
Int J Data Sci Anal (2017) 4:153–172
DOI 10.1007/s41060-017-0064-z

REGULAR PAPER

Efficient identification of Tanimoto nearest neighbors
All-pairs similarity search using the extended Jaccard coefficient

David C. Anastasiu1 · George Karypis2

Received: 26 December 2016 / Accepted: 16 July 2017 / Published online: 2 August 2017
© Springer International Publishing AG 2017

Abstract Tanimoto, or extended Jaccard, is an important
similarity measure which has seen prominent use in fields
such as data mining and chemoinformatics. Many of the
existing state-of-the-art methods for market basket analy-
sis, plagiarism and anomaly detection, compound database
search, and ligand-based virtual screening rely heavily on
identifying Tanimoto nearest neighbors. Given the rapidly
increasing size of data that must be analyzed, new algorithms
are needed that can speed up nearest neighbor search,while at
the same time providing reliable results. While many search
algorithms address the complexity of the task by retrieving
only some of the nearest neighbors, we propose amethod that
finds all of the exact nearest neighbors efficiently by leverag-
ing recent advances in similarity search filtering. We provide
tighter filtering bounds for the Tanimoto coefficient and show
that our method, TAPNN, greatly outperforms existing base-

This work was supported in part by NSF (IIS-0905220, OCI-1048018,
CNS-1162405, IIS-1247632, IIP-1414153, IIS-1447788), Army
Research Office (W911NF-14-1-0316), Intel Software and Services
Group, and the Digital Technology Center at the University of
Minnesota. Access to research and computing facilities was provided
by the Digital Technology Center (DTC) and the Minnesota
Supercomputing Institute (MSI).

This paper is an extended version of the DSAA’2016 paper with the
same name [1].

B David C. Anastasiu
david.anastasiu@sjsu.edu

George Karypis
karypis@cs.umn.edu

1 Department of Computer Engineering, San José State
University, San José, CA, USA

2 Department of Computer Science and Engineering,
University of Minnesota, Twin Cities, MN, USA

lines across a variety of real-world datasets and similarity
thresholds.

Keywords Tanimoto similarity · Extended Jaccard ·
All-pairs similarity search · Nearest neighbors · Graph
construction · TAPNN

1 Introduction

Tanimoto, or extended Jaccard, is an important similar-
ity measure which has seen prominent use both in data
mining and chemoinformatics. While Strehl and Ghosh
note that “there is no similarity metric that is optimal for
all applications” [2], Tanimoto was shown to outperform
other similarity functions in text analysis tasks such as
clustering [3–5], plagiarism detection [6–8], and automatic
thesaurus extraction [9]. It has also been successfully used
to visualize high-dimensional datasets [2], analyze market
basket transactional data [10], recommend items [11], and
detect anomalies in spatiotemporal data [12].

In the chemoinformatics domain, datamining andmachine
learning approaches are increasingly used to boost the effec-
tiveness of the drug discovery process [13]. Fueled by the
generally valid premise that structurally similar molecules
exhibit similar binding behavior and have similar proper-
ties [14], many chemoinformatics methods use the com-
putation of pairwise similarities as a kernel within their
algorithms. Virtual screening (VS), for example, uses simi-
larity search, clustering, classification, and outlier detection
to identify structurally diverse compounds that display sim-
ilar bioactivity, which form the starting point for subsequent
chemical screening [15].

The numeric representation of chemical compounds has
been of great interest to the chemoinformatics community.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-017-0064-z&domain=pdf

154 Int J Data Sci Anal (2017) 4:153–172

Initial studies focused on capturing the presence or absence
of features within the compound and represented a com-
pound as a binary or bit vector, referred to as a fingerprint.
In recent years, frequency (or counting) vectors, which cap-
ture how many times a feature is present, and real-valued
vectors, called descriptors, have gained popularity [13,16].
Arif et al. [17], for example, investigated the use of inverse
frequency weighting of features in frequency descriptors for
similarity-basedVS and foundmarked increases in screening
effectiveness in some circumstances.

In this work, we address the problem of computing pair-
wise similarities with values of at least some threshold ε, also
known as the all-pairs similarity search (APSS) problem,
and focus on objects represented numerically as nonnega-
tive real-valued vectors. Examples of such objects include
text documents [18], user and item profiles in recommender
systems [11], market basket data [10], and most existing
chemical descriptors. We use the Tanimoto coefficient to
measure the similarity of two objects.

Within the chemoinformatics community, a great deal of
effort has been spent trying to accelerate pairwise similar-
ity computations using the Tanimoto coefficient. Swamidass
and Baldi [19] described a number of bounds for fast exact
threshold-based Tanimoto similarity searches of binary- and
integer-basedvector representations of chemical compounds.
These bounds allow skipping many object comparisons that
will theoretically not be similar enough to be included in the
result, a technique often referred to as filtering, or pruning.
Other pruning methods relied on hashing techniques [20,21]
or tree-based data structures [22,23] to accelerate neighbor
searches. However, most recent approaches focus on speed-
ing up chemical searches using inverted index data structures
borrowed from information retrieval [20,24,25].

Data mining methods initially designed to efficiently
search databases [26] or the Web [27] were later adapted
to solve the APSS problem [28]. Most of the existing work
addresses either binary vector object representations [29–31]
or cosine similarity [32,33]. Nevertheless, Bayardo et al. [28]
and Lee et al. [34] show how their cosine filtering-based
APSS methods can be extended to the Tanimoto coefficient
for binary- and real-valued vectors, respectively. Focusing
on real-valued vectors, Kryszkiewicz [35–37] proves several
theoretic bounds on the Tanimoto similarity and sketches an
inverted index-based algorithm for efficient similarity search.

We describe a newmethod for Tanimoto APSS of nonneg-
ative real-valued vectors, named TAPNN, which solves the
problem exactly, finding all pairs of objects with a Tanimoto
similarity of at least some input threshold ε. Our method
extends the indexing techniques prevalent in the literature
with tighter bounds on the similarity of two vectors, which
yield dramatic performance improvements. We experimen-
tally evaluated ourmethod against several baselines on chem-
ical datasets derived from the Molecular Libraries Small

Molecule Repository (MLSMR) and the SureChEMBL
database, and on text collections comprised of newswire sto-
ries and USPTO patents. We show that TAPNN significantly
outperforms baselines for both chemical and text datasets. In
particular, it was able to find all near-duplicate pairs among
5M SureChemBL chemical compounds in minutes, using a
single CPU core, and is over two orders of magnitude more
efficient than linear search in general at ε = 0.99.

The remainder of the paper is organized as follows. We
give a formal problem statement and describe our notation in
Sect. 2. In Sect. 3, we present our algorithm. In Sect. 4, we
describe the datasets, baseline algorithms, and performance
measures used in our experiments. We present our experi-
ment results and discuss their implications in Sect. 5, and
Sect. 6 concludes the paper.

2 Problem statement

Given a set of objects D = {d1, d2, . . . , dn}, such that each
object di is represented by a (sparse) nonnegative vector in an
m dimensional feature space, and a minimum threshold ε on
the similarity of twovectors,wewish tofind the set of all pairs
(di , d j) satisfying di , d j ∈ D, di �= d j , and sim(di , d j) ≥ ε

and compute their similarities. Letdi indicate the feature vec-
tor associatedwith the i th object and di, j its value (or weight)
for the j th feature. We measure vector similarity as the Tan-
imoto coefficient for real-valued vectors, computed as,

T(di , d j) =
〈
di ,d j

〉

‖di‖2 + ‖d j‖2 − 〈
di ,d j

〉 , (1)

where
〈
di ,d j

〉 = ∑m
l=1 di,l × d j,l denotes the vector dot-

product and ‖di‖ =
√〈

di ,di
〉
denotes its Euclidean norm, or

length. For a given object di , we call an object d j a neighbor
of di if sim(di , d j) ≥ ε.

The majority of feature values in sparse vectors are 0. As
a result, a vector di is generally represented as the set of
all pairs (j, di, j) satisfying 1 ≤ j ≤ m and di, j > 0. For
a set of objects represented by sparse vectors, an inverted
index representation of the set is made up of m lists, I =
{I1, I2, . . . , Im}, one for each feature. List I j contains pairs
(di , di, j), also called postings in the information retrieval
literature, where di is an indexed object that has a nonzero
value for feature j , and di, j is that value. Postings may store
additional statistics related to the feature within the object it
is associated with.

The APSS problem seeks, for each object in D, all neigh-
bors with a similarity value of at least ε. The similarity graph
of D is a graphG = (V, E)where vertices correspond to the
objects and an edge (vi , v j) indicates that the j th object is

123

Int J Data Sci Anal (2017) 4:153–172 155

Table 1 Notation used throughout the paper

Description

D Set of objects

di The i th object

di Vector representing i th object

di, j Value for j th feature in di

d≤p
i ,d>p

i Prefix and suffix of di at dimension p

d≤
i ,d>

i Un-indexed/indexed portion of di

d̂i Normalized version of di
I Inverted index

f j Vector with j th feature values from all vectors d̂i
ε Minimum desired similarity

in the neighborhood of the i th object and is associated with
a weight, namely the similarity value sim(di , d j).

Given a vector di and a dimension p, we will denote
by d≤p

i the vector (di,1, . . . , di,p, 0, . . . , 0), obtained by
keeping the p leading dimensions in di , which we call
the prefix (vector) of di . Similarly, we refer to d>p

i =
(0, . . . , 0, di,p+1, . . . , di,m) as the suffix of di , obtained by
setting the first p dimensions of di to 0. Vectors d

<p
i and d≥p

i
are analogously defined. Table 1 provides a summary of the
notation used in this work.

3 Methods

Tanimoto has several advantages that make it ideally suited
for measuring proximity in sparse high-dimensional data. It
can be efficiently computed via sparse dot-products for asym-
metric data, and it takes into consideration both the angle
and the length of vectors when indicating their proximity.
Consider, for example, the vectors in Fig. 1. When compar-
ing vector a against b1 and b2, cosine similarity reports the
cosine of the angle θ1, which is the same for both sim(a, b1)
and sim(a, b2). On the other hand, the lengths ‖a − b1‖ and
‖a − b2‖, denoted by the blue lines with the same labels,
are obviously different, showing that Euclidean distance can
capture the length difference between b1 and b2 in their
comparison with a. When comparing a against b1 and b3,
however, the lengths ‖a − b1‖ and ‖a − b3‖ are identical,
and Euclidean distance cannot tell the difference between
the two vectors with respect to a. The angles between a and
the two vectors, θ1 and θ2, are obviously different, so cosine
similarity is able to capture the angle difference between a
and {b1, b3}. By definition (Eq. 1), Tanimoto coefficient cap-
tures both the angle difference between the two vectors, via
the dot-products, and the difference in their lengths, via the
square lengths in the denominator.

In certain domains, capturing both angle and length
differences can lead to improved performance. Plagiarism

Fig. 1 Comparison of cosine and Euclidean proximity measures

detection seeks to find sections of documents that may have
been copied from other documents. If a section of a query
document was “Veni, vidi, vici. Veni! Vidi! Vici!,” it would
not be considered as plagiarizing a candidate document con-
taining “Veni, vidi, vici!” if the employed proximity measure
was Euclidean distance and the objects were represented as
term frequency vectors. However, both Tanimoto and Cosine
would be able to identify the sections as very similar and thus
a potential plagiarism case. In the chemoinformatics domain,
two compounds with very similar proportions of base atoms
may be considered quite similar according to Cosine similar-
ity, butmay have a very different structure due to the presence
ofmore overall atoms.BothEuclideandistance andTanimoto
coefficient would be able to discern these differences.

