images into two disjoint partitions (steps 1, 2 of
Algorithm 1). For this, distance correlation-based statistics
is employed. The set of images that are more similar to the
given query are placed into the first partition and the rest of
the images are placed into the second partition. The second
clustering step is also a one-pass approach, and it groups the
images in the retrieval list into three clusters based on the
partitions created in the previous step (steps 1, 2 of Algo-
rithm 1). Then, update rules are defined for improving the
similarity score and hence to perform the re-ranking opera-

tion (steps 1, 2 of Algorithm 1). In summary, the proposed
image re-ranking scheme involves the following steps:

1. Partitioning the database images into twodisjoint subsets.
2. Adaptively updating the similarity score.

Before explaining these two steps in detail, we introduce
the notion of distance correlation coefficient in the coming
section.

4.1 Distance correlation coefficient

The proposed distance correlation coefficient-based image
re-ranking scheme is fully dependent on the distribution of
similarity scores of images. Consider two reference images
I j , Ik and a two-dimensional plane where the X -axis denotes
the similarity score of database images with respect to I j and
the Y -axis denotes the similarity score of database images
with respect to Ik . Then, the position of a database image
Id ∈ C on the X − Y plane is defined by an ordered pair
(S(I j , Id), S(Ik, Id)) where S(I j , Id) and S(Ik, Id) repre-
sents the similarity of Id with regard to the reference images
I j and Ik .

Figure 1 depicts the similarity score distribution of INRIA
Holiday dataset [41] with respect to two randomly selected
images that are close to each other. The similarity between
images is estimated using Steerable Pyramid based Texture
Feature (SPTF) [42]. From this example, it iswell understood
that the similarity score distribution of two similar images is
linear in nature. In other words, if the reference images are
identical, then they have equal distances to the rest of the
database images. In a similar fashion, Fig. 2 depicts the sim-
ilarity score distribution of two reference images that are not
identical. The similarity between images is again estimated
on the basis of SPTF [42], and it can be inferred that the sim-
ilarity score distribution of the reference images is nonlinear
when they are dissimilar.

This paper aims to incorporate the above-mentioned
image similarity distribution in the re-ranking process. In
order to mathematically characterize the functional rela-
tionship of the similarity score vectors of two images, we
implement a relatively newstatisticalmeasure called distance
correlation coefficient (dCor) [43]. The name distance corre-
lation comes from the fact that it uses the distances between
observations as part of its calculation. Let Z j and Zk denotes
the similarity matrices SI j and SIk of the two images I j and
Ik in vector form, then the distance correlation coefficient
(dCor) is formally defined as:

dCor(Z j , Zk) =
√

dCov2(Z j , Zk)

dCov2(Z j , Z j ) dCov2(Zk, Zk)
(3)

where dCov2(Z j , Zk) is the distance covariance and is
expressed as:
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Fig. 1 Similarity score
distribution of INRIA Holiday
data set [41] with respect to two
similar images
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Fig. 2 Similarity score
distribution of INRIA Holiday
data set [41] with respect to two
dissimilar images
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dCov2(Z j , Zk) = 1

n2

n∑
p=1

n∑
q=1

Z j
pq Z

k
pq (4)

Distance correlation coefficient always takes value in the
range [0,1] and dCor = 0 only if Z j , Zk are independent
and dCor = 1 when Z j , Zk are identical. With this basic
introduction to distance correlation coefficient, the rest of
this section explains the major steps involved in the proposed
image re-ranking scheme.

4.2 Partitioning the database images into two disjoint
subsets

Let Iq be the submitted query and C be the given image col-
lection then, the first step of the proposed image re-ranking
algorithmpartitionsC into two disjoint subsets in accordance
with the distance correlation coefficient calculated between
the query and all the images in the collection. Once the dis-
tance correlation coefficient dCorr(Iq , Id) between the query

Iq and an image Id ∈ C is calculated, a membership assign-
ment function of the following form is defined

η(Iq , Id) =
{
1, if dCor(Iq , Id) ≥ θ

0, otherwise
(5)

where θ denotes a threshold value and is to be tuned accord-
ing to the dataset under evaluation. Based on the value of
the membership assignment function, the initial retrieval list
is partitioned into two disjoint subsets P1 and P2 as fol-
lows:

1. if η(Iq , Id) ==1, then assign Id to the first partition P1
2. if η(Iq , Id) ==0, then assign Id to the second partition

P2.

Thus, the images assigned to partition P1 are highly cor-
related with the given query Iq and those placed in P2 are
likely to be less correlated with Iq .
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4.3 Adaptively updating the similarity score

In this step, the information obtained from the previously cre-
ated image partitions together with the correlation statistics
are efficiently utilized to update the initial similarity scores
among images. Let Rq be the retrieval list generated by the
given query Iq and Ir ∈ Rq , then the update operation is
performed by assigning the images present in Rq to three
clusters as follows:

1. An image Ir ∈ Rq is placed in cluster Cl1 if Ir belongs
to the partition P1.

2. An image Ir ∈ Rq is placed in cluster Cl2 if Ir ∈ P2
and the index of Ir in the original retrieval list Rq is such
that r < K , where K is a user defined constant and it
determines the size of the cluster Cl2.

3. An image Ir ∈ Rq is placed in cluster Cl3 if Ir /∈ Cl1
and Ir /∈ Cl2.

Next, three different update rules are defined to improve
the similarity scores of images belonging to clustersCl1,Cl2
and Cl3. Let Sinit(I j , Ik) be the initial similarity score
between the image pairs (I j ,Ik), then for each cluster an
updated similarity score Snew(I j , Ik) is calculated by the fol-
lowing rules:

1. If (I j , Ik) ∈ Cl1, then Snew(I j , Ik) = dCor(I j , Ik) ∗
Sinit(I j , Ik)

2. If (I j , Ik) ∈ Cl2, then Snew(I j , Ik)=
(
1+ 1

1−dCor(I j ,Ik ))

)
∗

Sinit(I j , Ik)
3. If (I j , Ik) ∈ Cl3, then Snew(I j , Ik) = 1

dCor(I j ,Ik )
∗

Sinit(I j , Ik)

Thus, the initial similarity scores are updated in an adap-
tive manner based on the distance correlation coefficient.
When the image pairs under examination (I j , Ik) belongs
to cluster Cl1, then they are closer to the given query and
the similarity score modification involves decreasing their
pairwise distances. Therefore, an updated version of the sim-
ilarity score is obtained by multiplying the original score
with a value equal to dCor(I j , Ik). As already mentioned the
values of dCor(I j , Ik) ranges in (0, 1], the distances among
similar images are considerably declined. On the contrary,
when the image pair belongs to Cl2, then their similarity
to the given query is uncertain and the value of the mul-
tiplication constant is then adaptively determined based on
the distance correlation coefficient. In this case, the value of
the multiplication constant is set to 1 + 1

(1−dCor(I j ,Ik ))
and

it always yields a weight greater than 1. All the remaining
image pairs are considered to be dissimilar to the given query,
and in this case the original similarity scores are multiplied

by a factor 1
dCor(I j ,Ik )

. At the end, images in the dataset are
re-ordered based on the updated similarity scores.

