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Abstract
Advanced database marketing is designed to ascertain individual customers’ market responses with a discount or display of
widely various products from transaction data. However, transaction data recorded in a supermarket or electric commerce are
fundamentally sparse because most customers purchase only a few products from all products in shops. Existing methods are
not applicable to elucidate the personalized response because of a lack of sample size of purchased data. This paper proposes a
personalized market response estimation method for a wide set of customers and products from these sparse data. The method
compresses a sparse transaction data with information related to response to marketing variables into a reduced-dimensional
space for feasible parameter estimation. Then, they are decompressed into original space using augmented latent variables to
obtain individual response parameters. Results show that the method can find suitable marketing promotions for individual
customers to every analyzed product.

Keywords Database marketing · Personalization · Marketing variables · Hierarchical Bayes model · Topic modeling

1 Introduction

Personalized marketing is a key strategy of modern database
marketing that supports targeting recommendations, promo-
tions and direct-mail campaigns in various business fields.
The analysis of personalized marketing responses from
retailer transaction data is challenging because of the fun-
damental sparsity of observed purchases. In truth, very few
customers purchase most products on most of their shop-
ping trips. When a purchase is recorded in one category, it is
frequently for just one offering. The actual sample of trans-
actional data is much smaller than the data space reflected
by a data cube with dimensions corresponding to the num-
ber of customers, number of products and occasions. Under
such circumstances, standard marketing models for choice
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break down because of the high frequency of nonpurchase
for almost every product.

Additionally, increasing the number of products in a tra-
ditional marketing model is problematic because of potential
complexities in the structure of demand based on an ortho-
dox economics model and the accompanying increase in the
required number of model parameters. Existing models of
choice and demand, for example, are typically limited to
fewer than twenty or so product alternatives that are tracked
across possibly hundreds of customers [9,30]. Unfortunately,
that goal is often at odds with the goals of practitioners who
want to optimize a marketing promotion for a wide set of
customers and products in their shops.

As described in this paper,we propose amethod of person-
alized market response analysis that can treat widely diverse
products. The method identifies effective marketing promo-
tions of individual products to individual customers using
sparse transaction data. To resolve the difficulty of data spar-
sity, we first compress the data space comprising customers
and products to a reduced-dimensional latent class. For the
dimension reduction of customers and products, we propose
amodel that includes a latent variable model and amarketing
model with response parameters to marketing variables such
as discounts or marketing promotions. Response parameters
are introduced into the latent class by connecting each choice
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to its own marketing variable. Consequently, it is possible to
estimate the parameters stably because a sufficiently large
sample size can be used. Then, we decompress the extracted
associations back to individual customers using estimated
parameters of customers and products for personalization.

Our model identifies the latent class for each customer
at each point in time, providing information related to the
array of products that a customer is likely to purchase. It is
a key variable for construction of personalized information.
We do not make a priori assumptions about substitute and
complementary goods in the spirit of market basket analysis
in data mining. Our model takes an exploratory approach
to analysis. It does not test assumptions of the form of the
utility function across hundreds of offerings. However, our
model does include marketing variables so that their effects
on choice can be measured and used for prediction.

The contributions of this paper are the following:

– Proposition of an individual market response estimation
method for widely diverse products.

– Development of a marketing model with a latent variable
model.

– Findings of personalized effective marketing variables
for widely diverse products from sparse transaction data
in a supermarket.

Sections 2 and 3 describe a review of related work and
preliminary research related to our method. We present the
proposed method for personalized marketing for widely
diverse products in Sect. 4. Section 5 presents a description of
an empirical study using real transaction data. Conclusions
are offered in Sect. 6.

2 Related works

2.1 Marketingmodel for personalization

The marketing model of customer heterogeneity [1,23] for
choice behavior commonly studied in the marketing field
uses the framework of hierarchical Bayes modeling [30].
Details are described in Sect. 3.1. Heterogeneity models can
measure the effects of marketing promotion for individual
customers explicitly as market response coefficients. The
main purpose is to elucidate the richness of the competitive
environment within a product category or brand. The mod-
els are constructed by some marketing variables, parameters
and structures with economics concepts such as a budget
constraint, presence of substitutes and complements and/or
utility functions. However, most advanced models entail
a high computational cost to estimate parameters because
the model structure that expresses a process of customer
purchase behavior in the style of economics tends to be com-

plicated. Therefore, existing models of choice and demand,
for example, are typically limited to fewer than twenty or so
product alternatives.

Our model is similar to adaptive personalization systems
proposed by [3,8,10,31]. However, it differs in that ourmodel
structure facilitates analysis of widely various product cate-
gories.