Solving the APSS problem is a difficult challenge, requir-
ing O(n2) similarities to be computed. In the remainder
of this section, we show how we can improve search per-
formance by taking advantage of several properties of the
problem input, delineated in Fig. 2. In Sect. 3.1, we describe
how our method, TAPNN, ignores many similarity compu-
tations, namely those pairs of objects that do not have any
features in common, by leveraging the sparsity structure of
the input data. We then demonstrate how, based on the length
of each query vector and the input threshold ε, our method
efficiently ignores many of the remaining potential candi-
dates whose lengths are too short of too long. In Sect. 3.3,
we describe how TAPNN further ignores many candidates
whose angles differ greatly from that of the query. Finally,
in Sect. 3.4, we discuss how an upper bound estimate of the
angle between a query and a candidate object, in conjunc-
tion with the difference in their lengths, can further be used
to ignore candidates. The remaining number of object pairs
whose similarity is exactly computed is a small portion of
the initially considered O(n2) object pairs, and only slightly
larger than the number of true neighbors, those in the output
of our method.

123

156 Int J Data Sci Anal (2017) 4:153–172

Fig. 2 Pruning strategy in TAPNN

Fig. 3 Using an inverted index and accumulator to compute dot-
products

3.1 A basic indexing approach

One approach to find neighbors for a given query object
that has been reported to work well in the similarity search
literature [20,24,25,28,32–34] has been to use an inverted
index, which makes it possible to avoid computing similar-
ities between the query and objects that do not have any
nonzero features in commonwith it. Amap-based data struc-
ture, called an accumulator, can be used to compute the
dot-product of the query with all objects encountered while
iterating through the inverted lists for nonzero features in the
query.

Figure 3 shows how an inverted index and accumulator
data structures can be used to compute dot-products for the
query object d3 with all potential neighbors of d3. We call
an object that has a nonzero accumulated dot-product a can-
didate, and forgo computing the query object self-similarity,
which is by definition 1. Using precomputed lengths for the
object vectors, the dot-products of all candidates can be trans-
formed into Tanimoto coefficients according to Eq. 1 and
those coefficients at or above ε can be stored in the output.

One inefficiency with this approach is that it does not take
advantage of the commutativity property of the Tanimoto

coefficient, computing sim(di , d j) both when accumulating
similarities for di and for d j . To address this issue, authors
in [28] and [33] have suggested building the index dynami-
cally, adding the query vector to the index only after finding
its neighbors. This ensures that the query is only compared
against previously processed objects in a given processing
order. We suggest a different approach that is equally effi-
cient given modern computer architectures. Given an object
processing order, we first re-label each document to match
the processing order and then build the inverted index fully,
adding objects to the index in the given processing order. The
result will be inverted lists sorted in non-decreasing order of
document labels. Then, when iterating through each inverted
list, we can stop as soon as the encountered document label
is greater or equal to that of the query. Since the document
label will have already been read from memory to perform
the accumulation operation andwill be resident in the proces-
sor cache, the additional check against the value of the query
label will be very fast and will be hidden by the latency asso-
ciated with loading the next cache line from memory.

3.2 Length-based pruning

Kryszkiewicz [35] has shown that some of the objects whose
vector lengths are either too small or too large compared
to that of the query object cannot be its neighbors and can
thus be ignored. An object d j cannot be a neighbor of a
query object di if its length ‖d j‖ falls outside the range
[(1/α)‖di‖, α‖di‖], where ‖di‖ is the length of the query
vector and

α = 1

2

⎛

⎝
(
1 + 1

ε

)
+

√(
1 + 1

ε

)2

− 4

⎞

⎠ . (2)

In Sect. 3.4, we show this bound is actually the limit of a
new class of Tanimoto similarity bounds we introduce in this
paper. Here, we will show how candidate length pruning can
be efficiently integrated into our indexing approach.

A given object will be encountered as many times in the
index as it has nonzero features in common with the query.
To avoid checking its length against that of the query each
time, we could use a data structure, such as a map or bit
vector, to mark when a candidate has been checked. While
checking this data structure may be less demanding than a
multiplication and a comparison, it can actually be slower
if the number of candidates is high and the data structure
does not fit in the processor cache. Instead, we propose to
process objects in non-decreasing vector length order. By re-
labeling objects as discussed earlier, objects whose lengths
are too short will be potentially found at the beginning of the
inverted lists, while objects whose lengths are too long can
be automatically ignored, as they will come after the query

123

Int J Data Sci Anal (2017) 4:153–172 157

Fig. 4 Efficient length pruning via re-labeling and starting points

object in the processing order. Note also that, for an object
d j following di in the processing order,

1

α
‖d j‖ ≥ 1

α
‖di‖,

since ‖d j‖ ≥ ‖di‖ and both vector lengths andα are nonneg-
ative real values.As such, the label of themaximumcandidate
that canbe ignoredwill be non-decreasing.Our approach thus
uses a list of starting pointers, one for each inverted list, and
updates the starting pointer of a list each time a new candidate
whose length is too small is found in it.

Figure 4 shows an example of the utility of our process-
ing order re-labeled inverted index, coupled with the use of
inverted index starting pointers. In the example,while finding
neighbors for objects d3 and d4, objects d1 and d2 were found
to be too short, respectively. The red horizontal lines in the
index structure represent the starting pointers in the respec-
tive index lists, whichwere advancedwhile finding neighbors
for d3 and d4. When searching for potential neighbor candi-
dates for d5, objects d1 and d2 are automatically ignored by
iterating through the inverted lists f1, f2, f4, and f5 from the
current start pointers. In addition to the skipped length check
comparison between d5 and d1 and d2, the method also ben-
efits from fewer memory loads by iterating through shorter
inverted lists.

Algorithm 1 provides a pseudocode sketch for our basic
inverted index-based approach. The method first permutes
objects in non-decreasing vector length order and indexes
them. Then, for each query object dq , in the processing order,
the maximum object dmax satisfying (1/α)‖dmax‖ < ‖dq‖
is identified. When iterating through the j th inverted list,
TAPNN avoids objects in the list whose lengths have already
been determined too small by starting the iteration at index
S[j], which is incremented as more objects are found with
small lengths. At the end of the accumulation stage, the accu-
mulator contains full dot-products between the query and all
objects that could be its neighbors. For each such object, the
algorithm computes the Tanimoto coefficient using the dot-
product stored in the accumulator and adds the object to the
result set if its similarity meets the threshold.

Algorithm 1 TAPNN inverted index approach
1: function TAPNN- 1(D, ε)
2: A ← ∅ � accumulator
3: S ← ∅ � list starts
4: N ← ∅ � set of neighbors
5: Compute and store vector lengths for all objects
6: Permute objects in non-decreasing vector length order
7: for each q = 1, . . . , |D| s.t. ‖dc‖ ≤ ‖dq‖ ∀c ≤ q do
8: for each j = 1, . . . ,m s.t. dq, j > 0 do � Indexing
9: I j ← I j ∪ {(dq , dq, j)}
10: for each q = 1, . . . , |D| s.t. ‖dc‖ ≤ ‖dq‖ ∀c ≤ q do
11: Find label dmax of last object that can be ignored
12: for each j = 1, . . . ,m s.t. dq, j > 0 do
13: for each k = S[j], . . . , |I j | do
14: (dc, dc, j) ← I j [k]
15: if dc ≤ dmax then
16: S[j] ← S[j] + 1
17: else if dc ≥ dq then
18: break
19: else � Accumulation
20: A[dc] ← A[dc] + dq, j × dc, j
21: for each dc s.t. A[dc] > 0 do � Verification
22: Scale dot-product in A[dc] according to Eq. 1
23: if A[dc] ≥ ε then
24: N ← N ∪ (dq , dc, A[dc])
25: return N

3.3 Incorporating cosine similarity bounds

A number of recent methods have been devised that use sim-
ilarity bounds to efficiently solve the cosine similarity APSS
problem. Moreover, Lee et al. [34] have shown that, for non-
negative vectors and the same threshold ε, the set of Tanimoto
neighbors of an object is actually a subset of its set of cosine
neighbors. This can be seen from the formulas of the two
similarity functions.

T(di , d j) =
〈
di ,d j

〉

‖di‖2 + ‖d j‖2 − 〈
di ,d j

〉

C(di , d j) =
〈
di ,d j

〉

‖di‖‖d j‖

Given a common numerator, it remains to find a relationship
between the denominators in the two functions. Since, for any
real-valued vector lengths, (‖di‖ − ‖d j‖)2 ≥ 0, it follows
that,

‖di‖2 + ‖d j‖2 − 2‖di |‖‖d j‖ ≥ 0,

‖di‖2 + ‖d j‖2 − ‖di‖‖d j‖ ≥ ‖di‖‖d j‖,
‖di‖2 + ‖d j‖2 − 〈

di ,d j
〉 ≥ ‖di‖‖d j‖,

where the last equation follows from the Cauchy–Schwarz
inequality, which states that

〈
di ,d j

〉 ≤ ‖di‖‖d j‖. As a result,
the following relationships can be observed between the
cosine and Tanimoto similarities of two vectors,

123

158 Int J Data Sci Anal (2017) 4:153–172

T(di , d j) ≤ C(di , d j),

T(di , d j) ≥ ε ⇒ C(di , d j) ≥ ε,

C(di , d j) < ε ⇒ T(di , d j) < ε.

One can then solve the TanimotoAPSS problem by first solv-
ing the cosine APSS problem and then filtering out those
cosine neighbors that are not also Tanimoto neighbors. Given
the computed cosine similarity of two vectors and stored vec-
tor lengths, the Tanimoto similarity can be derived as follows.

T(di , d j) =

〈
di ,d j

〉

‖di‖‖d j‖
‖di‖2+‖d j‖2−

〈
di ,d j

〉

‖di‖‖d j‖

=

〈
di ,d j

〉

‖di‖‖d j‖
‖di‖2+‖d j‖2

‖di‖‖d j‖ −
〈
di ,d j

〉

‖di‖‖d j‖

Applying the definition for cosine similarity, we have

T(di , d j) = C(di , d j)

‖di‖2+‖d j‖2
‖di‖‖d j‖ − C(di , d j)

. (3)

Note that

(‖di‖ − ‖d j‖)2 ≥ 0 ⇒ ‖di‖2 + ‖d j‖2
‖di‖‖d j‖ ≥ 2,

which provides a higher pruning threshold [34] when search-
ing for cosine neighbors given a Tanimoto similarity thresh-
old ε,

T(di , d j) ≥ ε ⇒ C(di , d j)

2 − C(di , d j)
≥ ε

⇒ C(di , d j) ≥ 2ε

1 + ε
= t (4)

Unlike theTanimoto coefficient, cosine similarity is length
invariant. Vectors can thus be normalized as a preprocessing
step, which reduces cosine similarity to the dot-product of
the normalized vectors. Denoting by d̂i = di/‖di‖, the nor-
malized version of the i th object vector,

C(di , d j) =
〈
di ,d j

〉

‖di‖‖d j‖ = 〈
d̂i , d̂ j

〉
.