5 The proposed rank list fusion scheme

As mentioned earlier, each image representation scheme
along with its distance measure might be complementary
in nature and will have its own merits and demerits. There-
fore, fusing the retrieval lists generated by these independent
and heterogeneous models is expected to yield a better result
than each of the strategies in isolation. This motivates us to
develop new methods for fusing the search results generated
by multiple retrieval models for a better retrieval precision.

Even though several approaches to enhance image retrieval
performance based on similarity score fusion have been
reported, most of them utilize a query independent fusion
scheme. That is, a learned model is directly applied to the
retrieval lists generated by multiple models by ignoring the
fact that only a few feature descriptors will have a significant
impact on the final retrieval result. In other words, the sim-
ilarity scores returned by all the feature descriptors are not
equally important and its significance varies according to the
given query. To overcome this limitation, this paper proposes
a novel rank list fusion scheme which learns optimal fusion
weights for the similarity scores generated by different fea-
ture descriptors based on the given query. With the proposed
scheme, the aggregated similarity score Sagg(Iq , Id) corre-
sponding to the given query Iq and a database image Id is
calculated as:

Sagg(Iq , Id) =

n∑
i=1

w fi S fi (Iq , Id)

n∑
i=1

w fi

(6)

where S fi (Iq , Id) is the similarity score returned by the i-th
feature vector fi and w fi is the weight corresponding to the
similarity score SS fi (Iq , Id). Since the effectiveness of rank
list fusion fully depends on the choice of n -dimensional
fusion weight vector W = [w f1, w f2 , . . . , w fn ], a better
retrieval list is realized by finding optimal values to fusion
weights w fi . An optimization problem is formulated to infer
the optimal fusion weights in accordance with the submitted
query and the next section elaborates how the task of find-
ing query adaptive fusion weights can be formulated as an
optimization problem.

5.1 Problem definition

For a given query, the major concern while performing
rank list fusion is the assignment of reasonable weights to
the similarity scores returned by various feature descrip-
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tors. This section provides the formal definition of the
objective function to be optimized by the rank list fusion
scheme to infer query-dependent fusion weights w fi . Let L=
{L1, L2, . . . , Lt } be the set of aggregated retrieval lists cor-
responding to t different values of the fusion weight vector
{W 1,W 2, . . . ,Wt }. For the sake of simplicity, let us con-
sider the top K images from each of the n fused retrieval list
for evaluation. This results a total of t × K retrieved images
corresponding to t different fusion weight vectors. Then, the
quality of each of these fused retrieval list is judged in terms
of the membership degree of its top k images in the rest of the
(t −1) retrieval lists. This can be mathematically formulated
as follows.

Let δipj be an indicator function which denote whether the

p-th image (where p ≤ K ) I ip of the i-th aggregated retrieval
list Li is also present within the top-K position of the j-th
aggregated list L j . That is,

δipj =
{
1, i f I ip ∈ L j

0, i f I ip /∈ L j
(7)

Then, the sum of the membership degree of the p-th image
(where p ≤ K ) I ip of L

i across all the retrieval list L is given
by:

Mi
p =

t∑
j=1

δipj (8)

For all the images within the top K position of the i-
th retrieval list Li , the overall membership degree is then
defined as:

Mi =
K∑

q=1

Mi
q (9)

Finally, the normalized version of the overall membership
degree of the aggregated retrieval list Li is calculated as:

Hi = Mi

∑t
r=1 M

r
(10)

Therefore, the optimal fusion weights with respect to the
given query Iq is the one that maximizes the normalized
membership degree of the set of all aggregated retrieval lists
considered for evaluation and is mathematically defined as:

maximize Hi = Mi

∑t
r=1 M

r
, ∀i ∈ 1, 2, . . . , t (11)

As the value of Hi is high, the images in the fused retrieval
list Li occupies a greater proportion of all the t × K images

considered for evaluation. Hence, the retrieval list Li is con-
sidered as the most prominent as compared to the rest of the
(t − 1) lists in the set L and the corresponding weight vector
Wi is regarded as the optimal fusion weights for the given
query.

5.2 PSO-based rank list fusion algorithm

In this paper, the task of finding weight values corresponding
to the similarity scores returned by different image descrip-
tors is formulated as a numerical optimization problem. Over
the years, various approaches have been proposed to solve
a wide range of numerical optimization problems and it is
required most of the classical optimization techniques to
comply with the structure of the objective function intended
to be solved. In practice, if the derivative of the objective
function with respect to the variable to be optimized cannot
be calculated as in the case of Eq. (11), then it gets dif-
ficult to find an optimal solution by means of the classical
approaches. In such situations, it is a common practice to
use metaheuristic algorithms. The most widely used meta-
heuristic algorithms in scientific applications are: Genetic
Algorithm (GA)[44], Particle Swarm Optimization algo-
rithm (PSO)[45], Differential Evolution (DE) [46], Artificial
Bee Colony (ABC) algorithm [47] and Cuckoo Search Algo-
rithm (CSA) [48].

More recently, Wahab et al. [49] provided a comprehen-
sive evaluation of the performance of various meta heuristic
algorithms in solving a set of thirty benchmark functions.
In their experiments, the benchmark selected for evalua-
tion differs in their characteristics and it includes unimodal,
multimodal, separable and inseparable functions.The evalua-
tion results thus obtained clearly indicated the superiority of
PSO in solving optimization problems involving unimodal
functions. It has been observed that PSO outperformed or
performed equally to the best algorithm in eleven out of the
twelve unimodal functions selected as benchmark. These
results prompted us to choose PSO for inferring optimal
fusion weights that efficiently combine the similarity scores
returned by multiple image descriptors. To keep things sim-
ple, a brief overview of Particle Swarm Optimization (PSO)
is provided in the next section and then the proposed rank
list fusion framework based on PSO is discussed.

5.2.1 Overview of PSO

Particle Swarm Optimization (PSO) is a population-based
stochastic optimization technique developed by Kennedy et
al. [45] and is motivated by the social behavior perceived in
flocks of birds and schools of fish. In bird flocking or fish
schooling, there exist a leader to direct the group forward
and all the other members of the group will follow the leader.
In other words, individuals in the group exchange previous
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experience and accordingly adjust their position so that they
can move toward the objective. The same concept is adopted
by PSO while searching an optimal solution for a given opti-
mization problem.

