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Abstract
We address the problem of constraint-based causal discovery with mixed data types, such as (but not limited to) continuous,
binary, multinomial, and ordinal variables.We use likelihood-ratio tests based on appropriate regressionmodels and show how
to derive symmetric conditional independence tests. Such tests can then be directly used by existing constraint-based methods
withmixed data, such as the PC andFCI algorithms for learningBayesian networks andmaximal ancestral graphs, respectively.
In experiments on simulated Bayesian networks, we employ the PC algorithm with different conditional independence tests
for mixed data and show that the proposed approach outperforms alternatives in terms of learning accuracy.

Keywords Constraint-based learning ·Bayesian networks ·Maximal ancestral graphs ·Mixed data ·Conditional independence
tests

1 Introduction

Typically, datasets contain different variable types, such as
continuous (e.g., temperature), nominal (e.g., sex), ordinal
(e.g., movie ratings), or censored time-to-event (e.g., cus-
tomer churn), to name a few. Furthermore, data may be
measured over time (e.g., longitudinal data) or without con-
sidering time (e.g., cross-sectional data). Such heterogeneous
data are not exceptions, but the norm in many domains (e.g.,
biomedicine, psychology, and business). In such cases, it is
important and necessary to apply causal discovery methods
that are able to handle mixed data types.
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Unfortunately, most current approaches do not handle het-
erogeneous variable types. Constraint-based methods, like
the PC and FCI algorithms [37] for Bayesian network (BN)
and maximal ancestral graph (MAG) learning, respectively,
are general methods that use conditional independence tests
to learn the causal network. Thus, in principle, they can
be applied to heterogeneous variable types, as long as an
appropriate conditional independence test is employed. For
continuous variables, typical choices are the partial correla-
tion test [3] or kernel-based tests [46]. Categorical variables
are usually handled with the X2 test or the G test [1]. Sim-
ilarly, most score-based methods, such as the K2 [9] and
GES [7] algorithms for BN learning, employ scores for cat-
egorical variables [9,16] or for continuous variables only
[14]. Although there exist both constraint-based [4,10,27]
and score-based [4,13,15,30] approaches for learning with
mixed data, they are limited in the variable types they can
handle and are too computationally expensive or make unre-
alistic assumptions.

In this work, we propose a simple and general method
to handle mixed variables. We show how to deal with mix-
tures of continuous, binary, nominal, and ordinal variables,
although the same methodology can be used to derive tests
for other data types, such as count data, proportions (per-
centages), positive and strictly positive data, censored data,
as well as robust versions for heteroscedastic data; see the
R package MXM [24] for a list of available tests. Those
tests can be directly plugged-in to existing constraint-based
learning algorithms, such as the PC and FCI algorithms. Nat-
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urally, the proposed method is not limited to BN and MAG
learning algorithms, but can be used with any algorithm that
employs conditional independence tests, such as algorithms
for Markov network structure discovery [6] or for feature
selection [38].

Weemploy likelihood-ratio tests basedon regressionmod-
els to devise conditional independence tests for mixed data.
A likelihood-ratio test for conditional independence of vari-
ables X and Y given a (possibly empty) set of variables Z
can be performed by fitting two regression models for X , one
usingZ andonewithY∪Z, and comparing their goodness-of-
fit. Under the null hypothesis of conditional independence,
both models should fit the data equally well, as the inclusion
of Y does not provide any additional information for X once
Z is accounted for. Alternatively, one can flip X and Y and
fit two regression models for Y instead. Unfortunately, those
tests do not necessarily give the same results, especially for
low sample scenarios, and thus are not symmetric. Symme-
try is an important property, as the test decisions should not
depend on the variable order.

In simulated experiments, we demonstrate that in the sam-
ple limit and by using appropriate regression models, both
tests return the same p value and thus are asymptotically
symmetric. To handle finite sample cases, we consider differ-
ent approaches to obtain symmetry, such as performing both
tests and combining them appropriately, or by performing
only one test in an order-invariant fashion using predefined
rules (similar to [34]). Finally, we evaluate two proposed
symmetric tests (one of each category) against an alterna-
tive conditional independence test for mixtures of ordinal
and continuous variables [10] on simulated BNs and show
that the symmetric test based on performing two asym-
metric likelihood-ratio tests, called MM, outperforms the
rest.

2 Preliminaries

2.1 Bayesian networks andmaximal ancestral
graphs

A Bayesian network (BN) [31,37] B = 〈G, P〉 consists of
a directed acyclic graph G over vertices (variables) V and a
joint probability distribution P . P is linked to G through the
Markov condition, which states that each variable is condi-
tionally independent of its nondescendants given its parents.
The joint distribution P can then be written as

P(V1, . . . , Vn) =
p∏

i=1

P (Vi |Pa(Vi )) ,

where p is the total number of variables in G and Pa(Vi )
denotes the parent set of Vi in G. If all conditional indepen-

dencies in P are entailed by the Markov condition, the BN is
called faithful. Furthermore, BNs assume causal sufficiency,
that is, that there are no latent confounders between variables
in V.