This step, in fact, reduces the number of floating point oper-
ations needed to solve the problem and is standard in cosine
APSSmethods. Note that themethod outlined inAlgorithm 1
can also be applied to normalized vectors, adding only a nor-
malization step before indexing and replacing the scaling
factor in line 22, using Eq. 3 instead of Eq. 1.

In a recent work [33], we described a number of cosine
similarity bounds based on the �2-norm of prefix or suffix
vectors that have been found to be more effective than previ-
ous known bounds for solving the cosine APSS problem. It
may be beneficial to incorporate this type of filtering in our
method. However, some of the bounds we described in that
work rely on a different object processing order. Ourmethod,
therefore, uses similar �2-norm-based bounds that are pro-
cessing order independent. This allows our method to still
take advantage of the vector length-based filtering described
in Sect. 3.2. In the remainder of this section, we will describe
the �2-norm-based filtering in our method.

Normalized vector prefix �2-norm-based filtering

Given a fixed feature processing order and the prefix and
suffix of a query object at feature p, it is easy to see that

〈
d̂q , d̂c

〉 = 〈
d̂≤p
q , d̂c

〉 + 〈
d̂>p
q , d̂c

〉

≤ ‖d̂≤p
q ‖‖d̂c‖ + 〈

d̂>p
q , d̂c

〉
,

where the inequality follows from applying the Cauchy–
Schwarz inequality to the prefix dot-product. Since the
maximum value of ‖d̂c‖ is 1, the prefix dot-product can fur-
ther be upper-bounded by the length of the prefix vector,

〈
d̂≤p
q , d̂c

〉 ≤ ‖d̂≤p
q ‖. (5)

Another bound on the prefix dot-product can be obtained
by considering the maximum values for each feature among
all normalized object vectors. Let f j denote the vector of
all feature values for the j th feature within the normalized
vectors and mx the vector of maximum such feature values
for each dimension, defined as,

f j = (d̂1, j , d̂2, j , . . . , d̂n, j),

mx = (‖f1‖∞, ‖f2‖∞, . . . , ‖fm‖∞).

Then,

〈
d̂≤p
q , d̂c

〉 =
m∑

l=1

dq,l × dc,l ≤
m∑

l=1

dq,l × mxl ⇒
〈
d̂≤p
q , d̂c

〉 ≤ 〈d̂≤p
q ,mx〉. (6)

Combining the bounds in Eqs. 5 and 6, we obtain a bound on
the prefix similarity of a vector with any other object in D,
which we denote by ps≤p

q ,

〈
d̂≤p
q , d̂c

〉 ≤ ps≤p
q = min(‖d̂≤p

q ‖, 〈d̂≤p
q ,mx〉). (7)

We define ps<p
q analogously.

123

Int J Data Sci Anal (2017) 4:153–172 159

Algorithm 2 describes howwe incorporate cosine similar-
ity bounds within our method. Following examples in [28]
and [33], we use the ps bound to index only a few of the
nonzeros in eachobject.Note that, if ps<p

q < t ,with t defined
as in Eq. 4, and an object dc has no features in common with
the query in lists I j , p ≤ j ≤ m, then its cosine similarity
to the query will be below t , and its Tanimoto similarity will
then be below ε. Conversely, if

〈
d̂>p
q , d̂c

〉
> 0, the object may

potentially be a neighbor. By indexing values in each query
vector starting at the index p satisfying ps≤p

q ≥ t , and then
iterating through the index and accumulating, the nonzero
values in the accumulator will contain only the suffix dot-
products,

〈
d̂q , d̂>

c

〉
, where d>

c represents the indexed suffix
for some object dc found in the index. Once some value has
been accumulated for an object, we refer to it as a candidate.
This portion of the method can be thought of as candidate
generation (CG) and is similar in scope to the screening phase
of many compound search methods in the chemoinformat-
ics literature. Our method uses the un-indexed portion of the
candidate, d≤

c , to complete the dot-product computation dur-
ing the verification stage, before the scaling and threshold
checking steps. We call this portion of the method, which
is akin to the verification stage in other chemoinformatics
methods, candidate verification (CV).

Our method adopts a non-increasing inverted list size
(object frequency) order for processing features, which
heuristically leads to shorter lists in the inverted index. The
partial indexing strategy presented in the previous paragraph
improves the efficiency of our method in two ways. First,
objects that have nonzero values in common with the query
only in the un-indexed set of query features will be automat-
ically ignored. Our method will not encounter such an object
in the index when generating candidates for the query and
will thus not accumulate a dot-product for it. Second, the ver-
ification stage will require reading from memory only those
sparse vectors for un-pruned candidates, iterating through
fewer nonzeros in general than exist in the un-indexed por-
tion of all objects.

We use the ps bound in two additional ways to improve
the pruning effectiveness of our method. First, when encoun-
tering a new potential object in the index during the CG stage
(A[dc] = 0), we only accept it as a candidate if ps≤ j

q ≥ t .
Note that we process index lists in reverse feature process-
ing order in the CG and CV stages, and A[dc] contains the
exact dot-product

〈
d̂q , d̂

> j
c

〉
. Therefore, if A[dc] = 0 and

ps≤ j
q < t , the candidate cannot be a neighbor of the query

object. Second, as a first step in verifying each candidate,
we check whether ps<

c , the ps bound of the candidate at its
last indexed feature (line 10 in Algorithm 2), added to the
accumulated suffix dot-product, is equal or greater than the
threshold t . The value ps<

c is an upper bound of the dot-
product of the un-indexed prefix of the candidate vector with

Algorithm 2 TAPNN with cosine bounds
1: function TAPNN- 2(D, ε)
2: A ← ∅, S ← ∅, N ← ∅

3: t ← 2ε/(1 + ε)

4: Compute and store vector lengths for all objects
5: Permute objects in non-decreasing vector length order
6: for each q = 1, . . . , |D| s.t. ‖dc‖ ≤ ‖dq‖ ∀c ≤ q do
7: Normalize dq
8: for each j = 1, . . . ,m s.t. d̂q, j > 0 and ps≤p

q ≥ t do

9: I j ← I j ∪ {(dq , d̂q, j , ‖d̂< j
q ‖)} � Indexing

10: Store ps<
q

11: for each q = 1, . . . , |D| s.t. ‖dc‖ ≤ ‖dq‖ ∀c ≤ q do
12: Find label dmax of last object that can be ignored
13: for each j = m, . . . , 1 s.t. d̂q, j > 0 do � CG
14: for each k = S[j], . . . , |I j | do
15: (dc, dc, j) ← I j [k]
16: if dc ≤ dmax then
17: S[j] ← S[j] + 1
18: else if dc ≥ dq then
19: break
20: else if A[dc] > 0 or ps≤ j

q ≥ t then
21: A[dc] ← A[dc] + d̂q, j × d̂c, j
22: Prune if A[dc] + ‖d̂< j

q ‖‖d̂< j
c ‖ < t

23: for each dc s.t. A[dc] > 0 do � CV
24: Prune if A[dc] + ps<

c < t
25: for each j = m, . . . , 1 s.t. d̂≤

c, j > 0 and dq, j > 0 do

26: A[dc] ← A[dc] + d̂q, j × d̂c, j
27: Prune if A[dc] + ‖d̂< j

q ‖‖d̂< j
c ‖ < t

28: Scale dot-product in A[dc] according to Eq. 3
29: if A[dc] ≥ ε then
30: N ← N ∪ (dq , dc, A[dc])
31: return N

any other vector in the dataset. Thus, the candidate can be
safely pruned if the check fails.

As in our cosine APSS method [33], after each accu-
mulation operation, in both the CG and CV stages of the
algorithm, we check an additional bound, based on the
Cauchy–Schwarz inequality. The objects cannot be neigh-
bors if the accumulated suffix dot-product, added to the upper
bound ‖d̂< j

q ‖‖d̂< j
c ‖ of their prefix dot-product, cannot meet

the threshold t . We have tested a number of additional can-
didate verification bounds described in the literature based
on vector number of nonzeros, prefix lengths, or prefix sums
of the vector feature values, but have found them to be less
efficient to compute and in general less effective than our
described cosine pruning in a variety of datasets. The inter-
ested reader may consult [28,32–34] for details on additional
verification bounds for cosine similarity.

3.4 New Tanimoto similarity bounds

Up to this point, we have used pruning bounds based on the
lengths of the un-normalized vectors and prefix �2-norms
of the normalized vectors to either ignore outright or stop

123

160 Int J Data Sci Anal (2017) 4:153–172

considering (prune) those objects that cannot be neighbors
for a given query.Wewill nowpresent newTanimoto-specific
bounds which combine the two concepts to effect additional
pruning. First, we will describe a bound on the prefix length
of an un-normalized candidate vector, which we use during
candidate generation. Then, we will introduce a bound for
the length of the un-normalized candidate vector that relies
on cosine similarity estimates we compute in our method.

A bound on the prefix length of an un-normalized candidate
vector

Recall that the dot-product of a query with a candidate vector
can be decomposed as the sum of its prefix and suffix dot-
products, which can be written as a function of the respective
normalized vector dot-products as,

〈
dq ,dc

〉 = 〈
d≤p
q ,dc

〉 + 〈
d>p
q ,dc

〉

= 〈
d̂≤p
q , d̂c

〉‖d≤p
q ‖‖dc‖ + 〈

d̂>p
q , d̂c

〉‖d>p
q ‖‖dc‖.

For an object that has not yet become a candidate (A[dc] =
0),

〈
d̂>p
q , d̂c

〉 = 0, simplifying the expression to,

〈
dq ,dc

〉 = 〈
d̂≤p
q , d̂c

〉‖d≤p
q ‖‖dc‖.

From the expression T(dc, dq) ≥ ε, substituting the Tani-
moto formula in Eq. 1, we can derive,

〈
dq ,dc

〉 ≥ ε

1 + ε

(
‖dq‖2 + ‖dc‖2

)

‖d≤p
q ‖ ≥ ε

1 + ε

‖dq‖2 + ‖dc‖2
‖dc‖

〈
d̂≤p
q , d̂c

〉

‖d≤p
q ‖ ≥ ε

1 + ε

‖dq‖2 + ‖d1‖2
‖dq−1‖ ps≤ j

q

(8)

Equation 8 replaces the prefix dot-product
〈
d̂≤p
q , d̂c

〉
with

the ps upper bound, which represents the dot-product of
the query with any potential candidate. Furthermore, tak-
ing advantage of the pre-defined object processing order
in our method, we replace the numerator candidate length
by that of the object with minimum length (the first pro-
cessed object, d1) and the denominator candidate length with
that of the object with maximum length (the last processed
object, dq−1). Since ‖d1‖2 ≤ ‖dc‖2, ‖dq−1‖ ≥ ‖dc‖, and
ps≤ j

q ≥ 〈
d̂≤p
q , d̂c

〉
, the inequality holds.

We use the bound in Eq. 8 during the candidate generation
stage of our method as a potentially more restrictive condi-
tion for accepting new candidates. It complements the ps
bound in line 20 in Algorithm 2, which checks whether new
candidates can still be neighbors based only on the prefix of
the normalized query vector. Once the prefix length of the

query un-normalized vector falls below the bound in Eq. 8,
objects that have not already been encountered in the index
can no longer be similar enough to the query.