In PSO, there exist a population (or swarm) of potential
solutions (or particles) to the problem under consideration
and in successive iterations each particle in the swarmmoves
in a multi-dimensional solution space in search for a global
optimum. The movement of the swarm in the solution space
is mainly governed by two factors namely the past experi-
ence of individual particles and the knowledge gained from
the current best particle of the entire swarm. All the parti-
cles inside the swarm are evaluated based on their fitness.
A fitness function of the form f : Rn → R is defined for
this purpose. In fact, the fitness function accepts a particle as
input in the form of a vector of real numbers and yields a real
number as output which specifies the fitness of the particle
considered for evaluation. The basic steps involved in PSO
can be summarized as follows:

1. Swarm initialization as the first step, an initial swarm of
particles is created in the solution space. In general, the
nature of the optimization problem decides the number
of particles in the swarm. Each particle i will have a
position pi ∈ R

n and a velocity vi ∈ R
n in the search

space. In general, the position pi of the i-th particle is
initialized with a uniformly distributed random vector,
i.e., pi ∼ U (slo, sup), where slo and sup are the lower
and upper boundaries of the search space. Similarly, the
velocity of the i-th particle is initialized as vi ∼ U (− |
sup − slo |, | sup − slo |).

2. Iteratively update the swarm in every iteration, each par-
ticle is updated based on its best-known position in the
search space as well as the entire swarm’s best-known
position. The former is known as previous best position
(pBest) and the later is termed as global best position
(gBest). That is, each particle communicates with its
neighbors about its position, memorizes its best position
so far and also knows the position of the highest per-
forming neighbor. Once pBest and gBest are obtained,
a particle updates its velocity and position as follows:

v
(t+1)
i = v

(t)
i + C1 ∗ R1 ∗

(
pBest − p(t)

i

)

+C2 ∗ R2 ∗
(
gBest − p(t)

i

)
(12)

p(t+1)
i = p(t)

i + v
(t+1)
i (13)

where C1 is the cognition parameter and C2 is the social
parameter which serves as acceleration coefficients that
are conventionally set to a fixed value between 0 and 2.
R1 and R2 are random numbers within the range (0, 1).
v

(t)
i and v

(t+1)
i represents the velocity of the particle i

at iteration t and t + 1. Similarly, p(t)
i and p(t+1)

i cor-
responds to the position of the particle at iteration t and
t + 1. Besides this, the fitness value of all particles are
calculated in each iteration and the values of pBest and
gBest are then updated if particles with better position
or global best position is obtained.

3. Termination steps (2) is repeated iteratively until an
adequate fitness is reached or a maximum number of iter-
ations is performed. A predefined error value is initially
provided to check whether an adequate fitness is attained
or not. To do so, the difference in fitness function values
of successive iterations is calculated and if it is found to
be less than or equal to the given error, then the entire
procedure is terminated with the value of gBest as the
optimal solution.

The pseudo-code for the above procedure is depicted in
Algorithm 2.

Algorithm 2 Particle swarm optimization
Input: Upper and lower bound of the solution space. N- the number of
particles in the swarm, C1, C2

1: Initialize the position and velocity of each particle in the swarm.
2: Initialize pBest and gBest values.
3: repeat
4: for each particle do
5: Calculate the fitness value of the particle
6: if the fitness value of the particle is better than the fitness of

pBest then
7: set the current position of the particle as its new pBest
8: end if
9: end for
10: gBset ← among all the particles in the swarm, select the one with

highest fitness value
11: for each particle do
12: Update the velocity of the particle according to Eq. 12
13: Update the position of the particle according to Eq. 13
14: end for
15: until minimum error criteria is satisfied or maximum iterations is

reached

5.2.2 Swarm initialization

To perform PSO-based rank list fusion, we initially need to
draw a set of N particles from an n -dimensional search space
of fusion weights. In PSO-based optimization, the final solu-
tion greatly depends on the number of particles, their initial
position and velocity. In this paper, the number of particles
in the population N is set to a reasonably large value with the
aim of deriving optimal fusion weights quickly. To initialize
the position of individual particles in the swarm, the solution
space is originally divided into N equal regions. Then, the
centroids of each such region are taken as the starting position
of individual particles. The velocity of each particle is ini-
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tialized as a uniformly distributed random vector in the range
[−|sup − slo|, |sup − slo|], where slo and sup are the lower and
upper bounds of the solution space. The best-knownpositions
(pBest) of individual particles are initialized with the values
of their starting position. From these values of pBsest , the
best candidate is chosen and assigned as the value of global
best position (gBest).

5.2.3 Optimal weight finding

Algorithm 3 depicts the proposed PSO-based rank list fusion
scheme for finding optimal fusion weights. It is basically an
iterative procedure and works by simultaneously preserving
many particles in the search space. At first, the velocity and
position of individual particles in the swarm aswell as pBest
and gBest are initialized as per the procedure described in

Algorithm 3 PSO-based rank list fusion scheme
Input: (slo, sup) - lower and upper boundaries of the solution space. N-
the number of particles in the swarm, acceleration coefficients C1 and
C2, the fitness function f (.) to be optimized, difference in cost function
values in successive iteration ε, the maximum number of iterations T .
1: Initialize t=1;
2: Divide the solution space (slo, sup) into N equal regions and initial-

ize the position of each particle with the centroid of these regions.

3: Initialize the global best position of the entire swarm as gBest ←
U (slo, sup).

4: for each particle i ∈ {1, 2, · · · , N } do
5: Initialize the velocity v

(t)
i of the particle i

6: v
(t)
i ∼ U (−|sup − slo|, |sup − slo|)

7: Initialize the best-known position pBest of particle i
8: pBesti ← pi
9: if ( f (pBesti ) > f (gBest) then
10: gBest ← pBesti
11: end if
12: end for
13: repeat
14: for each particle i ∈ {1, 2, · · · , N } do
15: select random numbers R1 ∼ U (0, 1) and R2 ∼ U (0, 1)
16: v

(t+1)
i = v

(t)
i +C1 ∗ R1 ∗ (pBest− p(t)

i )+C2 ∗ R2 ∗ (gBest−
p(t)
i )

17: p(t+1)
i = p(t)

i + v
(t+1)
i

18: if f (p(t+1)
i ) > f (pBesti ) then

19: Update the particle’s best-known position
20: pBesti ← p(t+1)

i
21: end if
22: if f (pBesti ) > f (gBest) then
23: Update global best position of the entire swarm: gBest ←

pBesti
24: end if
25: end for
26: if ( f (t)(gBest) − f (t−1)(gBest) ≤ ε) then
27: break;
28: end if
29: t = t + 1;
30: until t = = T
31: return gBest

Sect. 5.2.2 (step 2–7 of Algorithm 3). In successive iteration,
each particle is evaluated by means of the fitness function
specified in Eq. (11). Once the fitness of each particle in the
swarm is obtained, its position and velocity are updated (step
9–19 of Algorithm 3). The entire procedure is repeated until
a particular number of iteration is reached with the hope that
a satisfactory solution will eventually be discovered. Once
the specified number of iteration is finished, the particle i
corresponding to maximum normalized overall membership
value Hi is taken as the optimal fusion weights and the fused
similarity score with these weights are taken as the ultimate
retrieval result.