A causal BN is a BNwhere edges are interpreted causally.
Specifically, an edge X → Y exists if X is a direct cause
of Y in the context of the measured variables V. Typically,
multiple BNs encode the same set of conditional indepen-
dencies. Such BNs are called Markov equivalent, and the
set of all Markov equivalent BNs forms a Markov equiva-
lence class. This class can be represented by a completed
partially directed acyclic graph (PDAG), which in addition
to directed edges also contains undirected edges. Undirected
edges may be oriented either way in some BN in the Markov
equivalence class (although not all combinations are possi-
ble), while directed and missing edges are shared among all
equivalent networks.

Two classes of algorithms for BN learning are constraint-
based and score-based methods. Constraint-based learning
algorithms, such as the PC algorithm [37], employ condi-
tional independence tests to discover the structure of the
network, and perform an orientation phase afterward to ori-
ent (some of) the edges, and a PDAG is returned. Score-based
methods [7,9,16] assign a score on the whole network based
on how well it fits the data and perform a search in the space
of BNs or PDAGs to identify a high-scoring network.

Maximal ancestral graphs (MAG) [33] are generalizations
of BNs that admit the presence of latent confounders, and
thus drop the causal sufficiency assumption. In addition to
directed edges, they also contain bidirected edges, which
encode dependencies due to latent confounders. As for BNs,
multiple Markov equivalent networks may exist, forming a
Markov equivalence class, which can be represented by a
graph called partial ancestral graph (PAG). The FCI algo-
rithm [37,45], an extension of the PC algorithm, outputs such
a PAG.

2.2 Conditional independence tests

Let X and Y be two random variables, and Z be a (possibly
empty) set of random variables. X and Y are conditionally
independent given Z, if P(X ,Y |Z) = P(X |Z) · P(Y |Z)

holds for all values of X , Y , and Z. Equivalently, conditional
independence of X and Y given Z implies P(X |Y , Z) =
P(X |Z) and P(Y |X , Z) = P(Y |Z). Such statements can
be tested using conditional independence tests. Examples
of commonly employed conditional independence tests are
the partial correlation test [3] for continuous multivariate
Gaussian variables, and the G test and the (asymptoti-
cally equivalent) X2 test [1,37] for categorical variables.
All aforementioned tests are either likelihood-ratio tests or
approximations of them; see [8] for the relation of partial
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correlation test and F test, and [1] for the connections of the
G test to log-linear models and likelihood-ratio tests.

Likelihood-ratio tests, or asymptotically equivalent
approximations thereof such as score tests or Wald tests, can
be used to compare the goodness-of-fit of nested statistical
models. Examples of statistical models are linear regression,
binary logistic regression, multinomial regression, and ordi-
nal regression. Two models are called nested, if one model
is a special case of the other. Let M0 (reduced model) be a
model for X using Z, and M1 (full model) be a model for X
using Y ∪ Z. M0 is nested within M1, as M1 can be trans-
formed intoM0 by simply setting the coefficients ofY to zero.
We proceed with a brief description of the likelihood-ratio
test; implementation details are considered in Sect. 2.3. Let
LL(M) be the log-likelihood of a model M , and let Par(M)

be the number of parameters in M . The test statistic T of
a nested likelihood-ratio test between M0 and M1 equals
T = 2 · (LL(M1) − LL(M0)) and follows asymptotically
a χ2 distribution with Par(M1) − Par(M0) degrees of free-
dom [42]. It is important to note that this result assumes
that the larger hypothesis M1 is correctly specified, that is,
that its assumptions are met (such as functional form and
distribution assumption) and that all necessary variables are
included. In case of model misspecification, the likelihood-
ratio test statistic follows a different distribution [12] and
should be handled appropriately [40,41]. This topic is out of
the scope of the current paper and will not be further consid-
ered hereafter.

Note that if the models M0 and M1 fit the data equally
well and thus are equivalent, it implies that X and Y are
conditionally independent given Z (assuming again, correct
model specification), as Y does not provide any additional
information for X once Z is given. We will use this property
to show how to implement conditional independence tests
for mixed variable types in Sect. 4.