A tighter bound for the un-normalized candidate vector
length

Let β = ‖dc‖/‖dq‖, and, for notation simplicity, s =〈
d̂q , d̂c

〉 = C(di , d j). Given T(dq , dc) ≥ ε, and the pre-
imposed object processing order (i.e., ‖dq‖ ≥ ‖dc‖), we
derive β as a function of the cosine similarity of the objects,
starting from Eq. 3,

T(dq , dc) = C(dq , dc)
‖dq‖2+‖dc‖2

‖dq‖‖dc‖ − C(dq , dc)
≥ ε

s‖dq‖‖dc‖
‖dq‖2 + ‖dc‖2 − s‖dq‖‖dc‖ ≥ ε

ε‖dc‖2 − s(1 + ε)‖dc‖‖dq‖ − ε‖dq‖2 ≤ 0

εβ2 − s(1 + ε)β − ε ≤ 0

β = s(1 + ε)

2ε
+

√(
s(1 + ε)

2ε

)2

− 1

= s

t
+

√(s
t

)2 − 1 (9)

Replacing s with any of the upper bounds on the cosine
similarity we described in Sect. 3.3, the bound in Eq. 9 allows
us to prune any candidate whose length is less than ‖dq‖/β.
Note that, for s = 1, which is the upper limit of the cosine
similarity of nonnegative real-valued vectors, β = α, which
is the bound introduced by Kryszkiewicz [35] for length-
based pruning of candidate vectors. In the presence of an
upper bound estimate of the cosine similarity for two vec-
tors, our bound provides a more accurate estimate of the
minimum length a candidate vector must have to potentially
be a neighbor for the query.

In Algorithm 3, we present pseudocode for the TAPNN
method,which includes all the pruning strategieswedescribed
in Sect. 3. The symbol EQ8 in line 12 refers to checking
the query prefix vector length, according to Eq. 8. While our
bound β for the un-normalized candidate vector length could
be checked each time we have a better estimate of the cosine
similarity of two vectors, after each accumulation operation,
it is more expensive to compute than the simpler prefix �2-
norm cosine bound. We thus check it only twice for each
candidate object, first after computing the cosine estimate
based on the candidate ps bound (line 17) and again after
accumulating the first un-indexed feature in the candidate
(line 22). We have found this strategy works well in practice.

123

Int J Data Sci Anal (2017) 4:153–172 161

Algorithm 3 TAPNN algorithm
1: function TAPNN(D, ε)
2: Lines 2–10 in Algorithm 2
3: for each q = 1, . . . , |D| s.t. ‖dc‖ ≤ ‖dq‖ ∀c ≤ q do
4: Find label dmax of last object that can be ignored
5: for each j = m, . . . , 1 s.t. d̂q, j > 0 do � CG
6: for each k = S[j], . . . , |I j | do
7: (dc, dc, j) ← I j [k]
8: if dc ≤ dmax then
9: S[j] ← S[j] + 1
10: else if dc ≥ dq then
11: break
12: else if A[dc] > 0 or [ps≤ j

q ≥ t and EQ8] then
13: A[dc] ← A[dc] + d̂q, j × d̂c, j
14: Prune if A[dc] + ‖d̂< j

q ‖‖d̂< j
c ‖ < t

15: for each dc s.t. A[dc] > 0 do � CV
16: Prune if A[dc] + ps<

c < t
17: Compute β given s = A[dc] + ps<

c
18: Prune if ‖dc‖ × β < ‖dq‖
19: Find first j s.t. d̂≤

c, j > 0 and dq, j > 0

20: A[dc] ← A[dc] + d̂q, j × d̂c, j
21: Prune if A[dc] + ‖d̂< j

q ‖‖d̂< j
c ‖ < t

22: Compute β given s = A[dc] + ‖d̂< j
q ‖‖d̂< j

c ‖
23: Prune if ‖dc‖ × β < ‖dq‖
24: for each j = . . . , 1 s.t. d̂≤

c, j > 0 and dq, j > 0 do

25: A[dc] ← A[dc] + d̂q, j × d̂c, j
26: Prune if A[dc] + ‖d̂< j

q ‖‖d̂< j
c ‖ < t

27: Scale dot-product in A[dc] according to Eq. 3
28: if A[dc] ≥ ε then
29: N ← N ∪ (dq , dc, A[dc])
30: return N

4 Materials

In this section, we describe the datasets, baseline algorithms,
and performance measures used in our experiments.

4.1 Datasets

We evaluate each method using several real-world and
benchmark text and chemical compound corpora. Their char-
acteristics, including number of rows (n), columns (m),
nonzeros (nnz), and mean row/column length (μr /μc), are
detailed in Table 2.

1. Patents-8.8M is a random subset of 8.8M patent doc-
uments from all US utility patents.1 Each document
contains the patent title, abstract, and body. Patents-
4M, Patents-2M, Patents-1M, Patents-500K, Patents-
250K, and Patents-100K are random subsets of 4E+6,
2E+6, 1E+6, 5E+5, 2.5E+5, and 1E+5 patents, respec-
tively, from the Patents-8.8M dataset. Most of our
experiments used the Patents-100K dataset, which we

1 http://www.uspto.gov/.

Table 2 Dataset statistics

Dataset n m nnz μr μc

RCV1 804K 46K 61.5M 77 1348

Patents-8.8M 8820K 16,591K 4277.1M 485 258

Patents-4M 4000K 8187K 1791.0M 448 219

Patents-2M 2000K 4146K 837.4M 419 202

Patents-1M 1000K 3215K 464.5M 465 145

Patents-500K 500K 2156K 233.0M 466 108

Patents-250K 250K 1403K 116.1M 464 83

Patents-100K 100K 759K 46.3M 464 61

MLSMR 325K 20K 56.1M 173 2803

SC-11.5M 11,519K 7,415 1,784.5M 155 262,669

SC-5M 5000K 7415 699.9M 155 103,063

SC-1M 1000K 6752 154.9M 155 22,949

SC-500K 500K 6717 77.5M 155 11,533

SC-100K 100K 6623 15.5M 155 2336

In the table, n represents the number of objects (rows),m is the number
of features in the vector representation of the objects (columns), nnz is
the number of nonzero values, and μr and μc are the mean number of
nonzeros in each row and column, respectively. The first eight lines in
the table represent text datasets, while the rest of the lines are chemical
compound datasets

had readily available. We later processed the larger
Patents datasets and included them in our scaling exper-
iments.

2. RCV1 is a standard text processing benchmark corpus
containing over 800,000 newswire stories from Reuters,
Ltd [38].

3. MLSMR [39] (Molecular Libraries Small Molecule
Repository) is a collection of structures of compounds
accepted into the repository of PubChem, a database
of small organic molecules and their biological activity
curated by the National Center for Biotechnology Infor-
mation (NCBI). We used the December 2008 version of
the Structure Data Format (SDF) database.2

4. SC-11.5M contains compounds from the SureChEMBL
[40] database, which includes a large set of chemical
compounds automatically extracted from text, images,
and attachments of patent documents. SC-5M, SC-1M,
SC-500K, and SC-100K are random subsets of 5E+6,
1E+6, 5E+5, and 1E+5 compounds, respectively, from
the SC-11.5M dataset.

4.1.1 Text data processing

We used standard text processing methods to encode docu-
ments as sparse vectors. Each document was first tokenized,

2 https://mlsmr.evotec.com/MLSMR_HomePage/pdf/MLSMR_Colle
ction_20081201.zip.

123

http://www.uspto.gov/
https://mlsmr.evotec.com/MLSMR_HomePage/pdf/MLSMR_Collection_20081201.zip
https://mlsmr.evotec.com/MLSMR_HomePage/pdf/MLSMR_Collection_20081201.zip

162 Int J Data Sci Anal (2017) 4:153–172

removing punctuation, making text lowercased, and split-
ting the document into a set of words. Each word was then
stemmed using the Porter stemmer [41], reducing different
versions of the same word to a common token. Within the
space of all tokens, a document is then represented by the
sparse vector containing the frequency of each token present
in the document.

4.1.2 Chemical compound processing

We encode each chemical compound as a sparse frequency
vector of the molecular fragments it contains, represented by
GF [42] descriptors extracted using the AFGen v. 2.0 [43]
program.3 AFGen represents molecules as graphs, with ver-
tices corresponding to atoms and edges to bonds in the
molecule. GF descriptors are the complete set of unique size-
bounded subgraphs present in each compound. Within the
space of all GF descriptors for a compound dataset, a com-
pound is then represented by the sparse vector containing the
frequency of each GF descriptor present in the compound.
We used a minimum length of 3 and a maximum length of
5 and ignored hydrogen atoms when generating GF descrip-
tors (AFGen settings fragtype=GF, lmin=3, lmax=5, fmin=1,
noh: yes). Before running AFGen on each chemical dataset,
we used the Open Babel toolbox [44] to remove compounds
with incomplete descriptions.

4.2 Baseline approaches

We compare our methods against the following baselines.

– IdxJoin [33] is a straight-forward baseline that does
not use any pruning when computing similarities.
IdxJoin uses an accumulator data structure to simulta-
neously compute the dot-products of a query object with
all prior processed objects, iterating through the inverted
lists corresponding to features in the query. While in [33]
the method was used to compute dot-products of normal-
ized vectors, we apply the method on the un-normalized
vectors. Resulting Tanimoto similarities are computed
according to Eq. 1, using previously stored vector norms.
Then, those similarities below ε are removed.

– L2AP [33] solves the all-pairs problem for the cosine sim-
ilarity, rather than the Tanimoto coefficient. As shown in
Sect. 3.3, the Tanimoto all-pairs result is a subset of the
cosine all-pairs result. After executing the L2AP algo-
rithm, we use Eq. 3 and previously stored vector norms
to compute theTanimoto coefficient of all resulting object
pairs and filter out those below ε.

– MMJoin [34] is a filtering-based approach to solving the
all-pairs problem for the Tanimoto coefficient. It relies on

3 http://glaros.dtc.umn.edu/gkhome/afgen/download.

Table 3 Comparison of MK-Join and MK-Join2

MLSMR RCV1

ε dps time ε dps time

0.6 0.9019 1.0169 0.6 0.6088 1.0044

0.7 0.8348 1.0350 0.7 0.5890 1.0161

0.8 0.7303 1.0339 0.8 0.5942 1.0141

0.9 0.5681 1.0329 0.9 0.6202 1.0054

0.99 0.2275 1.0027 0.99 0.5115 1.0067

The table shows the ratio of the number of dot-products computed by
MK-Join2 and MK-Join (dps column), and the ratio of the time taken
by MK-Join2 and that of MK-Join (time column) for two datasets and
five different ε values

efficiently solving the cosine similarity all-pairs problem
using pruning bounds based on vector lengths and the
number of nonzero features in each vector.

– MK-Join is a method we designed using the Tanimoto
similarity pruning bounds described by Kryszkiewicz
in [35] and [36]. MK-Join uses an accumulator to com-
pute similarities of each query against all candidates
found in the inverted lists associatedwith features present
in the query. However, MK-Join processes inverted lists
in a different order, in non-increasing order of the query
feature values. By following this order, Kryszkiewicz has
shown that the method can safely stop accepting new
candidates once the squared norm of the partially pro-
cessed query vector (i.e., setting values of unprocessed
features to 0) falls below t = 1 − (2ε

1+ε
)2. A candidate

is also ignored if its length ‖dc‖ falls outside the range
[(1/α)‖dq‖, α‖dq‖], where α is defined as in Eq. 2.