6 Combining re-ranking and rank aggregation
methods for effective image retrieval

This section explores the feasibility of integrating re-ranking
and rank aggregationmethods to further improve the retrieval
precision of CBIR systems. In the past, a lot of efforts have
been made to devise more effective algorithms for image
re-ranking and rank aggregation. However, none of them
attempts to combine the advantages of these two approaches
for better retrieval effectiveness. To this end, we formulate
a novel image retrieval framework in which the proposed
re-ranking and rank aggregation algorithms are efficiently
integrated to yield better retrieval results.

In the proposed framework, the PSO-based rank list fusion
scheme is used to combine the re-ranking results obtained
with multiple image descriptors to form a single and more
effective similarity matrix Sopt. The combination approach
is formally defined as:

Sopt = Φ(Ψ (S1), Ψ (S2), . . . , Ψ (Sn)) (14)

where S1, S2 . . . , Sn , respectively, denotes the similarity
matrices corresponding to n different types of image descrip-
tors.

7 Performance evaluation and discussion

This section evaluates the retrieval efficiency of the pro-
posed re-ranking and rank aggregation approaches and
provides empirical evidences to demonstrate their superior
performance over the traditional approaches. Moreover, the
integration of the proposed re-ranking and rank aggregation
strategies for the task of image retrieval is also evaluated.
The rest of this section is organized as follows. A detailed
description of the datasets used for evaluation is provided
in Sect. 7.1. The quantitative indices used to measure the
retrieval accuracy are described in Sect. 7.2. In Sect. 7.3,
a brief description of the feature descriptors used in image
retrieval experiments are provided. The experimental set-up
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for evaluating the efficiency of the proposed re-ranking and
rank aggregation schemes is outlined in Sect. 7.4. A com-
prehensive evaluation of the proposed re-ranking scheme is
presented in Sect. 7.5. Section 7.6 validates the effectiveness
of the proposed rank list fusion algorithm. The details of the
statistical significance test conducted to assess the relevance
of the proposed re-ranking and rank aggregation strategies is
summarized in Sect. 7.7. Finally, the experimental analysis of
the combination strategy for image retrieval is summarized
in Sect. 7.8.

7.1 Description of the dataset

Four different datasetswith contrasting properties are consid-
ered for evaluating the efficiency of the proposed dictionary
learning scheme and the resulting image retrieval framework.
The details of these four image collections are summarized
below.

INRIA Holiday dataset [41] It involves 1491 high reso-
lution images of different locations across the globe. The
image collection is basically a mixture of natural scenes and
man-made objects. Five hundred images in the collection are
designated as queries and a predefined retrieval list is pro-
vided for each of these queries. An important characteristics
of this dataset is that the images possesses high intra-
class variance within each semantic concept. This property
motivates us to select INRIA Holiday dataset as a bench-
mark to compare the efficiency of various image retrieval
models.

Scene 15 dataset [63] This is mainly a collection of 4485
images grouped into 15 categories. The number of images
per category varies from 210 to 410 and all the images
have a fixed size of 300 × 250 pixels. There are mainly
indoor and outdoor images in the collection. These images
can be grouped into the following categories: bedroom (216
images), tall building (356 images), coast (360 images), city
centere (308 images), forest (328 images), highway (260
images) industrial (311 images), kitchen (210 images), liv-
ing room (289 images), mountain (374 images), office (215
images), open country (410 images), store (315 images),
street (292 images), suburb residences (241 images). This
image collection serves as a good choice for evaluating the
retrieval effectiveness of the proposed image re-ranking and
rank list fusion schemes because it contains images with the
same semantic concepts appearing in different contexts.

Oxford dataset [64] There are 5,062 building images of 11
variousOxford landmarks in this collection.Oxford dataset is
widely acknowledged for its complexity to distinguish iden-
tical building facades from one another. Five images from
each of the 11 landmarks are reserved as query and their cor-
responding retrieval lists are also provided as ground truth
data. Thus, there are 55 queries to evaluate the proposed
retrievalmodel. This dataset exhibits notable diversity among
building images with variable appearances, positions, light-
ing conditions and view points. Hence, searching for similar
images in response to a given query is highly challenging in
this dataset.

Corel 10K dataset [65] There are 10000 images in Corel
10K dataset which spread over 100 concepts classes such

Table 1 Summary of various image descriptors used for evaluation

Descriptor type Name of the descriptor Acronym Similarity measure used

Color Weighted dominant color descriptor [50] WDCD DC-based similarity measure

Compact color descriptor [51] CCD Color matching palette

Pseudo-Zernike chromaticity distribution
moment [42]

PZCDM Euclidean distance

Texture Steerable pyramid based texture feature
[42]

SPTF Euclidean distance

Directional local extrema pattern [52] DLEP Canberra distance

Local tetra patterns [53] LTrP d1 distance

Shape Angular radial transformation descriptor
[54]

ARTD Euclidean distance

Generic Fourier descriptor [55] GFD Euclidean distance

Curvature based Fourier descriptor [56] CBFD Euclidean distance

High-level descriptor Bag-of-visual-words [57] BoVW HI-Kernel

Vector of locally aggregated descriptor [58] VLAD Euclidean distance

Object bank [59] OB L1 -distance

Sparse coding based Fisher vector coding
[60]

SCFVC Euclidean distance

SParse output coding [61] SPoC Euclidean distance

Sparse-NMF [62] 
0 - NMF L1 -distance
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Fig. 3 Average retrieval rates obtained for various combinations of the parameters K and θ of the proposed image re-ranking scheme. a INRIA
Holiday dataset. b Scene-15 dataset. c Oxford dataset. d Corel 10K dataset

as beach, flower, mountains, sunset etc. Each category con-
tains 100 color images in JPEG format with a resolution of
either 192 × 128 or 128 × 192. A retrieved image is said
to be relevant if and only if it is from the same category as
that of the query. That is, any image selected from a test
collection to act as a query will have exactly 99 relevant
images in the collection. This dataset is quite challenging
as it includes highly varying scene categories. As an exam-
ple, images depicting the changes in color composition of
“sky” viewed at regular time intervals during the day time
is included in the dataset. Moreover, this dataset is enriched
with sufficient number of images covering a diverse number
of semantic concepts.