2.3 Implementing likelihood-ratio tests withmixed
data

Without loss of generality, we assume hereafter that Y is the
outcome variable, and likelihood-ratio tests are performed
using regressions on Y . In order to fit a regression model M
for variable Y using mixed continuous, nominal, and ordinal
variables, the nominal and ordinal variables have to be first
transformed appropriately. Let X be a categorical (nominal
or ordinal) variable, taking dX distinct values. X can be used
in M by transforming X into dX −1 dummy binary variables
(also called indicator variables). Note that dX − 1 variables
are used instead of one for each value of X , as the excluded
one can be determined given the others. The degrees of free-
dom of variable X is denoted as Dof(X) and equals 1 for
continuous variables and dX − 1 for categorical variables.
Similarly, the degrees of freedom for a set of variables Z is

defined as Dof(Z) = ∑
i Dof(Zi ). We note that we only

consider linear models with intercept terms and no interac-
tion terms, but everything stated can be directly applied to
models with interaction or nonlinear terms.

2.3.1 Linear regression

Linear regression models can be used if Y is continuous.
The number of parameters of the reduced model M0 equals
Par(M0) = Dof(Z) + 1, whereas for M1, Par(M1) =
Dof(Z)+Dof(X)+ 1. Typically, F tests are used for linear
regression. The F statistic is computed as

F = (RSS0 − RSS1)(n − Par(M1))

RSS1(Par(M1) − Par(M0))
,

where RSS0 and RSS1 are the residual sum of squares
of models M0 and M1, respectively, and n is the sample
size. The F statistic, under the null hypothesis (the reduced
model is the correct one), follows an F distribution with
(Par(M1) − Par(M0), n − Par(M1)) degrees of freedom,
which is asymptotically equivalent to a vχ2 distribution with
v = Par(M1) − Par(M0) = Dof(X) degrees of freedom.
Alternatively, if X is also continuous, only the full model
is required and a t test on the coefficient of X can be per-
formed.1

2.3.2 Logistic regression

In case Y is nominal, a binary or multinomial logistic regres-
sion model can be used, while for ordinal Y , ordinal logistic
regression is more appropriate. Typically, ordinal logistic
regression makes the proportional odds assumption (also
known as ordered logit regression): All levels of the ordi-
nal variable must have the same slope, and the estimated
constants are nondecreasing. The proportional odds model
that Y has a value larger than j given a set of predictors X is

P(Y > j) = exp(a j + ∑
i βi Xi )

1 + exp(a j + ∑
i βi Xi )

Notice that the values of βi are the same for each category
of Y (i.e., the log-odds functions for each class of Y are
parallel). In practice, the proportional odds assumption does
not necessarily hold [2]. Because of that, we consider the
generalized ordered logit model [43] hereafter, which does
not make the proportional odds assumption. The generalized
ordered logit model is

P(Y > j) = exp(a j + ∑
i βi, j Xi )

1 + exp(a j + ∑
i βi, j Xi )

1 In this case, the t test (Wald test) is equivalent to the F test (likelihood-
ratio test).
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where βi, j is the coefficient of the i-th variable Xi for the
j-the category of Y . Williams [43] described a simple way to
fit thismodel. This is done by fitting a series of binary logistic
regressions, where the categories of Y are combined. If there
are M = 4 categories for example, then for j = 1, category
1 is contrasted with categories 2, 3, and 4; for j = 2, the
contrast is between categories 1 and 2 versus 3 and 4; and
for j = 3, it is categories 1, 2, and 3 versus category 4.

Finally, for both multinomial regression and ordinal
regression (using the generalized ordered logit model), the
number of parameters is Par(M0) = (dY − 1)(Dof(Z) + 1)
and Par(M1) = (dY − 1)(Dof(Z) + Dof(X) + 1), and the
likelihood-ratio test has (dY −1)Dof(X) degrees of freedom.

2.3.3 Limitations

We note that we implicitly assume that the assumptions of
the respective models hold. For instance, linear regression
assumes (among others) independent andGaussian residuals,
homoscedasticity and that the outcome is a linear function of
the model variables. The latter also applies to logistic regres-
sionmodels, and specifically that the log-odds ratio is a linear
function of the variables. If the model assumptions do not
hold, the tests do not follow the same asymptotic distribu-
tion, and thus may lead to different results. However, we note
that linear regressionmodels are robust to deviations from the
assumption of normality of residuals, and to a smaller degree
to deviations of the homoscedasticity assumption [26]. The
latter could also be handled by using tests based on robust
regression.

Furthermore, we also note that even if the data come from
aBNwhose functional relations are linear models as the ones
considered above, there are cases where tests fail to identify
certain dependencies. Consider, for example, a simple net-
work consisting of three variables, X , Y , and Z , where Y is
nominal with three levels, X and Z are continuous and Y is a
parent of X and Z . Let Y be uniformly distributed, Yi denote
the binary variable corresponding to the i-th dummy variable
of Y , X = −Y1 + Y2 + 0.1εX , and Z = Y1 + Y2 + 0.1εZ ,
where ε N (0, 1). Thus, the conditional distribution of X and
Z given Y is Gaussian, although their marginal distribution
is non-Gaussian. An example of the joint distribution of X
and Z with 1000 random samples is shown in Fig. 1. Notice
that Y induces a nonlinear relation between X and Z , even
though all functions are linear. Therefore, any test based on
linear regression models on X and Z (or equivalently Pear-
son correlation) will not identify the dependence between
them, despite them being unconditionally dependent. One
approach to this problem is to use kernel-based tests (or
other, nonlinear tests), which would be able to identify such
a dependency asymptotically. We note that although indirect
dependencies may be missed by the proposed tests, direct
dependencies (edges) would still be identified. Thus, algo-