– We also implemented MK-Join2, a version of MK-Join
that further incorporates a tighter bound on candi-
date lengths described by Kryszkiewicz in Theorem 5
of [37]. The bound is equivalent to our Eq. 8 with

s =
√
1 − ∑

i∈L d̂q,i , given the set L of query features
that are not also candidate features. However, finding
this set requires traversing both the query and candi-
date sparse vectors, which reduces the benefit obtained
by pruning candidates. As an example, Table 3 shows
the results of executing MK-Join and MK-Join2 for
ε ∈ {0.6, 0.7, 0.8, 0.9, 0.99} on the MLSMR and RCV1
datasets. The execution environment details for this
experiment are provided in Sect. 4.4. While execut-
ing as little as 1/5 of the dot-product computations
that MK-Join executes, MK-Join2 was slower than
MK-Join in our experiments. As a result, in order to
reduce clutter in our figures, we only include the results
for MK-Join in Sect. 5.

123

http://glaros.dtc.umn.edu/gkhome/afgen/download

Int J Data Sci Anal (2017) 4:153–172 163

4.3 Performance measures

We compare the search performance of different methods in
terms of CPU runtime, which is measured in seconds. I/O
time needed to load the dataset into memory or write output
to the file system should be the same for all methods and is
ignored. Between a method A and a baseline B, we report
speedup as the ratio of B’s execution time and that of A’s.

We use the number of candidates and the number of
full similarity computations as an architecture- and pro-
gramming language-independent way to measure similarity
search cost [33,45,46]. A naïve method may compute up to
n(n − 1) = O(n2) similarities to solve the APSS problem.
However, all of our comparison methods take advantage of
the commutative property of the Tanimoto similarity and at
most compare n(n−1)

2 candidate object pairs and compute as
many similarities. We thus report the percent of compared
candidates (candidate rate) and computed full dot-products
(scan rate) as opposed to this upper limit.

4.4 Execution environment

Ourmethod4 and all baselines are single-threaded, serial pro-
grams, implemented in C, and compiled using gcc 5.1.0 with
the -O3 optimization setting enabled. Each method was exe-
cuted on its own node in a cluster of HP Linux servers. Each
server is a dual-socket machine, equipped with 24 GB RAM
and two four-core 2.6 GHz Intel Xeon 5560 (Nehalem EP)
processors with 8 MB Cache. We executed each method a
minimum of three times for ε ∈ {0.6, 0.7, 0.8, 0.9, 0.99} and
report the best execution time in each case. Processing the
full SC-11.5M (1.78B nonzeros, 14 GB on disk) and Patents-
8.8M(4.28Bnonzeros, 28GBondisk) datasets requiresmore
than the available RAM on the Nehalem machines; thus,
we executed data scaling experiments on a different server,
equipped with 64 GB RAM and two 12-core 2.5 Ghz Intel
Xeon (Haswell E5-2680v3) processors with 30 MB Cache.
All datasets except the full Patents-8.8M dataset could be
processed using 64 GB RAM. The Patents dataset experi-
ments were executed on a high-memory machine with the
same Haswell processors and 256 GB RAM. As all tested
methods are serial, only one core was used on each server
during the execution.

5 Results and discussion

Our experiment results are organized along several direc-
tions. First, we analyze statistics of the input data and output
neighborhood graphs for some of the datasets we use in
our experiments, and the effectiveness of our new Tani-

4 Source code available at http://davidanastasiu.net/software/tapnn/.

Fig. 5 Object frequency distributions for dataset features

moto bounds at pruning the similarity search space. Then,
we compare the efficiency of our method against existing
state-of-the-art baselines, demonstrating up to an order of
magnitude improvement. Finally, we analyze the scaling
characteristics of our method when dealing with increasing
amounts of data.

5.1 Neighborhood graph statistics

The efficiency of similarity search methods for input objects
represented as a sparse matrix is highly dependent on the
characteristics of those data. Consider, for example, a banded
sparse matrix of width k. Each object would have to be
compared against at most 2k other objects. On the other
hand, almost all pairwise similarities must be computed if
the nonzeros are randomly distributed in the matrix. In many
real-world datasets, the object frequency of features (the
number of objects that have a nonzero value for a feature)
displays a power-law distribution, with a small number of
features present in many objects and the majority of features
present in few objects. Thus, even though these datasets are
sparse, the features at the head of the distribution will cause
most objects to be compared against most other objects when
computing pairwise similarities.

Our chosen datasets have diverse object frequency dis-
tributions. Figure 5 shows these distributions for six of the
datasets in Table 2. Note that the frequency counts are
log-scaled to better distinguishdifferences between thedistri-
butions. The graph shows that more than 60% of the 759,044
features in the Patents-100K dataset can only be found in one
object, yet the top 1% of features can each be found in at least
490 objects. Similarly, almost 15% of the 20,021 features in
the MLSMR dataset are only present in one object, but 200
features are present in at least 63,646 of the 325,164 objects
in the dataset. In the RCV1 and SC datasets, all features are
present in at least ten objects.

While sparsity and feature distributions play a big role in
the number of objects that must be compared to solve the
APSS problem exactly, the number of computed similari-
ties is also highly dependent on the threshold ε. We studied

123

http://davidanastasiu.net/software/tapnn/

164 Int J Data Sci Anal (2017) 4:153–172

Table 4 Neighborhood graph statistics

ε μ ρ μ ρ

Patents-100K RCV1

0.1 3412 3.412e−02 21,655 2.692e−02

0.2 445 4.452e−03 2707 3.366e−03

0.3 82 8.208e−04 881 1.095e−03

0.4 15 1.535e−04 417 5.196e−04

0.5 2.6 2.615e−05 199 2.484e−04

0.6 0.47 4.716e−06 85 1.062e−04

0.7 0.15 1.513e−06 34 4.300e−05

0.8 0.09 8.660e−07 12 1.616e−05

0.9 0.06 6.006e−07 5.2 6.428e−06

0.99 0.04 3.818e−07 1.2 1.433e−06

MLSMR SC-100K

0.1 281,509 8.657e−01 67,121 6.712e−01

0.2 212,894 6.547e−01 45,229 4.523e−01

0.3 126,620 3.894e−01 26,198 2.620e−01

0.4 61,067 1.878e−01 12,950 1.295e−01

0.5 23,482 7.222e−02 5300 5.300e−02

0.6 6569 2.020e−02 1688 1.688e−02

0.7 1184 3.644e−03 397 3.976e−03

0.8 127 3.924e−04 72 7.270e−04

0.9 10 3.358e−05 11 1.128e−04

0.99 0.28 8.495e−07 0.09 8.900e−07

SC-500K SC-1M

0.1 336,815 6.736e−01 673,156 6.732e−01

0.2 226,917 4.538e−01 453,149 4.531e−01

0.3 131,385 2.628e−01 262,292 2.623e−01

0.4 64,982 1.300e−01 129,752 1.298e−01

0.5 26,590 5.318e−02 53,152 5.315e−02

0.6 8442 1.688e−02 16,914 1.691e−02

0.7 1963 3.927e−03 3953 3.953e−03

0.8 349 6.996e−04 710 7.104e−04

0.9 54 1.085e−04 110 1.109e−04

0.99 0.47 9.351e−07 0.95 9.453e−07

The table shows the average neighborhood size (μ) and neighborhood
graph density (ρ) for six of the test datasets and ε ranging from 0.1 to
0.99

properties of the output graph to understand how the input
threshold can affect the efficiency of search algorithms. Each
nonzero value in the adjacency matrix of the neighborhood
graph represents a pair of objects whose similarity must be
computed and cannot be pruned.A fairly dense neighborhood
graph adjacency matrix means any exact APSS algorithm
will take a long time to solve the problem, no matter how
effectively it can prune the search space. Table 4 shows the
average neighborhood size (μ) and neighborhood graph den-
sity (ρ) for six of the test datasets and ε ranging from 0.1 to
0.99. Graph density is defined here as the ratio between the

number of edges (object pairs with similarity at least ε) and
n(n − 1), which is the number of edges in a complete graph
withn vertices.As expected, the similarity graph is extremely
sparse for high values of ε, with less than one neighbor on
average in all but one of the datasets at ε = 0.99. However,
the average number of neighbors and graph density increase
disproportionally for the different datasets as ε increases. The
Patents-100K dataset has less than 100 neighbors on average
for each of the objects even at ε = 0.3, while the chemi-
cal datasets have hundreds of neighbors on average even at
ε = 0.8. The density of the similarity graphs for the chemical
datasets increases rapidly as ε decreases. For ε = 0.1, these
graphs contain more than 67% of the edges in the complete
graph.

To put things in perspective, the 673.16 billion edges of
the SC-1M neighborhood graph for ε = 0.1 take up 16.7 Tb
of hard drive space, and more than half of those represent
similarities below 0.5, which are somewhat distant neigh-
bors. Nearest neighbor-based classification or recommender
systemsmethods often rely on a small number (generally less
than 100) of each object’s nearest neighbor to complete their
task. This analysis suggests that different ε thresholdsmay be
appropriate for the analysis of different datasets. Searching
the Patents-100K dataset using ε = 0.3, the RCV1 dataset
using ε = 0.6, the MLSMR dataset using ε = 0.8, and the
SC-1M dataset using ε = 0.9 would provide enough nearest
neighbors on average to complete the required tasks.

Figure 6 gives a more detailed picture of the distribution
of neighborhood sizes for the similarity graphs in Table 4
and a subset of the ε thresholds. The max line shows the
number of neighbors that would be present in the complete
graph. The purple line for ε = 0.9 is not visible in the figure
for the Patents-100K dataset, due to the extreme sparsity of
that graph. The vertical difference between each point on a
distribution line and the max line represents the potential for
savings in filtering methods, i.e., the number of objects that
could be pruned without computing their similarity in full.
As the figure shows, the potential for savings is less than
half on chemical datasets for ε = 0.5 and shrinks to almost
nothing at ε = 0.1. On the other hand, text datasets show a
much higher potential for savings, even at low ε thresholds.

5.2 Pruning effectiveness

We now study the effectiveness of our method, along several
directions. First, we analyze the performance of our method
with regard to the number of ignored or pruned object pairs in
different stages of the similarity search and the effectiveness
of the partial indexing strategy described in Sect. 3.3. Then,
we compare the amount of pruning in our method to that in
other state-of-the-art filtering methods. Finally, we consider
the effect of our Tanimoto-specific pruning on the efficiency
on our method.

123

Int J Data Sci Anal (2017) 4:153–172 165

Fig. 6 Neighbor count
distributions for several values
of ε

5.2.1 Effectiveness of pruning the search space

Asdescribed in Sect. 3 and shown inFig. 2, ourmethodworks
by taking advantage of sparsity in the input data, the length
of the input vectors, and even the angle between vectors to
prune the search space. In order to measure the effectiveness
of ourmethod,we instrumented our code to count the number
of object pairs that were pruned as a result of each of these
strategies.Wefirst show the pruning effected byTAPNN prior
to generating candidates, by taking advantage of sparsity,
vector lengths, and partial indexing based on vector angles.
Note that TAPNN does not compute any part of the similarity
for these pruned object pairs.