2.2 Dimension reductionmethod

Many statistical and data-mining methods for dimension
reduction have been assessed for transaction data analysis:
traditional latent class analysis [13], correspondence analy-
sis [14], self-organization maps [38] and joint segmentation
[29]. The benefits of such methods are that they can treat a
large set of customer and product data to seek hidden patterns
in reduced-dimensional space. Tensor factorization [25,39]
can decompose a data cube of a large set of customers, prod-
ucts and time periods to a scalable low-rank matrix to find
hidden patterns related to customer behavior. However, such
studies cannot address a marketing variable structure explic-
itly like marketingmodels. Our method is designed to extract
information related to individual customers’ responses to
changing marketing variables directly.

2.3 Topic modeling and latent variables model

The topic model, a kind of latent variable model, is a gener-
alization of a finite mixture model in which each data point
is associated with a draw from a mixing distribution [35].
Models of voting blocs [12,32] track the votes of legislators
(aye or nay) across multiple bills, with each bill associated
with a potentially different concern or issue. Similarly, the
latent Dirichlet allocation (LDA) model [6] allocates words
within documents to a few latent topics with patterns that are
meaningful and interpretable. Each vote and each word are
associated with a potentially different issue or topic. There-
fore, themixingdistribution is applied to the individual vector
of observations and not to the entire set of observations (e.g.,
series of votes a legislator or set of words by an author) of the
panelist. In our analysis of household purchases, we allow the
vector of observed purchases across all product categories on
an occasion to be related to a different latent context (topic or
issue). This allowance enables us to view a customer’s pur-
chases as responding to different needs or occasions (e.g.,
family dinner, snacks) and enables us to identify the ensem-
ble of goods that collectively define latent purchase segments
across numerous products.

In the analysis of purchase behavior using topic models
for transaction data [18], dynamic patterns between pur-
chased products and customer interests are extracted. [17]
fused heterogeneous transaction data and customer lifestyle
questionnaire data, whereas [19] identified customer pur-

123



International Journal of Data Science and Analytics (2018) 5:233–248 235

chase patterns using a topic model with price information
related to the purchased products. These approaches iden-
tify patterns among customers and products. Topic models
typified by the labeled LDA [28] and the supervised LDA
[7] that extend LDA by incorporating additional data in the
analysis have been proposed. Various latent variable models
typified by the infinite relational model [22], the ideal point
topic model [12], the stochastic block model [27] and the
infinite latent feature model [15] have also been proposed
for knowledge discovery of binary relations from multiple
variables. However, none of these approaches is suitable for
relating marketing variables to individual customer choices
as explanatory variables.

3 Preliminary

3.1 Hierarchical Bayes probit model

The binary probit model is a popular marketing model for
choice, i.e., purchase or not purchase. Let ycit denote cus-
tomer c’s purchase record of product i at time t , assigning
ycit = 1 if customer c purchased the product, and ycit = 0
otherwise.We assume the dataset includesC customers and I
products through T periods. Denote ucit as the utility of cus-
tomer c’s purchase record of product i at time t . We assume a
binary probit model with ucit > 0 if ycit = 1, and ucit ≤ 0 if
ycit = 0. The marketing variables of products i at time t are
expressed as a vector xi t = [xit1, . . . , xti M ]T , where M is
the number of marketing variables. xi t includes information
related to the price or promotion of products.

Here,we consider an analysis of product i only. The binary
probit model expresses ucit by a linear regression model as

ucit = xT
itβ + εci t , (1)

where β = [β1, . . . , βM ]T is a regression coefficient vector
with respect to product i and εuit is a Gaussian error with
mean 0 and variance 1. Next, we consider a probability of
ucit > 0. The probability naturally is coincident with the
probability of ycit = 1. The probability p(ucit > 0) can be
determined as

p(ucit > 0) = p
(
xT

itβ + εci t > 0
)

= F(xT
itβ), (2)

where F is a cumulative distribution function of the Gaus-
sian distribution. Thesemodel structures and assumptions are
a natural and reasonable assumption for customer choice.
Many works use the model in marketing, economics and
urban engineering [36].

If we extend the probit model to treat personalized param-
eter βc = [βc1, . . . , βcM ]T (c = 1, . . . , C) for individual

customers simply, then the model is not able to estimate the
coefficients because of a lack of data sampling for the reason
that most customers do not purchase most products.

The hierarchical Bayes probit model [1] can estimate βc
using the assumption of prior distribution of βc. Multivari-
ate normal distribution is used as a prior distribution of βc
because it is a conjugate distribution of likelihood function of
the probit model. The assumption of prior distribution is con-
venient for parameter estimation and is used inmany existing
works [30]. However, the models do not treat widely diverse
products and are typically limited to fewer than twenty or so
products [9,30] because of high computational costs.