X ~ -Y1 + Y2 + 0.1 * X
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Z 
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Y
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 Y
2 +

 0
.1

 *
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-0.5
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1.5
Joint distribution of X and Z (BN: X  Y  Z)

Corr: 0.008, p-value: 0.795

Fig. 1 Anexamplewhere the proposed tests fail to identify the uncondi-
tional dependency between X and Z is shown. The correlation between
X and Z is 0.008, and the p value of the test equals 0.795, suggesting
independence

rithms such as the conservative PC algorithm [32] that only
rely on the adjacency faithfulness assumption (i.e., two adja-
cent variables are dependent given any set of variables) could
be used in conjunction with those tests, and the results would
be correct, although possibly less informative.

3 Related work

Mixed data have been considered in the context of Markov
network learning; see [44] for a review of such methods.
Heckerman et al. [16] were the first to propose a Bayesian
method to score BNs with mixed categorical and Gaussian
variables. The score is derived under the assumption that con-
tinuous variables with discrete parents follow a conditional
Gaussian distribution, similar to the graphicalmodels consid-
ered byLauritzen andWermuth [25]. An important drawback
of this approach is that it does not allow discrete variables to
have continuous parents, limiting its use in practice. A dif-
ferent approach is followed by Friedman et al. [13,30], who
consider methods of discretization of continuous variables
given a specific BNs structure. Such techniques can then be
used to search over both, a BN structure and a discretiza-
tion strategy. Margaritis and Thrun [28] propose a method
for testing unconditional independence for continuous vari-
ables,which is also directly applicable to ordinal and nominal
variables. The method has also been extended to the condi-
tional case, with a single variable in the conditioning set
[27]. We are not aware of any extension to the general case
that considers larger conditioning sets. Bach and Jordan [4]
propose a kernel-based method for graphical model learn-
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ing with mixed discrete and continuous variables and show
how both scores and conditional independence tests can be
derived from it. Its main drawbacks are that (a) it has two
hyper-parameters, which may be hard to tune and (b) that it
is computationally demanding, having a time complexity of
O(n3), where n is the sample size, although approximations
can be used that scale linearly with sample size.

Cui et al. [10] suggested a copula-based method for
performing conditional independence tests with mixed con-
tinuous and ordinal variables. The idea is to estimate the
correlation matrix of all variables in the latent space (con-
taining latent variables which are mapped to the observed
variables), which can then be directly used to compute par-
tial correlations and perform independence tests. To this end,
they employ Hoff’s Gibbs sampling scheme for generating
covariance matrices using copula [17]. The main disadvan-
tage is that the correlation matrix is estimated using Gibbs
sampling and thus may be computationally demanding and
hard to estimate accurately. Karra and Mili [23] build upon
the work of [11] and propose hybrid copula BNs, which can
model both discrete and continuous variables, as well as a
method for scoring such networks.

Recently, [34] proposed to use likelihood-ratio tests based
on linear and logistic regression models to derive conditional
independence tests for mixed continuous and nominal vari-
ables. They suggest to use linear regression instead of logistic
regression whenever applicable, as it is more accurate. This
work is most closely related to our approach. The main dif-
ferences are: (a) They only consider continuous and nominal
variables, whereas our proposed approach is more general
and is able to deal with other variable types such as ordinal
variables and (b) they do not address the asymmetry between
both directional tests, while we propose and evaluate meth-
ods that handle it.

4 Symmetric conditional independence tests
for mixed data

We consider conditional independence tests based on nested
likelihood-ratio tests, using linear, logistic, multinomial, and
ordinal regression to handle continuous, binary, nominal, and
ordinal variables, respectively. For all cases,we only consider
models with linear terms, without any interactions, although
this is not a limitation of the proposed approach and addi-
tional terms can be included.

Let H0: P(X ,Y |Z) = P(X |Z) · P(Y |Z) (X and Y are
conditionally independent given Z) be the null hypothesis of
conditional independence. Since we do not have a direct way
to test this hypothesis, we consider the null hypotheses H1:
P(X |Y , Z) = P(X |Z) and H2: P(Y |X , Z) = P(Y |Z). H1

can be tested using a nested likelihood-ratio test by regress-
ing on X , while H2 can be tested by flipping X and Y and

regressing on Y . For instance, if X is continuous and Y is
nominal, one can either fit two linear regression models for
X to test H1, one using Y ∪Z (full model) and one using only
Y (reduced model) and perform an F test, or to fit two multi-
nomial logistic regression models for Y in a similar fashion
to test H2 and perform a likelihood-ratio test. Ideally, both
tests should give identical results and thus be symmetric.