Table 5 shows the cumulative percent of the pairwise sim-
ilarity search space pruned by these strategies for six of the
test datasets and ε ranging from 0.1 to 0.99. Percent values
are computedwith respect to the number of object similarities
considered by a naïve algorithm while taking advantage of
the commutative property of Tanimoto similarity, i.e., n(n−1)

2 .
As the results show, TAPNN is very effective at high simi-
larity thresholds, pruning up to 99.995% of the search space
in the case of the RCV1 dataset and ε = 0.99. However, for
small ε values, when the output graph is no longer sparse
(see Table 4), the amount of pruning effected by TAPNN
prior to generating candidates dwindles. Angle- and length-
based pruning are most effective in our method, accounting
for 90–100% of the pruning effectiveness across datasets
and thresholds. While our datasets are very sparse (their
nonzero densities range between 6.10E−4 and 2.34E−2),
the distributions of the features in the data cause the major-
ity of objects to be potential neighbors. However, the length-
and angle-based pruning in TAPNN effectively reduces the
number of object pairs that must be compared to solve the
problem.

The idx column in Table 5 shows the percent of the input
dataset nonzeros that are indexed by our method. Indexing
fewer nonzeros increases the efficiency in our method by
allowing it to traverse shorter inverted index lists during the
candidate generation stage, and it leads to more pruning. We
see this correlation by comparing the idx column with the
percent of the pruning effected by the partial indexing (the
angle column minus the sparsity and length columns) in the
table. The comparison reveals a Pearson correlation ranging
from 0.9314 for the Patents-100K dataset and 0.9993 for the
SC datasets. At high values of ε, our method indexes few fea-
tures, which in turn leads to many potential candidates being
implicitly ignored because they have no features in common
with the indexed part of the query vector. On the other hand,
at low similarity thresholds, the majority of the input nonze-
ros are indexed, leading to fewer objects being pruned.

WhileTAPNN prunes some of the search space before can-
didate generation, it also continues the pruning process once
an object becomes a candidate. Table 6 compares the per-
cent of pairwise object pairs that become candidates in our
method (candidate rate—cand column) versus those whose
similarity is fully computed by our method (scan rate—dps
column) and those who are actually neighbors (nbr col-
umn), given ε ranging from 0.1 to 0.99 and six different
datasets. The cand column represents the un-pruned object
pairs whose similarities we actually start computing, and
is equivalent to 100% minus the angle column in Table 5.
Our method actually computes the similarity in full for a
much smaller number of object pairs, shown in the dps col-
umn. It is also interesting to note that the percent of object
pairs whose similarity we compute in full is actually very
close to the number of true neighbors, irrespective of simi-
larity threshold, highlighting the effectiveness of our filtering
framework.

123

166 Int J Data Sci Anal (2017) 4:153–172

Table 5 Search space pruning in TAPNN prior to candidate generation

ε sparsity length angle idx sparsity length angle idx sparsity length angle idx

Patents-100K RCV1 MLSMR

0.1 0.00 1.69 1.792 93.47 10.49 10.65 22.808 97.00 0.16 0.18 0.707 99.59

0.2 0.00 7.28 7.763 82.45 10.49 11.39 34.061 90.61 0.16 0.39 1.885 98.26

0.3 0.00 14.67 16.353 71.42 10.49 13.10 46.510 81.69 0.16 0.92 3.931 96.26

0.4 0.00 22.08 27.328 62.11 10.49 14.82 61.385 71.11 0.16 1.88 8.421 92.10

0.5 0.00 28.09 40.411 53.59 10.49 15.50 75.678 59.79 0.16 3.55 16.504 85.24

0.6 0.00 31.52 54.684 45.47 10.49 14.99 86.699 48.17 0.16 6.12 28.782 75.50

0.7 0.00 31.39 69.110 37.50 10.49 13.71 93.974 36.73 0.16 8.86 45.490 62.92

0.8 0.00 27.16 82.428 29.54 10.49 12.25 97.922 25.84 0.16 10.44 65.557 47.41

0.9 0.00 17.22 93.655 20.48 10.49 11.07 99.608 15.12 0.16 8.53 87.216 28.04

0.99 0.00 2.05 99.815 7.51 10.49 10.51 99.995 3.49 0.16 1.10 99.749 4.27

SC-100K SC-500K SC-1M

0.1 1.53 2.44 3.996 99.32 1.44 2.32 3.860 99.32 1.45 2.33 3.872 99.32

0.2 1.53 5.43 8.208 97.74 1.44 5.23 8.025 97.74 1.45 5.26 8.056 97.73

0.3 1.53 9.47 13.935 95.69 1.44 9.22 13.701 95.70 1.45 9.26 13.742 95.69

0.4 1.53 13.84 21.251 92.43 1.44 13.61 21.023 92.45 1.45 13.65 21.062 92.44

0.5 1.53 18.38 30.443 87.52 1.44 18.18 30.200 87.56 1.45 18.23 30.237 87.55

0.6 1.53 22.51 41.667 80.48 1.44 22.35 41.437 80.52 1.45 22.40 41.478 80.51

0.7 1.53 25.11 55.183 70.36 1.44 25.00 55.006 70.42 1.45 25.03 55.050 70.40

0.8 1.53 24.75 71.018 56.00 1.44 24.73 70.878 56.08 1.45 24.74 70.905 56.08

0.9 1.53 18.52 88.246 35.75 1.44 18.46 88.190 35.78 1.45 18.47 88.193 35.78

0.99 1.53 3.47 99.734 6.60 1.44 3.38 99.734 6.59 1.45 3.39 99.733 6.60

The table shows, in the sparsity, length, and angle columns, respectively, the cumulative percent of the pairwise similarity search space pruned by
taking advantage of sparsity, vector lengths, and partial indexing based on vector angles for six of the test datasets and ε ranging from 0.1 to 0.99.
The idx column shows the percent of the input dataset nonzeros that are indexed by our method

During the similarity search, after an object becomes a
candidate for some query object, it can be pruned if its
similarity estimate with the query falls below the thresh-
old ε based on several theoretic upper bounds described in
Sect. 3. Figure 7 shows the percent of candidates pruned by
the different bounds, in addition to those candidates whose
similarity is computed in full (dpscore). Objects can be
pruned as soon as they become candidates, in the candi-
date generation stage, by our �2-norm-based pruning bound
(l2cg), or as soon as candidate verification starts, through
our ps bound. Additional pruning is effected through our
tighter bound for the un-normalized candidate vector length
β, which here we call the vector length angle bound (vla),
and our �2-norm-based pruning during candidate verification
(l2cv). The results show that the majority of the pruning is
done early on, during the candidate generation stage. For
text datasets, pruning overshadows the percent of objects
whose similarity is computed, and those portions of the
bars are not even visible for most ε values. Moreover, the
Tanimoto-specific candidate pruning (vla) makes up a signif-
icant portion of the overall pruning, especially for chemical
datasets.

5.2.2 Effectiveness comparison with filtering baselines

Many of the baseline methods we are comparing against
in this paper are also filtering methods. As an architecture-
and programming language-independent way to compare the
effectiveness of our method against the baselines, we show
the candidate rate (cand column) and scan rate (dps column)
for all filteringmethods under comparison in Table 7, for four
of the datasets and ε ranging from 0.3 to 0.9. Bold values rep-
resent the smallest candidate and scan rates across methods
for each similarity threshold.

The results show that TAPNN is most effective among the
comparedmethods at pruning the search space, which results
in the fewest similarity values computed in full.L2AP has the
closest scan rates to our method for text-based datasets, but,
without Tanimoto-specific pruning, considers many more
candidates in general, especially for chemical datasets.While
MMJoin prunes much of the search space, it lags behind
bothTAPNN andL2AP.With its vector length-based pruning,
MK-Join is able to ignore many objects without starting to
compute their similarity.At high thresholds, its candidate rate
is often lower than both that ofMMJoin andL2AP. However,

123

Int J Data Sci Anal (2017) 4:153–172 167

Table 6 Pruning performance during filtering in TAPNN

ε cand dps nbr cand dps nbr cand dps nbr

Patents-100K RCV1 MLSMR

0.1 98.208 3.75195 3.41222 77.192 5.12196 2.69207 99.293 86.98722 86.57500

0.2 92.237 0.57141 0.44519 65.939 0.89402 0.33658 98.115 65.97607 65.47327

0.3 83.647 0.12117 0.08208 53.490 0.32050 0.10953 96.069 39.52094 38.94078

0.4 72.672 0.02500 0.01535 38.615 0.14907 0.05196 91.579 19.54342 18.78069

0.5 59.589 0.00449 0.00261 24.322 0.07025 0.02484 83.496 7.80633 7.22169

0.6 45.316 0.00076 0.00047 13.301 0.03078 0.01062 71.218 2.34046 2.02025

0.7 30.890 0.00020 0.00015 6.026 0.01216 0.00430 54.510 0.46706 0.36440

0.8 17.572 0.00010 0.00009 2.078 0.00416 0.00162 34.443 0.05425 0.03924

0.9 6.345 0.00006 0.00006 0.392 0.00117 0.00064 12.784 0.00416 0.00336

0.99 0.185 0.00004 0.00004 0.005 0.00018 0.00014 0.251 0.00009 0.00008

SC-100K SC-500K SC-1M

0.1 96.004 68.00492 67.12217 96.140 68.24212 67.36314 96.128 68.19030 67.30840

0.2 91.792 46.28032 45.23038 91.975 46.44308 45.38356 91.944 46.37475 45.31497

0.3 86.065 27.20557 26.19898 86.299 27.29515 26.27724 86.258 27.24872 26.22932

0.4 78.749 13.88424 12.95055 78.977 13.93386 12.99662 78.938 13.91150 12.97526

0.5 69.557 5.94892 5.30025 69.800 5.96769 5.31808 69.763 5.96442 5.31528

0.6 58.333 2.01654 1.68805 58.563 2.01728 1.68846 58.522 2.01987 1.69147

0.7 44.817 0.50744 0.39764 44.994 0.50206 0.39275 44.950 0.50491 0.39532

0.8 28.982 0.09779 0.07270 29.122 0.09415 0.06996 29.095 0.09545 0.07104

0.9 11.754 0.01589 0.01128 11.810 0.01515 0.01085 11.807 0.01547 0.01109

0.99 0.266 0.00014 0.00009 0.266 0.00015 0.00009 0.267 0.00015 0.00009

The table shows the percent of pairwise object comparisons considered by our algorithm (cand column), the percent of pairwise object pairs whose
similarity is fully computed by our method (dps column), and the percent of pairwise object pairs that are actually neighbors (nbr column), given
ε ranging from 0.1 to 0.99 and six different datasets

themethod seems ineffective at pruning candidates, resulting
in very high scan rates.

5.2.3 Effectiveness of Tanimoto bounds

As another way to test the pruning effectiveness of the new
Tanimoto length bounds introduced in Sect. 3.4, we com-
pared execution times of TAPNN with two versions of the
program which did not take advantage of these bounds.
While both programs implement the length-based pruning
described in Sect. 3.1, TAPNN-c filters cosine neighbors
using the threshold ε, while TAPNN-t employs the tighter
cosine filtering bound from Eq. 4. Figure 8 shows the log-
scaled execution times for the threemethods, given ε ranging
from 0.3 to 0.99.

The results of our experiments indicate that the newly
introduced bounds are effective at improving search perfor-
mance, achieving up to 5.8x speedup against TAPNN-t and
13.3x speedup against TAPNN-c. Chemical datasets exhibit
higher performance improvement at high thresholds, but
much lower as ε → 0.6.