7.2 Evaluation metric

An image retrieval system generates a ranked list of images
belonging to a particular dataset in response to a submitted
query. The rank of an image is determined by its relevance
to the query at hand. To be able to compare various image
retrieval models, first a set of performancemeasures are to be
identified. When the ground truth of the dataset is available,
the system’s performance is generally measured in terms of
quantitative metrics such as precision and recall. The preci-
sion of a retrieval systemmeasures the percentage of relevant
images in the ranked retrieval list and the recall denotes the
percentage of relevant images retrieved by the system. These
two metrics are defined as follows:
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Precision = Number of relevant images retrieved

Total number of images retrieved
(15)

Recall = Number of relevant images retrieved

Total number of relevant images in the set
(16)

Precision and recall do not take into account the order in
which relevant images appear in the ranked retrieval list.
When two retrieval systems have the same precision and
recall values, the system that ranks relevant images higher is
mostly preferred. In order to solve this issue, measures like
Precision at k (P@k) and R-precision are introduced. P@k is
the value of precision calculated using the first k documents
in the retrieval list. Similarly, R-precision for a given query
is defined to be the precision after retrieving R images from
the image data base and is expressed as:

R − Precision = 1

R

R∑
j=1

Rel( j) (17)

whereR is the total number of relevant images in the database
for the given query and Rel(j) is an indicator function which
returns the value 1 when the image present at the j-th location
of the retrieval list is relevant with respect to the given query.

Moreover, precision can be expressed as a function of
recall . The interpolated precision recall graph plots preci-
sion as a function of recall and can be used to assess the
overall performance of the retrieval framework. The inter-
polated precision pint at a recall level ri is calculated as the
largest observed precision for any recall value r between ri
and ri+1:

Pint(ri ) = max
ri≤r≤ri+1

Precision(r) (18)

An alternative single valued evaluation metric is the mean
average precision (MAP) and is defined as:

Mean Average Precision (mAP) = 1

| Q |
∑
q∈Q

AP(q) (19)

where | Q | denotes the number of images in the query set
Q, AP(q) is the average precision for a given query q ∈ Q
and is defined as the ratio of the sum of precision values from
rank positions where a relevant image is found in the retrieval
result to the total number of relevant images in the database.

One last metric is the Average Retrieval Rate (ARR) and
is defined as:

Average Retrieval Rate (ARR) = 1

NQ

NQ∑
q=1

RR(q) (20)

where NQ represents the number of queries used for eval-
uating the retrieval system. RR(q) is the retrieval rate for a
single query q and is calculated as:
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Table 3 Re-ranking results of the proposed scheme for high-level descriptors

Descriptor name MAP P@20 Avg R-Precision

Before After Gain Before After Gain Before After Gain
re-ranking re-ranking (%) re-ranking re-ranking (%) re-ranking re-ranking (%)

INRIA Holiday dataset

BoVW 0.5278 0.6343 20.17 0.5564 0.6643 19.39 0.5132 0.6363 23.98

VLAD 0.5543 0.6781 22.33 0.5894 0.6986 18.52 0.5398 0.6629 22.80

OB 0.5732 0.6873 19.90 0.5961 0.7059 18.41 0.5679 0.6761 19.05

SCFVC 0.6081 0.7153 17.62 0.6153 0.7349 19.43 0.5811 0.7227 24.36

SPoC 0.6314 0.7436 17.77 0.6541 0.7951 21.55 0.6321 0.7775 23.00


0-NMF 0.6480 0.7719 19.12 0.6603 0.8068 22.18 0.6551 0.7961 21.52

Scene-15 dataset

BoVW 0.5169 0.6437 24.53 0.5368 0.6583 22.63 0.5128 0.6349 23.81

VLAD 0.5371 0.6473 20.51 0.5529 0.6774 22.51 0.5281 0.6477 22.64

OB 0.5544 0.6727 21.33 0.5681 0.6828 20.19 0.5463 0.6628 21.32

SCFVC 0.5736 0.7065 23.16 0.5919 0.7266 24.86 0.5782 0.7082 22.48

SPoC 0.6172 0.7383 19.62 0.6277 0.7576 20.69 0.6057 0.7384 21.90


0-NMF 0.6430 0.7662 19.16 0.6676 0.7948 19.05 0.6442 0.7641 18.61

Oxford dataset

BoVW 0.5015 0.6181 23.25 0.5161 0.6262 21.33 0.4959 0.6039 21.77

VLAD 0.5179 0.6228 20.25 0.5286 0.6336 19.86 0.5066 0.6382 25.97

OB 0.5271 0.6363 20.71 0.5393 0.6548 21.41 0.5141 0.6472 25.88

SCFVC 0.5422 0.6667 22.96 0.5514 0.6885 24.86 0.5017 0.6337 26.31

SPoC 0.5639 0.6883 22.06 0.5778 0.7081 22.55 0.5497 0.6771 23.17


0-NMF 0.5930 0.7275 22.68 0.6069 0.7447 22.70 0.5889 0.7219 22.58

Corel-10K dataset

BoVW 0.5273 0.6458 22.47 0.5474 0.6563 1.89 0.5161 0.6269 21.46

VLAD 0.5484 0.6645 21.17 0.5693 0.6874 20.74 0.5410 0.6582 21.66

OB 0.5684 0.6881 21.05 0.5747 0.6907 20.18 0.5520 0.6759 22.44

SCFVC 0.5872 0.7129 21.40 0.5973 0.7258 21.51 0.6027 0.7269 20.60

SPoC 0.6074 0.7362 21.20 0.6227 0.7574 21.63 0.6094 0.7328 20.24


0-NMF 0.6279 0.7717 22.90 0.6373 0.7718 21.10 0.6116 0.7539 23.26

RR(q) = NR(α, q)

NG(q)
(21)

where NG(q) is the number of ground truth images of a
queryq and NR(α, q) indicates thenumber of relevant images
found in the first α×NG(q) images. The value of α should be
greater than or equal to 1. Selecting larger α values would be
less discriminative between very good retrieval results and
those results that are not so good ones. Therefore, this work
set the value of α as 1.5.