There are special cases, such as when X and Y are contin-
uous and linear regression models are used, where symmetry
holds. Unfortunately, this does not necessarily hold in the
general case. To the best of our knowledge, it is not known
under which conditions such tests are symmetric. Empirical
evidence (see Sect. 5) suggests that tests using the aforemen-
tioned models give the same results asymptotically (this was
also mentioned in [34]). Therefore, given sufficiently many
samples, any one of the two tests can be used. For small
sample settings, however, the test results often differ, which
motivated us to consider methods for deriving symmetric
tests.

4.1 Symmetric tests by combining dependent p
values

One approach is to perform both tests and to combine them
appropriately. Let p1 and p2 be the p values of the tests for
H1 and H2, respectively. As both hypothesis tests essentially
test the same hypothesis, one can expect the p values to be
positively dependent. We use a method presented in [5] for
combining dependent p values (which we call MM here-
after), an extension of a previous method [35]. The resulting
p value pmm is computed as

pmm = min {2min(p1, p2),max(p1, p2)} . (1)

This p value can be used to assess whether at least one of the
two asymmetric null hypotheses can be rejected.Moreover, it
can be demonstrated that pmm is theoretically correct even in
the presence of specific types of correlations among the two
p values, as in the case of one-sided p values based on Gaus-
sian test statistics that are positively correlated [5]; whether
this also holds for combining p values stemming from tests
considered here is not clear and needs further investigation,
but it is nevertheless a useful heuristic. In addition to that, we
considered two simple approaches, by taking the minimum
or the maximum between the two p values

pmin = min(p1, p2) or (2)

pmax = max(p1, p2) (3)

The latter is identical to testing whether both hypotheses can
be rejected and is an instance of themethod byBenjamini and
Heller [5] for combining dependent p values. Although tak-
ing the minimum p value should be avoided for independent
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p values, as it does not account for multiple testing, it may
be a reasonable choice if the p values have a high positive
correlation.

There has been theoretical work for deriving the true
distribution of the sum or the ratio of the two test statis-
tics, assuming their correlation is known [19,20]. A general,
permutation-based method for estimating the correlation
between test statistics has been proposed by Hongying Dai
andCui [18]. This is computationally expensive, as it requires
fitting a large number of models, which is prohibitive for
learning graphical models. In anecdotal experiments, we
found that this method and the ones considered above pro-
duce similar results, and thus it was not further considered.

4.2 A strategy for prioritizing asymmetric tests

A different approach for deriving symmetric tests is to use
a strategy to prioritize tests and to only perform one of
the two tests. This is especially attractive due to its lower
computational cost, compared to the previously described
approach. Sedgewick et al. [34] compared tests based on lin-
ear regression and multinomial logistic regression and found
that linear regression is generally more accurate. This can
be explained by the fact that the full linear regression model
has fewer parameters to fit than the full multinomial regres-
sion model (unless the variable is binary) and thus can be
estimated more accurately given the same amount of sam-
ples. Let X be a continuous variable, and Y be a categorical
(nominal or ordinal) variable taking dY values. The num-
ber of parameters required by a full linear regression model
for X using Y and Z equals Dof(Z) + (dY − 1) + 1 (see
Sect. 2.3). The logistic regression model for Y on the other
hand requires (dY −1) · (Dof(Z)+1+1) parameters. Thus,
unless Y is binary and dY = 2, the logistic regression model
always contains more parameters. Everything stated above
also holds for the case of unconstrained generalized ordinal
regression models. Using this fact, and the observation made
by Sedgewick et al. [34], we propose to prioritize tests as
follows.
Priority: Continuous > Nominal > Ordinal

In case of two nominal or ordinal variables, the variable
with the fewer values is regressed on, while in case of ties,
an arbitrary variable is picked. Note that if the latter holds,
the proposed strategy is not always symmetric; we plan to
address this case in future work. Recall that if both X and
Y are continuous, the tests are symmetric and thus any one
of them can be used. In anecdotal experiments, we observed
that ordinal regression models, especially the ones consid-
ered here, are typically harder to fit than multinomial logistic
models, which is the reason why we prioritize nominal over
ordinal variables. Hereafter, we will refer to this approach as
the Fast approach.