5.3 Execution efficiency

The main goal of our method is to efficiently solve the
Tanimoto APSS problem. We compared TAPNN against
the baselines described in Sect. 4.2, for a wide range of
ε values. Figure 9 displays our timing results for each
method on four datasets. In each quadrant, smaller times
indicate better performance. Note that the y-axis has been
log-scaled.

The results show that TAPNN significantly outperformed
all baselines, by up to an order of magnitude, for all thresh-
olds ε ≥ 0.6. As discussed in Sect. 5.1, neighborhood
graphs for lower similarities are likely too dense and provide
less benefit for neighborhood-based analysis. In the range
ε ∈ [0.6, 0.99], speedup of TAPNN versus the next best
method was between 3.0x–8.0x for text datasets and 1.2x–
12.5x for chemical datasets. Speedup against IdxJoin
which is similar to a linear search and does not employ
any pruning ranged between 8.3x–3981.4x for text data
and 1.5x–519x for chemical data, highlighting the prun-
ing performance of our method, especially for high values
of ε.

123

168 Int J Data Sci Anal (2017) 4:153–172

Fig. 7 Percent of candidates pruned by different bounds in TAPNN
(Best viewed in color)

TAPNN performed on par with the IdxJoin baseline
on the two chemical datasets for ε = 0.5, and slightly worse
than the IdxJoin and MK-Join baselines for lower thresh-
olds. While our method pruned most of the object pairs in
the search space that were not neighbors (see Sect. 5.2), the
benefit gained by the pruning did not outweigh the cost of
checking filtering bounds at small similarity thresholds. The
IdxJoin and MK-Join baselines spend no or little time
checking filtering bounds, which is an advantage when the
neighborhood graph is fairly dense.

The best performing baseline in general was L2AP,
our previous cosine APSS method, which employs similar
cosine-based pruning, but does not take advantage of un-
normalized vector lengths in its filtering. L2AP was shown
in [33] to outperform MMJoin for the cosine APSS task. Our
results show that it also outperformed MMJoin for Tanimoto
APSS, in all experiments. MK-Join was not competitive
against L2AP and MMJoin for ε ≥ 0.8 for chemical datasets
and in general for text datasets. In fact, it performed worse

thanIdxJoin for thePatents-100Kdataset andonly slightly
better in general. ThePatents-100Kdataset has a high average
vector size (number of nonzeros) and low average index list
size, which may have contributed to the poor performance
of MK-Join. The results show that the strategy of cosine
filtering applied to the Tanimoto APSS problem, which is
employed in different ways by TAPNN, L2AP, and MMJoin,
works quite well for both text and chemical datasets.

5.4 Scaling

As a way for us to understand the scalability of our method,
we measured the execution time when searching for neigh-
bors, given ε between 0.5 and 0.99, on three random subsets
from the SC-11.5M dataset (100K, 500K, and 1M com-
pounds) and four random subsets of the Patents-8.8M dataset
(100K, 250K, 500K, and 1M patents), for TAPNN and the
IdxJoin, MK-Join, and MMJoin baselines. Figure 10
shows the results of these experiments for the Patents (left)
and SC (right) datasets. In each quadrant of each subfigure,
we plot the number of nonzeros in the dataset (×108, x-axis)
against the execution time (log-scaled, y-axis).

Overall, the results show that algorithms display similar
scaling trends as dataset sizes are increased. However, as
ε is increased, TAPNN is able to distance itself from base-
lines, increasing the efficiency gap to outperform them by
over an order of magnitude. The SC and Patents datasets are
quite different. By construction, the SC dataset has few fea-
tures (less than 7.5K), which means its inverted lists become
quite long (up to 262.7K compounds on average for the
full SC-11.5M dataset), and many object pairs are likely to
have at least one feature in common. On the other hand,
patents use quite diverse terminology, which is evident form
the drastic increase in the number of features in the Patents
datasets, from 759.0K to 16.6M between the Patents-100K
and Patents-8.8M datasets. TAPNN is able to get excellent
performance for both types of data by employing effective
pruning strategies. Our analysis in Sect. 5.1 also showed that
the neighborhood graph for the SC datasets is close to com-
plete at ε = 0.5 and below, which means there is little to
be gained by filtering in these scenarios. However, filter-
ing is very effective at high similarity thresholds for these
datasets, producing dramatic speedups over state-of-the-art
baselines.

We also tested TAPNN in a near-duplicate detection sce-
nario on SC subsets ranging from500K to 11.5Mcompounds
and Patents datasets ranging from 500K to 8.8M compounds,
for ε ∈ {0.95, 0.975, 0.99, 0.999}. Baseline methods were
not able to complete execution for the very large datasets in
a reasonable amount of time (96h), and we do not include
them in this result. Figure 11 shows execution times in our
experiments for the Patents (left) and SC (right) datasets.

123

Int J Data Sci Anal (2017) 4:153–172 169

Table 7 Comparison of
candidate and scan rates for
filtering-based methods

ε TAPNN L2AP MMJoin MK-Join

cand dps cand dps cand dps cand dps

Patents-100K

0.30 83.65 0.1212 99.87 1.3527 100.00 8.5759 90.20 76.8965

0.40 72.67 0.0250 99.38 0.4173 99.67 2.0669 79.26 60.9828

0.50 59.59 0.0045 97.59 0.1187 95.98 0.4888 67.90 46.2979

0.60 45.32 0.0010 93.10 0.0267 88.48 0.1460 57.65 34.0969

0.70 30.89 0.0002 83.93 0.0040 77.31 0.0306 48.86 24.2447

0.80 17.57 0.0001 67.56 0.0004 60.48 0.0049 41.42 16.2758

0.90 6.34 0.0001 41.18 0.0001 33.78 0.0005 37.17 10.0336

RCV1

0.30 53.49 0.3205 73.62 0.8375 73.09 15.1487 66.45 63.3365

0.40 38.61 0.1491 64.23 0.2835 67.11 10.5094 54.47 48.8616

0.50 24.32 0.0703 52.46 0.1244 52.37 6.0532 43.81 35.9840

0.60 13.30 0.0314 38.80 0.0611 34.93 2.6000 34.52 25.1845

0.70 6.03 0.0124 24.57 0.0265 18.99 0.7648 26.92 16.7887

0.80 2.08 0.0042 11.74 0.0086 8.07 0.1929 20.86 10.4767

0.90 0.39 0.0012 3.15 0.0017 1.95 0.0307 16.43 5.7592

MLSMR

0.30 96.07 39.5209 98.87 77.0628 98.74 82.1759 98.89 98.0920

0.40 91.58 19.5434 97.89 59.7118 98.11 74.5478 98.36 96.4064

0.50 83.50 7.8063 95.97 39.0700 97.11 65.0857 97.59 93.4267

0.60 71.22 3.1128 91.67 19.9784 93.43 47.2142 96.74 88.5399

0.70 54.51 0.6213 83.62 6.9207 82.13 22.6891 95.65 80.8921

0.80 34.44 0.0671 68.34 1.1792 62.17 6.1240 94.01 69.2132

0.90 12.78 0.0044 40.82 0.0462 32.23 0.5651 92.06 51.0706

SC-1M

0.30 86.26 27.2487 96.11 62.3976 95.73 73.8524 94.27 86.5448

0.40 78.94 13.9115 94.83 47.6004 94.72 68.0235 92.43 80.0253

0.50 69.76 5.9644 92.86 31.8095 93.51 60.1836 90.39 72.6842

0.60 58.52 2.0199 89.69 17.7314 90.29 45.9351 88.33 64.5104

0.70 44.95 0.7568 84.00 7.2723 82.17 27.4836 86.13 55.3111

0.80 29.10 0.0954 72.62 1.7795 67.04 11.2794 83.38 44.4693

0.90 11.81 0.0193 48.71 0.2018 40.29 2.3703 80.71 30.9351

The table shows the candidate and scan rates for the filtering-based methods under comparison, as the result
of experiments over four datasets and ε ranging from 0.3 to 0.9. Bold values represent the smallest candidate
and scan rates across methods for each similarity threshold

In each quadrant of each subfigure, we plot the number of
nonzeros in the dataset (×109, x-axis) against the execution
time (log-scaled, y-axis). Each line shows an execution of
our TAPNN algorithm with the labeled ε value. The name
(and size) of the dataset the experiment is executed on is also
written below the markers of the ε = 0.999 line.

The results of this experiment confirm that our method
continues its nice scaling characteristics even for very large
datasets, and the trend is similar as the ε threshold is
decreased. As the dataset increases in size, there is more

opportunity for pruning, which allows TAPNN to maintain
and improve its overall performance.

Given increasing dataset sizes, it would be beneficial
to investigate shared memory and distributed extensions of
TAPNN. Existing strategies for parallelizing cosine APSS
filtering strategies [47–49] are likely to provide similar ben-
efits in the Tanimoto APSS context. While the serial version
can find all nearest neighbors for 1M SC compounds with
ε ≥ 0.95 in minutes, a parallel version of the algorithm is
needed to achieve similar performance for lower ε thresholds.

123

170 Int J Data Sci Anal (2017) 4:153–172

Fig. 8 Effect of Tanimoto bounds on search efficiency

6 Conclusion

We presented TAPNN, a new serial algorithm for solving the
Tanimoto all-pairs similarity search problem for objects rep-
resented as nonnegative real-valued vectors. Unlike many
alternatives, our method solves the problem exactly, finding
all pairs of objects with a Tanimoto similarity of at least some
input threshold ε. Our method incorporates several filtering
strategies based on object vector lengths and the dot-product
of their normalized vectors.We have shown how these strate-
gies can be effectively used to reduce the number of object

Fig. 9 Efficiency comparison of TAPNN versus baselines

pairs that have to be fully compared, and have introduced
additional filtering techniques that combine normalized dot-
product estimates with un-normalized vector lengths. We
experimentally evaluated our method against several base-
lines on both chemical and text datasets, and found TAPNN
significantly outperformed them, especially for high thresh-
olds. In particular, TAPNNwas able to find all near-duplicate
pairs among 5M SureChemBL chemical compounds in min-
utes, using a single CPU core, was up to 12.5x more efficient
than the most efficient baseline, and outperformed a linear
search baseline by two orders of magnitude in general at
ε = 0.99.

Fig. 10 Scaling characteristics of TAPNN in comparison with baselines at ε thresholds ranging from 0.5 to 0.99 over subsets of the Patents-8.8M
(left) and SC-11.5M (right) datasets

123

Int J Data Sci Anal (2017) 4:153–172 171

Fig. 11 Scaling characteristics of TAPNN in a near-duplicate detection scenario over the Patents-8.8M (left) and SC-11.5M (right) datasets

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of
interest.