In addition to this standard measures, the effectiveness of
image re-ranking algorithms is evaluated bymeans of relative
gain. Let rsb be the value of the retrieval score before the use
of the re-ranking or rank aggregation algorithm and let rsa be
the value after applying the proposed scheme, then relative
gain is computed as follows:

Relative Gain = rsa − rsb
rsb

(22)

7.3 Image descriptors used for retrieval experiments

CBIR systems perform image retrieval on the basis of fea-
ture vectors automatically extracted from image pixels. In
general, feature vectors are meaningful abstraction of image
data and it usually encode the visual contents of images in
a compact fashion. The visual contents of images can be
either low-level or high-level (semantic). In general, themost
effective low-level features used for representing the visual
contents of images are color, texture and shape. On the other
hand, the high-level content is the actual meaning captured
by humans when they look at the images. Thus, the feature
vector must encode the visual properties of an image in such
a way that allows it to be compared and matched with other
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Fig. 4 Retrieval performance of the proposed image re-ranking scheme based on 11-point interpolated average precision. a INRIAHoliday dataset.
b Scene-15 dataset. c Oxford data set. d Corel 10K dataset

images in the collection to find a perfect match. Distance
functions are the most simple and the widely used metric to
judge the similarity among feature vectors. By using distance
functions, the retrieval system generates an ordered retrieval
list in increasing order of the distance calculated among the
feature vectors derived from database images and the given
query image.

However, deriving a universal descriptor that gives high
retrieval precision for all sorts of datasets is still an open
problem in image retrieval domain. Each of the descrip-
tor, whether it is low-level or high-level, has its own merit
and demerit. Moreover, those descriptors that belongs to
the same category are always complementary in nature.
In this paper, we make use of low-level as well as high-
level descriptors to assess the effectiveness of the proposed

post-retrieval optimization framework. Therefore, a set of
representative candidates that provides state-of-the-art per-
formance in image retrieval have been selected from each
of the above-mentioned descriptor categories to evaluate the
proposed image re-ranking and rank aggregation schemes.
The set of all image descriptors selected for evaluation
together with the corresponding similarity measures used in
the retrieval experiments are summarized in Table 1.

7.4 Experimental protocol

The retrieval experiments using high-level descriptors are
carried out using tenfold cross validation. To do so, images
in the database are arbitrarily split into ten folds roughly of the
same size. In each experiment, nine image subsets are used
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for training the model and the remaining subset will function
as the query. Hence, each image subset is used once as the
query. The evaluation metrics are then computed as the aver-
age over these ten trials. For low-level features, the evaluation
metrics are calculated as themeanvalue by considering all the
database images as the query. All the experiments are carried
out in MATLAB 2013b on an Intel Core i7-3770, 3.40GHz
desktop PC equipped with 16GB of RAM and Ubuntu 64 bit
operating system.

7.5 Evaluation of the proposed image re-ranking scheme

This section illustrates the retrieval results of the pro-
posed image re-ranking scheme. Section 7.5.1 analyzes the
impact of various parameters of the distance correlation
coefficient-based image re-ranking algorithm on the retrieval
effectiveness. Section 7.5.2 provides a comparative evalua-
tion of the proposed re-ranking algorithm.

7.5.1 Impact of parameters

The parameters of the proposed image re-ranking algorithm
have great implication on the final retrieval performance.
Therefore, determining optimal values for these parameters
is a challenging task. The proposed distance correlation-
based image re-ranking algorithm mainly depends on two
parameters: (i) K number of top retrieved images (ii) θ the
threshold for the distance correlation measure. Optimal val-
ues for these parameters are estimated in terms of average
retrieval rates. For all the datasets considered for evaluation,
the average retrieval rates are computed with K values rang-
ing from 20 to 200 and five different threshold (θ ) values
{30, 40, 50, 60, 70}. The average retrieval rate obtained for
various datasets while changing K along with θ is depicted
in Fig. 3. From these results, it can be concluded that for
small values of K and θ , the retrieval system fails to yield
acceptable precision. As the threshold (θ ) increases, then
even for small values of K the retrieval system can achieve
better retrieval precision. Considering all these factors into
account, the number of top retrieved images considered for
evaluation (K ) and the threshold (θ ) are fixed to 100 and 70.

7.5.2 Retrieval results

In this section, the set of experiments conducted for demon-
strating the effectiveness of the proposed image re-ranking
scheme is presented. Various image re-ranking schemes
such as Distance Optimization Algorithm [33], RL-Sim re-
ranking algorithm [15] and Reciprocal kNN Graphs based
manifold learning (RKNN-ML) algorithm [34] have been
evaluated in comparison with the proposed scheme by con-
sidering both low-level and high-level descriptors for all the
four datasets.
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Table 5 Comparative
evaluation of various
metaheuristics algorithm for the
task of rank list fusion

Method used Best Hi value No of iterations Best Hi value No of iterations

INRIA Holiday dataset Scene 15 dataset

GA 0.746 1200 0.765 1325

DE 0.856 800 0.875 975

ABC 0.787 1050 0.806 1200

CSA 0.812 950 0.838 1050

PSO 0.889 610 0.907 750

Oxford dataset Corel 10K dataset

GA 0.758 1285 0.771 1450

DE 0.866 900 0.884 1050

ABC 0.798 1100 0.813 1375

CSA 0.824 1000 0.836 1225

PSO 0.897 690 0.917 925

Table 6 Rank aggregation results of the proposed scheme for low-level descriptors

Descriptor type Descriptor used MAP P@20 Avg R-precision MAP P@20 Avg R-precision

Holiday dataset Scene-15 dataset

Color WDCD 0.3495 0.3588 0.3327 0.4086 0.4176 0.3802

PZCDM 0.4325 0.4566 0.4413 0.4564 0.4611 0.4279

WDCD + PZCDM 0.5482 0.5623 0.5571 0.5712 0.5803 0.5538

Texture LTrP 0.3593 0.3661 0.3457 0.4148 0.4218 0.3996

SPTF 0.4471 0.4584 0.4372 0.4662 0.4807 0.4734

LTrP + SPTF 0.5529 0.5617 0.5643 0.5778 0.5914 0.5862

Shape GFD 0.2649 0.2892 0.2732 0.2777 0.2940 0.2811

CBFD 0.3014 0.3153 0.2985 0.3159 0.3316 0.3194

GFD + CBFD 0.4250 0.4349 0.4037 0.4325 0.4516 0.4222

Oxford dataset Corel 10K dataset

Color WDCD 0.3472 0.3674 0.3355 0.3696 0.3794 0.3524

PZCDM 0.4020 0.4226 0.3949 0.3909 0.4122 0.3916

WDCD + PZCDM 0.5262 0.5439 0.5314 0.5094 0.5275 0.5199

Texture LTrP 0.3922 0.4168 0.4026 0.4118 0.4363 0.4182

SPTF 0.4297 0.4421 0.4388 0.4369 0.4482 0.4302

LTrP + SPTF 0.5387 0.5561 0.5438 0.5419 0.5596 0.5416

Shape GFD 0.3356 0.3497 0.3286 0.3210 0.3461 0.3352

CBFD 0.3768 0.3973 0.3731 0.3554 0.3688 0.3428

GFD + CBFD 0.4852 0.5047 0.3883 0.4664 0.4758 0.4015

Tables 2 and 3 summarizes the mean average preci-
sion, P@20 and average R-precision values obtained with
the proposed approach for various low-level and high-level
descriptors under the following circumstances: before and
after the use of the proposed re-ranking scheme in image
retrieval. For each of the above-mentioned evaluation met-
rics, the relative gain achieved with the proposed model
is also reported. All these results shows that the distance
correlation-based re-ranking scheme is more effective in
image retrieval and there is significant gain in the retrieval

performance as compared to the results of individual descrip-
tors in isolation.