Finally, we note that the problem of asymmetry has been
addressed before in different contexts. The MMHC algo-
rithm [39] for BN learning performs feature selection for
each variable using the MMPC algorithm to identify a set
of candidate parents and children (neighbors), which may
result in cases where a variable X is a neighbor of another
variable Y but the opposite does not hold. If this is the case,
MMPCcorrects the asymmetry by removing variable X from
the set of neighbors of Y . Similar, in the context of Markov
networks, Meinshausen and Bühlmann [29] consider adding
an edge between two variables if their neighbor sets con-
tain each other (logical conjunction) or if at least one of the
neighbor sets contains the other (logical disjunction), where
neighbor sets are inferred independently for each node. The
authors state that both approaches perform similarly and are
asymptotically identical. Both methods use asymmetric tests
to identify the neighbors of each node and then perform a
symmetry correction. This approach is similar, although not
exactly the same, as taking the minimum (logical disjunc-
tion) or maximum (logical conjunction) p value. Both are
valid strategies, and should perform similarly (at least for
large sample sizes) to the proposed ones. However, the pro-
posed strategies are more general, thus applicable with any
method that uses conditional independence tests. In Sect. 5,
we also see that theMM typically performs better than strate-
gies based on taking the minimum or maximum p value.

4.3 Limitations

For certain variable types, such as longitudinal and censored
time-to-event data, it is not always possible to perform both
tests. Unless both X and Y are of the same type (e.g., both
longitudinal or censored time-to-event), it is not clear how to
regress on the nontime-related variable. For example, if X is
a censored time-to-event variable (that is, a binary variable
indicating whether an event occurred, as well a continuous
variable with the time of the event), and Y is a continuous
variable, it is straightforward to regressY on X usingmethods
such as Cox regression to perform a likelihood-ratio test,
while the opposite is harder to handle. We plan to investigate
such variable types in the future.

5 Simulation studies

We conducted experiments on simulated data to investigate
the properties of mixed tests based on regression models,
and to evaluate the proposed symmetric tests. Afterward, we
compare the MM and Fast symmetric tests to a copula-based
approach (called Copula hereafter) for mixed continuous
and ordinal variables [10] in the context of BN learning. The
methods were compared on synthetic BNs with continuous
and ordinal variables.
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5.1 Data generation

We proceed with a description of the data generation pro-
cedure used throughout the experiments. We will describe
the general case for data generation given a BN structure G
and the type of each variable. Let X be a variable in G, and
Pa(X) be the parents of X in G. For the moment, we will
only consider continuous and ordinal variables; ordinal vari-
ables will be treated separately afterward. In all experiments,
ordinal variables take up to four values.

In case Pa(X) is empty, X is sampled from the standard
normal distribution if it is continuous, and is uniformly dis-
tributed in case it is binary/nominal. If Pa(X) is not empty,
then X = f (Pa(X)) = f (b0 + ∑

i bi Pai (X) + εX ), which
is a linear or generalized linear function depending on the
type of X . Although not shown above, as before all nominal
variables are transformed into dummy variables, and thus a
coefficient is assigned to each dummy variable. The follow-
ing procedure is used to generate data for X .

1. Generate samples for each variable in Pa(X) recursively,
until samples for each variable are available

2. Sample the coefficients b of f (Pa(X)) uniformly at ran-
dom from [−1,−0.1] ∪ [0.1, 1]

3. Generate εX ∼ N (0, 1)
4. Compute X using f (Pa(X))

In order to generate ordinal variables, we first generated a
continuous variable as described above and then discretized
it into 2–4 categories appropriately (without damaging the
ordered property). Each category contains at least 15% of the
observations, while the remaining ones are randomly allo-
cated to all categories. This is identical to having a latent
continuous variable (the one generated), but observing a dis-
cretized proxy of it. Note that, as the discretization is random,
any normality of the input continuous variable is not pre-
served. Finally, ordinal variables in the parent sets are not
treated as nominal variables, but simply as continuous ones
and thus only one coefficient is used for them for the purpose
of data generation.

5.2 Investigating the properties of mixed tests

We considered five combinations of variable types and
corresponding regression models: (a) linear-binary (L-B),
(b) linear -multinomial (L-M), (c) linear-ordinal (L-O), (d)
binary-ordinal (B-O), and (e) multinomial-ordinal (M-O).
For each case, we considered the following simple BN mod-
els: (a) X Y (unconditional independence), (b) X → Y and
X ← Y (unconditional dependence), (c) X → Z ← Y
(conditional dependence of X and Y given Z ), also known
as collider [37], and (d) X ← Z → Y (conditional indepen-
dence of X and Y given Z ). In all cases, Z is continuous.

(a) Unconditional Independence

(b) Conditional Independence

(c) Unconditional dependence (d) Conditional dependence

Fig. 2 The correlation of the two p values and the proportion of decision
agreements at the 5% significance level are shown for different pairs of
regressionmodels. The correlation of p values for (un)conditional inde-
pendence increases with sample size, reaching almost perfect positive
correlation in most cases. In terms of decision agreements, an agree-
ment of over 90% is reached in all cases even with 200 samples. a
Unconditional independence, b conditional independence, c uncondi-
tional dependence, and d conditional dependence

We used the previously described procedure to generate data
for those networks. The sample size varied in (20, 50, 100,
200, 500, 1000), and each experiment was performed 1000
times, except for case (b), which was performed 1000 times
for each direction.