References

1. Anastasiu, D.C., Karypis, G.: Efficient identification of tanimoto
nearest neighbors. In: Proceedings of the 3rd IEEE International
Conference on Data Science and Advanced Analytics, ser. DSAA
’16 (2016)

2. Strehl, A., Ghosh, J.: Relationship-based clustering and visual-
ization for high-dimensional data mining. INFORMS J. Comput.
15(2), 208–230 (2003)

3. Joydeep, A.S., Strehl, E., Ghosh, J., Mooney, R.: Impact of simi-
larity measures on web-page clustering. In: Workshop on Artificial
Intelligence for Web Search (AAAI 2000). Citeseer (2000)

4. Banerjee,A.,Ghosh, J.: Scalable clustering algorithmswith balanc-
ing constraints. Data Min. Knowl. Discov. 13(3), 365–395 (2006)

5. Huang, A.: Similarity measures for text document clustering.
In: Proceedings of the Sixth New Zealand Computer Science
Research Student Conference, ser. NZCSRSC2008, Christchurch,
New Zealand, pp. 49–56 (2008)

6. Lyon, C., Malcolm, J., Dickerson, B.: Detecting short passages
of similar text in large document collections. In: Proceedings of
the 2001 Conference on Empirical Methods in Natural Language
Processing, pp. 118–125 (2001)

7. Bao, J.-P., Malcolm, J.: Text similarity in academic conference
papers. In: Proceedings of 2nd International PlagiarismConference
(2006)

8. Alzahrani, S.M., Salim, N., Abraham, A.: Understanding plagia-
rism linguistic patterns, textual features, and detection methods.
Trans. Syst. Man Cybern. Part C 42(2), 133–149 (2012)

9. Curran, J.R., Moens, M.: Improvements in automatic thesaurus
extraction. In: Proceedings of the ACL-02 Workshop on Unsuper-
vised Lexical Acquisition-vol. 9. Association for Computational
Linguistics, pp. 59–66 (2002)

10. Strehl, A., Ghosh, J.: A Scalable Approach to Balanced, High-
Dimensional Clustering of Market-Baskets. Springer, Berlin
(2000)

11. Karypis, G.: Evaluation of item-based top-n recommendation algo-
rithms. In: Proceedings of the Tenth International Conference on
Information and Knowledge Management, ser. CIKM ’01. New
York: ACM, pp. 247–254 (2001)

12. Adam, N.R., Janeja, V.P., Atluri, V.: Neighborhood based detection
of anomalies in high dimensional spatio-temporal sensor datasets.
In: Proceedings of the 2004 ACM Symposium on Applied Com-
puting, ser. SAC ’04. New York, NY, USA: ACM, pp. 576–583
(2004)

13. Geppert, H., Vogt, M., Bajorath, J.: Current trends in ligand-based
virtual screening: molecular representations, data mining methods,
new application areas, and performance evaluation. J. Chem. Inf.
Model. 50(2), 205–216 (2010)

14. Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin,
B.K., Shoichet, John J.: Relating protein pharmacology by ligand
chemistry. Nat. Biotechnol. 25(2), 197–206 (2007)

15. Stahura, F.L., Bajorath, J.: Virtual screening methods that comple-
ment HTS. Comb. Chem. High Throughput Screen 7(4), 259–269
(2004)

16. Kristensen, T.G.: Transforming tanimoto queries on real valued
vectors to range queries in euclidian space. J. Math. Chem. 48(2),
287–289 (2010)

17. Arif, S.M., Holliday, J.D., Willett, P.: Inverse frequency weighting
of fragments for similarity-based virtual screening. J. Chem. Inf.
Model. 50(8), 1340–1349 (2010)

18. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Infor-
mation Retrieval. Cambridge University Press, New York (2008)

19. Swamidass, S.J., Baldi, P.: Bounds and algorithms for fast exact
searches of chemical fingerprints in linear and sublinear time. J.
Chem. Inf. Model. 47(2), 302–317 (2007)

20. Nasr, R., Hirschberg, D.S., Baldi, P.: Hashing algorithms and data
structures for rapid searches of fingerprint vectors. J. Chem. Inf.
Model. 50(8), 1358–1368 (2010)

21. Tabei, Y., Tsuda, K.: Sketchsort: fast all pairs similarity search
for large databases of molecular fingerprints. Mol. Inform. 30(9),
801–807 (2011). doi:10.1002/minf.201100050

22. Kristensen, T.G., Nielsen, J., Pedersen, C.N.S.: Algorithms in
Bioinformatics: 9th InternationalWorkshop,WABI2009, Philadel-
phia, PA, USA, Sept 12–13, 2009. Proceedings. Berlin: Springer,
2009, ch. A Tree Based Method for the Rapid Screening of Chem-
ical Fingerprints, pp. 194–205

123

http://dx.doi.org/10.1002/minf.201100050

172 Int J Data Sci Anal (2017) 4:153–172

23. Smellie, A.: Compressed binary bit trees: a new data structure for
accelerating database searching. J. Chem. Inf. Model. 49(2), 257–
262 (2009)

24. Kristensen, T.G., Nielsen, J., Pedersen, C.N.S.: Using inverted
indices for accelerating lingo calculations. J. Chem. Inf. Model.
51(3), 597–600 (2011)

25. Thiel, P., Sach-Peltason, L., Ottmann, C., Kohlbacher, O.: Blocked
inverted indices for exact clustering of large chemical spaces. J.
Chem. Inf. Model. 54(9), 2395–2401 (2014)

26. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for
similarity joins in data cleaning. In: Proceedings of the 22nd
International Conference on Data Engineering, ser. ICDE ’06.
Washington, DC, USA: IEEE Computer Society, p. 5 (2006)

27. Moffat, A., Sacks-davis, R., Wilkinson, R., Zobel, J.: Retrieval of
partial documents. In: Information Processing and Management,
pp. 181–190 (1994)

28. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity
search. In: Proceedings of the 16th International Conference on
World Wide Web, ser. WWW ’07. New York: ACM, pp. 131–140
(2007)

29. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for
near duplicate detection. In: Proceedings of the 17th International
Conference onWorldWideWeb, ser.WWW’08. NewYork: ACM,
pp. 131–140 (2008)

30. Xiao, C., Wang, W., Lin, X., Shang, H.: Top-k set similarity joins.
In: Proceedings of the 2009 IEEE International Conference on
Data Engineering, ser. ICDE ’09. Washington, DC: IEEE Com-
puter Society, pp. 916–927 (2009)

31. Ribeiro, L.A., Härder, T.: Generalizing prefix filtering to improve
set similarity joins. Inf. Syst. 36(1), 62–78 (2011)

32. Awekar, A., Samatova, N.F.: Fast matching for all pairs similarity
search. In: Proceedings of the 2009 IEEE/WIC/ACM Interna-
tional Joint Conference on Web Intelligence and Intelligent Agent
Technology—Vol. 01, ser. WI-IAT ’09. Washington, DC: IEEE
Computer Society, pp. 295–300 (2009)

33. Anastasiu, D.C., Karypis, G.: L2ap: fast cosine similarity search
with prefix l-2 norm bounds. In: 30th IEEE International Confer-
ence on Data Engineering, ser. ICDE ’14 (2014)

34. Lee, D., Park, J., Shim, J., Lee, S.-G.: An efficient similarity join
algorithm with cosine similarity predicate. In: Proceedings of the
21st International Conference on Database and Expert Systems
Applications: Part II, ser. DEXA’10. Berlin, Heidelberg: Springer,
pp. 422–436 (2010)

35. Kryszkiewicz,M.: Bounds on lengths of real valued vectors similar
with regard to the tanimoto similarity. In: Intelligent Information
and Database Systems, ser. Lecture Notes in Computer Science,
Selamat, A., Nguyen, N., Haron, H., (eds). Springer, Berlin, 7802,
pp. 445–454 (2013)

36. Kryszkiewicz, M.: Using non-zero dimensions for the cosine and
tanimoto similarity search among real valued vectors. Fundam.
Inform. 127(1–4), 307–323 (2013)

37. Kryszkiewicz, M.: Using non-zero dimensions and lengths of vec-
tors for the tanimoto similarity search among real valued vectors.
In: Intelligent Information andDatabase Systems. Springer, Berlin,
pp. 173–182 (2014)

38. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: a new benchmark
collection for text categorization research. J. Mach. Learn. Res. 5,
361–397 (2004)

39. Singh, N., Guha, R., Giulianotti, M.A., Pinilla, C., Houghten, R.A.,
Medina-Franco, J.L.: Chemoinformatic analysis of combinatorial
libraries, drugs, natural products, and molecular libraries small
molecule repository. J. Chem. Inf.Model. 49(4), 1010–1024 (2009)

40. Papadatos, G., Davies, M., Dedman, N., Chambers, J., Gaulton,
A., Siddle, J., Koks, R., Irvine, S.A., Pettersson, J., Goncharoff,
N., Hersey, A., Overington, J.P.: Surechembl: a large-scale, chem-
ically annotated patent document database. Nucleic Acids Res. 44,
D1220–D1228 (2016)

41. Porter, M.F.: An algorithm for suffix stripping. Program 14(3),
130–137 (1980)

42. Wale, N., Watson, I.A., Karypis, G.: Indirect similarity based
methods for effective scaffold-hopping in chemical compounds.
J. Chem. Inf. Model. 48, 730–741 (2008)

43. Wale, N., Karypis, G.: Acyclic subgraph based descriptor spaces
for chemical compound retrieval and classification. In: Proceedings
of the Sixth International Conference on Data Mining, ser. ICDM
’06 (2006)

44. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeer-
sch, T., Hutchison, G.R.: Open babel: an open chemical toolbox.
J. Cheminform. 3(1), 1–14 (2011)

45. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph
construction for generic similarity measures. In: Proceedings of
the 20th International Conference onWorldWideWeb, ser. WWW
’11. New York: ACM, pp. 577–586 (2011)

46. Park, Y., Park, S., Lee, S.-G., Jung, W.: Greedy filtering: a scalable
algorithm for k-nearest neighbor graph construction. In: Database
Systems for Advanced Applications, ser. Lecture Notes in Com-
puter Science. Springer, Berlin 8421, pp. 327–341 (2014)

47. Awekar, A., Samatova, N.F.: Parallel all pairs similarity search. In:
Proceedings of the 10th International Conference on Information
and Knowledge Engineering, ser. IKE ’11 (2011)

48. Anastasiu, D.C., Karypis, G.: Pl2ap: fast parallel cosine similarity
search. In: Proceedings of the 5th Workshop on Irregular Applica-
tions: Architectures and Algorithms, in conjunction with SC’15,
ser. IA3. New York: ACM, 2015, pp. 1–8 (2015)

49. Anastasiu, D.C., Karypis, G.: Fast parallel cosine k-nearest neigh-
bor graph construction. In: Proceedings of the 6th Workshop on
Irregular Applications: Architectures and Algorithms, in Conjunc-
tion with SC’16, ser. IA3 2016. New York: ACM (2016)

123

	Efficient identification of Tanimoto nearest neighbors
	All-pairs similarity search using the extended Jaccard coefficient
	Abstract
	1 Introduction
	2 Problem statement
	3 Methods
	3.1 A basic indexing approach
	3.2 Length-based pruning
	3.3 Incorporating cosine similarity bounds
	Normalized vector prefix ell2-norm-based filtering

	3.4 New Tanimoto similarity bounds
	A bound on the prefix length of an un-normalized candidate vector
	A tighter bound for the un-normalized candidate vector length

	4 Materials
	4.1 Datasets
	4.1.1 Text data processing
	4.1.2 Chemical compound processing

	4.2 Baseline approaches
	4.3 Performance measures
	4.4 Execution environment

	5 Results and discussion
	5.1 Neighborhood graph statistics
	5.2 Pruning effectiveness
	5.2.1 Effectiveness of pruning the search space
	5.2.2 Effectiveness comparison with filtering baselines
	5.2.3 Effectiveness of Tanimoto bounds

	5.3 Execution efficiency
	5.4 Scaling

	6 Conclusion
	References