Figure 4 depicts the 11-point interpolated average pre-
cision curve obtained while employing a selected set of
low-level and high-level descriptors in isolation and in
combination with the proposed re-ranking scheme for the
retrieval experiments.Across all values of recall, it seems that
the retrieval precision achieved by the proposed re-ranking
scheme is significantly better than individual descriptors used
in isolation for all image collections.
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Table 7 Rank aggregation results of the proposed scheme for high-level descriptors

Descriptor name MAP P@20 Avg R-precision MAP P@20 Avg R-precision

Holiday dataset Scene-15 dataset

SCFVC 0.6081 0.6153 0.5811 0.5736 0.5819 0.5782

SPoC 0.6314 0.6541 0.6321 0.6172 0.6277 0.6057


0- NMF 0.6480 0.6603 0.6551 0.6430 0.6676 0.6442

SCFVC+ SPoC + 
0- NMF 0.7992 0.8156 0.8067 0.7943 0.8128 0.7994

Oxford dataset Corel 10K dataset

SCFVC 0.5422 0.5514 0.5017 0.5872 0.5973 0.6027

SPoC 0.5639 0.5778 0.5497 0.6074 0.6227 0.6094


0- NMF 0.5930 0.6069 0.5889 0.6279 0.6373 0.6116

SCFVC+ SPoC + 
0- NMF 0.7485 0.7352 0.7384 0.7791 0.7815 0.7638

The comparative evaluation of the proposed image re-
ranking scheme is outlined in Table 4. It can be observed
that the distance correlation-based image re-ranking scheme
accomplished significant gain in retrieval effectiveness in
case of all four datasets and all types of image descriptors as
compared to other existing methods. On an average, the pro-
posed re-rankingmodel achieved 6% improvement in overall
retrieval effectiveness across all the four dataset considered
for evaluation. These results underline the fact that the pro-
posed image re-ranking scheme yields favorable retrieval
scores in comparison with state-of-the-art approaches.

7.6 Evaluation of the PSO-based rank list fusion scheme

A detailed evaluation of the proposed PSO-based rank list
fusion scheme is presented in this section. The procedure
used for similarity score normalization and the retrieval
experiments carried out in various datasets using the pro-
posed rank list fusion scheme are comprehensively discussed
in the rest of the subsections.

7.6.1 Similarity matrix normalization

It should be noted that the physical meaning of individual
feature descriptors are different and the corresponding simi-
larity matrices need not be on the same numerical scale. That
is, the similarity matrices at the output of individual retrieval
models may not be homogeneous. Therefore, these similar-
ity matrices cannot be directly aggregated and normalization
has to perform before the actual fusion takes place. The scal-
ing down transformation of the original similarity matrix to
a reasonably lower range is termed as normalization. As it
is a critical step in similarity score fusion, the normalization
process must be carefully designed.

The tanh-estimator introduced by Hampel et al. [66]
is reported to be an efficient and robust normalization
technique. This paper adopts tanh-estimators for the normal-

ization process. Let {Si }Ni=1 be the set of similarity matrices
of N database images corresponding to a given query image
Iq and {μ ,σ } be the mean and the standard deviation esti-
mates of these similarity scores. Then, for each image in
the database, the normalized similarity score based on tanh-
estimator is given by:

Ŝi = 1

2

{
tanh

(
0.01 ∗

( Si − μ

σ

))
+ 1

}
(23)

where Si is the original similarity score and Ŝi is its normal-
ized version after applying tanh-estimator.

7.6.2 Retrieval result

We consider the reciprocal rank fusion strategy (RRF) [9],
the distance optimization algorithm based clustering (DOA-
Cluster) [33], and the query-specific rank fusion algorithm
(QSRF) [27] as the baseline to evaluate the proposed rank list
fusion scheme. Based on the retrieval results of the image re-
ranking experiments presented in Tables 2 and 3, the best four
among low-level descriptors and the best three among high-
level descriptors are selected for the task of rank list fusion.
Thus, PZCDM [42], SPTF [42], WDCD [50] and LTrP [53]
are selected from the category of low-level descriptors and
SCFVC [60], SPoC [61] and 
0 -NMF [62] are chosen from
the family of high-level descriptors.

First of all, Table 5 summarizes the result obtained by
the proposed PSO-based approach in solving the optimiza-
tion problem specified in Eq. (11) in comparison with other
meta heuristic algorithms. The table provides the best Hi

value obtained by each of the approaches and the num-
ber of iterations performed by each methods to reach the
corresponding best Hi values. In all the datasets selected
for evaluation, the proposed approach converged to a bet-
ter Hi values in lesser number of iterations. Thus, it can
be conclude that proposed PSO-based approach is better
than other metaheuristic algorithms such as GA [44], DE
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Fig. 5 Retrieval performance of the proposed rank aggregation scheme based on 11-point interpolated average precision. a INRIAHoliday dataset.
b Scene-15 dataset. c Oxford data set. d Corel 10K dataset

[46], ABC [47] and CSA [48] for the task of rank list
fusion.

Then, we analyze the relative improvements in MAP,
P@20 and Avg. R-precision values while using the PSO-
based rank list fusion scheme for image retrieval operation
based on the results summarized in Tables 6 and 7. In con-
trast to the retrieval result of each descriptor in isolation,
there is significant gain in precision while using PSO-based
rank list fusion scheme. For example, in INRIA Holiday
dataset [41], the MAP score is increased to 79.92% by using
the PSO-based approach for aggregating the retrieval lists
returned by SCFVC, SPoC and 
0- NMF descriptors. When
these descriptors are used in isolation for the retrieval task,
respective gains of 60.81, 63.14 and 64.80% are obtained.
Similar results can also be observed with P@20 and Average
R-precision values.

Figure 5 shows the 11 -point interpolated precision curves
of certain selected image descriptors in different situations:
i.e., before rank list fusion and after applying the PSO-based
rank list fusion algorithm. It can be easily inferred that the
precision achieved by the proposed rank list fusion scheme
is notably higher than that of individual descriptors in isola-
tion.