Figure 2 shows the correlation and decision agreements
(reject or not the null hypothesis) at the 5% significance level
(similar results hold true for the 0.1, 1, and 10% significance
levels) between all five pairs of regression models. For the
unconditional dependence case, in which both directional
models were considered, we repeated the experiment twice
and report averages over both cases. We did not consider
the correlation of p values in dependent cases, as one is
typically interested to have low enough p values to reject
the null hypothesis. Overall, the correlation between both
tests is very high and tends to one with increasing sample
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Linear-Binary Linear-Multinomial Linear-Ordinal Binary-Ordinal Multinomial-Ordinal

Unconditional Independence

Conditional Independence

Fig. 3 Estimated type I error on the (un)conditional independence cases
for each pair of regression models, and three methods for combining
dependent p values. The solid horizontal line is at the 5% level, and the
two dashed lines at 4 and 6% levels. Whenever linear regression models

are involved, the MMmethod and the linear test perform similarly. For
the conditional case of binary-ordinal and multinomial-ordinal pairs,
the MM method outperforms all methods

Linear-Binary Linear-Multinomial Linear-Ordinal Binary-Ordinal Multinomial-Ordinal

Unconditional Dependence

Conditional Dependence

Fig. 4 Estimated power on the (un)conditional dependence cases for
each pair of regressionmodels, and threemethods for combining depen-
dent p values. In most cases, all methods perform very similar. For

the multinomial-ordinal case, ordinal regression breaks down for small
samples, and MM is slightly behind the rest. This is expected, as the
other methods also have a larger type I error

size. An exception is the multinomial-ordinal (M-O) con-
ditional independence case, whose correlation is noticeably
smaller than the rest. This can be explained by the fact that
this test is the hardest one, as either test uses models with 15
parameters to be fit, requiring more samples. The proportion
of decision agreements is very high for all pairs, reaching
over 90% even with 200 samples. This is very encourag-

ing, as this is the most important factor for causal discovery
methods.

Figures 3 and 4 show the estimated type I error and power
of all methods. In the unconditional cases, as well as in most
conditional cases, all methods perform similarly. Whenever
linear models are involved, the asymmetric linear test and
the symmetric MM method outperform the rest, which can
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Table 1 Precision and recall for
the skeleton estimation

Method 50 variables 100 variables

n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

Skeleton precision

3 neighbors

MM 0.783 0.981 0.988 0.949 0.971 0.974

Fast 0.708* 0.971* 0.979* 0.936* 0.952* 0.951*

Copula 0.898 0.942* 0.975 0.884* 0.896 0.914*

5 neighbors

MM 0.989 0.992 0.993 0.988 0.992 0.989

Fast 0.986 0.990 0.992 0.984 0.985* 0.985*

Copula 0.980* 0.971* 0.951* 0.987 0.961* 0.950*

Skeleton recall

3 neighbors

MM 0.172 0.704 0.808 0.536 0.707* 0.794

Fast 0.155* 0.639* 0.711* 0.507* 0.643* 0.684*

Copula 0.152* 0.675 0.796 0.402* 0.669* 0.793

5 neighbors

MM 0.445 0.617 0.717 0.460 0.624 0.725

Fast 0.436* 0.575* 0.649* 0.457 0.582* 0.660*

Copula 0.374* 0.600* 0.700 0.341* 0.595* 0.725

An asterisk (*) indicates that the precision or recall of the Fast or Copula approach is statistically significantly
lower than that of MM at the 1% significance level. The italic font indicates that the precision of the Copula
approach is statistically significantly higher than that of MM at 1% significance level

be seen mostly in the type I error on the conditional indepen-
dence case. For the conditional case of binary-ordinal and
multinomial-ordinal pairs, the MM method offers the best
trade-off between type I error, as it very close to 5%, and
power, being only slightly worse than some competitors for
small samples. Asymmetric tests based on ordinal regression
break down in the conditional cases for small sample sizes,
and symmetric methods like MM should be preferred.

5.3 Evaluation on Bayesian network learning

As shown in the previous section, the best performingmethod
is theMMmethod, while the proposed asymmetric approach
seems to be promising if continuous variables are involved.
In this section, we use those methods for BN learning. We
compare them to a recent method by Cui et al. [10], which
is applicable to continuous, binary, and ordinal variables. As
a BN learning algorithm, we used the order-independent PC
algorithm [21], as implemented in the R package pcalg [22].
The significance level was set to 0.01 for all experiments.
For the Copula method, [10] used 20 burn-in samples, and
80 samples to estimate the correlation matrix using Gibbs
sampling. We increased these numbers to further improve its
accuracy. Specifically, we used 2p burn-in samples and 4p
samples to estimate the correlation matrix, where p is the
number of variables in the data.

We generated BNs with 50 and 100 variables, and with
an average degree of 3 and 5. For each case, we generated
50 random BNs and sampled 200, 500, and 1000 training
instances. In total, this amounts to 600 datasets. Each variable
has a 50% probability of being continuous or ordinal, and
ordinal variables take 2–4 values with equal probability. The
sampling of the network parameters and the data generation
were performed as described above.

To evaluate the performance of the different methods, we
computed the structural Hamming distance (SHD) [39], as
well as the precision and recall of the network structure and
orientations. Naturally, all metrics were computed on the
estimated PDAG and the true PDAG. Precision and recall
are proportions; hence, in order to compare their values, we
used the t test applied on log a

b , where a is the precision
(recall) of the MMmethod, and b is the corresponding preci-
sion (recall) of the competing methods.2 As for the SHD, we
took the differences between the MM method and the rest.
Since the values of the SHD are discrete, we used the Skel-
lam distribution [36] and tested (via a likelihood-ratio test)
whether its two parameters are equal, implying that the com-
pared values are equal. A t test could be applied here as well,

2 The reason of this is that, these measure being proportions, the abso-
lute difference does not reflect the same information as the ratio which
is more meaningful. The difference, for example, between 0.2 and 0.1
is the same as that of 0.8 and 0.7, but their ratio is clearly not the same.
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Table 2 Precision and recall for
the estimation of the orientations

Method 50 variables 100 variables

n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

Orientation precision

3 neighbors

MM 0.686 0.979 0.988 0.943 0.965 0.974

Fast 0.608* 0.969* 0.978* 0.928* 0.942* 0.948*

Copula 0.812 0.940* 0.928* 0.976 0.932* 0.913*

5 neighbors

MM 0.987 0.992 0.993 0.986 0.992 0.989

Fast 0.984 0.989 0.992 0.982 0.985* 0.984*

Copula 0.975* 0.970* 0.950* 0.984 0.959* 0.949*

Orientation recall

3 neighbors

MM 0.118 0.692 0.806 0.504 0.668 0.790

Fast 0.108* 0.621* 0.698* 0.476* 0.600* 0.669*

Copula 0.092* 0.666 0.793 0.342* 0.625* 0.791

5 neighbors

MM 0.413 0.606 0.711 0.430 0.613 0.719

Fast 0.406* 0.561* 0.638* 0.428 0.569* 0.649*

Copula 0.327* 0.591 0.696 0.289* 0.583* 0.722

An asterisk (*) indicates that the precision or recall of the Fast or Copula approach is statistically significantly
lower than that of MM at the 1% significance level. The italic font indicates that the precision of the Copula
approach is statistically significantly higher than that of MM at 1% significance level

Table 3 Structural Hamming
distance (lower is better)

Method 50 variables 100 variables

n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

Structural Hamming distance

3 neighbors

MM 71.48 34.40 25.64 97.62 69.94 55.12

Fast 73.18* 38.66* 33.76* 101.04* 80.46* 74.28*

Copula 70.96 37.12* 30.30* 115.66* 76.88* 62.00*

5 neighbors

MM 81.46 57.28 44.54 158.60 112.35 87.10

Fast 82.12 62.62* 53.56* 158.50 123.55* 105.30*

Copula 91.60* 60.42* 49.84* 191.40* 124.95* 93.15*

An asterisk (*) indicates that the SHD of the Fast or Copula approach is statistically significantly higher than
that of MM at the 1% significance level

but in order to be more exact, we used a test (or distribution)
designed for discrete data.

The results are summarized in Tables 1, 2, and 3. Each
table contains average values over 50 random BNs. Overall,
the proposedMM approach statistically significantly outper-
forms the other methods across all computed performance
metrics. The Copula method outperforms MM in terms of
both prediction metrics only in the 50-variable case with
average degree 3 and 200 samples, while the Fast approach
is always inferior to MM and is often comparable to Copula.
Furthermore, both MM and Fast improve across all met-

rics with increasing sample size. Copula, however, does not
always do so, and precision often declines with increasing
sample size (e.g., see cases with 50 variable networks).

6 Conclusions

In this paper, a general method for conditional indepen-
dence testing on mixed data is proposed, such as mixtures of
continuous, nominal, and ordinal variables, using likelihood-
ratio tests based on regression models. Likelihood-ratio tests
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are not necessarily symmetric, and different approaches to
derive symmetric tests are considered. In simulated experi-
ments, it is shown that the likelihood-ratio tests considered
in this paper are asymptotically symmetric. Furthermore, the
proposed symmetric MM test is shown to significantly out-
perform competing methods in BN learning tasks. R codes
to learn BNs with mixed data are available at the R package
MXM [24].
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