Next, a comparative evaluation of the PSO-based rank
list fusion scheme is provided. Table 8 summarizes the
mean average precision (MAP), Precision at 20 (P@20)
and Average R-precision values obtained with the proposed
PSO-based rank list fusion scheme in comparison with
state-of-the-art approaches. It is well understood from the
above results that for all combination of image descrip-
tors, we can observe positive gain in retrieval precision as
compared to the state-of-the-art approaches. While analyz-
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ing the retrieval performance on all the four datasets, the
proposed rank list fusion scheme on average achieved 5%
improvement in mAP, 5% improvement in P@20 and 5%
improvement in average R-Precision values as compared to
baseline approaches. Thus, it can be concluded that the PSO-
based rank list fusion scheme works better than the baseline
approaches.

7.7 Statistical significance test

In order to assess whether the proposed retrieval method per-
forms better than the baseline models, it is necessary to apply
a test of significance. In practice, the test of significance pro-
vide information about whether the observed difference in
the evaluation scores of various retrieval methods are really
meaningful. Based on statistical evidence, the tests of signif-
icance determine whether the difference in evaluation scores
are not caused by chance or due to inherent noise in the eval-
uation. A number of different statistical tests are proposed
in the literature to determine whether the difference in per-
formance between retrieval methods are significant or not.
Among them, Friedman significance test [67] is the most
commonly used one and is generally applied to the mean
average precision (mAP) of various retrieval models to com-
pare the significance of each of their retrieval results.

The Friedman test is a nonparametric statistical signifi-
cance test such that it does notmake any assumption about the
distribution of the measurements and their error. To perform
the significance test a null hypothesis is initially framed. In
the case of image retrieval, the typical null hypothesis states
the equality of different retrieval models. That is, there is no
significant difference in the retrievalmodels selected for eval-
uation. The Friedman test assumes that there are c retrieval
models (c ≥ 2) to be evaluated and the evaluation scores cor-
responding to eachmodel are arranged in b rowswhere b rep-
resents the number of datasets. The Friedman test proceeds as
follows: initially, different retrieval models are ranked sepa-
rately for each dataset in such a way that the best performing
algorithm gets a rank of 1, the second best algorithm gets a
rank of 2, and so on. Then, the total rank of each retrieval
model across all the datasets are computed as follows:

r j =
b∑

i=1

ri j (24)

where ri j is the rank associated with the j-th retrieval model
for the i-th dataset.

Finally, the Friedman test statistics Fs is computed as fol-
lows:

Fs = 12

b ∗ c ∗ (c + 1)

c∑
j=1

r2j − 3 ∗ b ∗ (c + 1) (25)
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Fig. 6 Friedman test results for
re-ranking algorithms

Fig. 7 Friedman test results for
rank aggregation algorithms

where r2j is the square of the total of the ranks for j-th retrieval
model.

The Friedman test statistics Fs follows a χ2 distribution
with (c − 1) degrees of freedom and having a p-value asso-
ciated with it. In practice, the p-value is a probability that
measures the evidence against the null hypothesis and a
lower p-value provides stronger evidence against the null
hypothesis. Thus, the null hypothesis can be rejected when
the p-value obtained is less than the selected significance
level α.

Friedman test results for the mAP values of the proposed
and baseline approaches for image re-ranking and rank list
fusion while considering only the top performing image
descriptors are presented in Figs. 6 and 7. In both the cases,
the significance level (α) is set as 0.05, the number of models
compared (c) is four and the number of datasets evaluated
(b) is also four. From the results shown in Figs. 6 and 7,
it is evident that the Friedman test utilizing χ2 distribution
with three degrees of freedom yield 0.0074 and 0.0082 as
its respective p-values. In both the cases, the p-values are
observed to be lesser than the predefined significance level
0.05. Therefore, the null hypothesis at the significance level
α = 0.05 can be rejected and it can be concluded that there
is remarkable difference between the proposed approaches
and the baseline models for the task of image re-ranking and
rank aggregation.

7.8 Evaluation of the re-ranking and rank
aggregation-based combination strategy

The experimental results summarized in this section illus-
trates how the proposed strategy for combining image
re-ranking results of multiple descriptors using rank aggre-
gation improves the overall effectiveness of the retrieval
operation. In this paper, the retrieval results of the distance
correlation coefficient-based image re-ranking algorithm for
various descriptors are integrated with the PSO-based rank
aggregation scheme. This combination strategy is evaluated
for different descriptors and datasets. We examined four
datasets and for evaluation purpose.

The average MAP values obtained for all the descrip-
tors considered for evaluation in various datasets when the
distance correlation coefficient-based image re-ranking algo-
rithm is used in isolation and in combinationwith PSO-based
rank aggregation scheme for the retrieval task is presented in
Table 9. As we can observe, the proposed combination strat-
egy yields higher MAP score with remarkable gains for all
the descriptors. It should be noted that the proposed combi-
nation framework on an average accomplished relative gains
of 35.64, 32.64, 35.54 and 34.95% inMAP values on INRIA
Holiday [41], Scene 15 [63], Oxford [64] and Corel 10K [65]
image collections. The relative gain is estimated by compar-
ing the retrieval score of the proposed rank list fusion scheme
and the highest score among the individual descriptors.
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Fig. 8 11-point interpolated average precision values of the proposed combination strategy for image retrieval. a INRIA Holiday dataset.
b Scene-15 dataset.c Oxford dataset. d Corel 10K dataset

The proposed model is further evaluated on the basis of
averagePrecision@20(P@20) values and the results are sum-
marized in Table 10. The obtained average P@20 scores
indicate the fact that the proposed combination strategy is
a promising alternative to image retrieval. In addition, Fig. 8
shows the 11-point interpolated precision values of the pro-
posed framework under varying situations: before and after
using the proposed combination strategy for image retrieval.
As it can be seen, there is significant gain in precisionwith the
proposed approach in all the retrieval experiments conducted
across all the datasets.

8 Conclusion

In this paper, new strategies for image re-ranking and rank
aggregation are proposed and are efficiently integrated to

further improve the retrieval performance of existing CBIR
systems. The proposed framework unifies a distance cor-
relation coefficient-based image re-ranking algorithm and
a PSO-based rank list fusion scheme. This enables the
re-ordering of retrieval lists generated by multiple CBIR
systems and the aggregation of these fine-tuned results to
have an enhanced solution. The proposed framework is eval-
uated using low-level and high-level image descriptors. A
rich set of experiments were conducted and the obtained
results demonstrated improved performance in terms of
effectiveness and efficiency as compared to the results of
individual CBIR systems in isolation. In future, the possi-
bility of combining the proposed framework with certain
supervised approaches such as relevance feedback will be
investigated.
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