3.2 Dimension reduction by LDA

Here we briefly introduce the idea of topic models in the con-
text of customer purchases. We seek the probability p(i |c)
that customer c purchases product i . However, the prob-
abilities cannot be calculated accurately because of data
sparseness. The topic model calculates p(i |c) by introduc-
ing a latent class z ∈ {1 . . . Z} whose dimension is markedly
smaller than the numbers of customers and products.

The latent variable is used to represent the sparse data
matrix as a finite mixture of vectors commonly found in topic
models.

⎡
⎢⎣

p (i = 1|c = 1) · · · p (i = 1|c = C)
...

. . .
...

p (i = I |c = 1) · · · p (i = I |c = C)

⎤
⎥⎦

=
Z∑

z=1

⎡
⎢⎣

p (1|z)
...

p (I |z)

⎤
⎥⎦[p (z|1) · · · p (z|C)

]
. (3)

More specifically, we decompose a large probability matrix
of size I ×C to two small probability matrices of sizes I × Z
and Z × C based on the property of conditional indepen-
dence. Hereinafter, we denote the probability that customer
c belongs to the latent class z as p(z|c) and designates it as the
membership probability. Also, for simplification, the proba-
bility that customers belonging to latent class z purchase the
product i is p(i |z).

Parameter θcz of categorical distribution is used for proba-
bility p(z|c). The categorical distribution ismultinomialwith
parameters θc = [θc1 · · · θcZ ]. The θc is specified so that the
selection probability of customer c with respect to product
i is conditionally independent if the latent class z is given:
all information about customer heterogeneity of purchases
is conveyed through the latent classes. The prior distribution
for θc is assumed the Dirichlet distribution as the natural
conjugate prior distribution of categorical distribution:

θc ∼ Dirichlet
(
γ̃
)
, (4)
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where γ̃ is a hyperparameter of Dirichlet distribution.
Themain difference between voting blocsmodel andLDA

is assumed distributions for probabilities p(i |z) in the I × Z
matrix. The voting blocs model presumes a Bernoulli distri-
bution for the probability p(i |z). LDA assumes a categorical
(i.e., multinomial) distribution for the probability matrix.

3.3 Problem settings

Here, we suppose the following three situations. (1) Given
that dataset {ycit } is sparse, that is, most ycit is zero, and (2)
that the number of target products I is greater than several
hundred, then (3) we assume the following marketing model
for the customer’s purchase behavior as

ucit = xT
itαci + εci t , (5)

where αci = [αci1, . . . , αci M ]T is a regression coefficient
vector of customer c with respect to product i . For the sit-
uation described above, we consider a method to ascertain
personalized market response coefficients {αci }.

4 Proposedmethod

4.1 Model development

Under circumstances of sparse data, it is not possible to esti-
mate the parameters αci directly in existing methods such as
maximum likelihood estimation because of a lack of sample
size of purchase data. To resolve that difficulty, we reduce
the dimension of customers and products to latent classes
in which similar customers in terms of purchase behavior
with marketing variables are summarized. We estimate the
parameters associated with a latent class in the dimension
reduced space using a purchased dataset of customers that
belong to the same latent class. In that situation, it is possi-
ble to estimate the parameters stably because we can use a
sufficiently large sample size. We recover information of αci

using the estimated parameters in latent class βzi and latent
class membership at each observation zcit . Definitions of βzi
and zcit are described later.

Here, we couple the binary choice probability with a vot-
ing blocmodel to reduce a space dimension of customers and
products.

p (ucit > 0) =
Z∑

z=1

p (uit > 0|z) p (z|c) (6)

We denote the utility associated with the latent class z
as u(z)

i t ; then, the choice probability can be represented as

p(uit > 0|z) = p(u(z)
i t > 0). Assuming a linear Gaussian

structure on the utility u(z)
i t for marketing variables, the right-

hand side of (3) can be represented as

Z∑
z=1

⎡
⎢⎣

F
(
xT

itβz1
)

...

F
(
xT

I tβz I
)

⎤
⎥⎦
[
θ1z · · · θCz

]
(7)

where βzi = [βzi1, . . . , βzi M ]T is a response coefficient
vector of latent class z with respect to product i . The hetero-
geneity of latent class is introduced through a hierarchical
model with a random effect for response coefficient βzi ,

βzi ∼ NM (μi , Vi ), (8)

where the prior distributions for μi and Vi follow an M-
dimensional multivariable normal distribution NM (μ̃, σ̃ 2Vi )

and an inverse Wishart distribution I W (W̃ ,w̃), where μ̃, σ̃ 2,
W̃ and w̃ are hyperparameters specified by the analyst. We
assume that the M-dimensional coefficient vector βzi for
each segment, z, is a draw from a distribution with mean and
covariance that is product-specific.

The likelihood is given as

�
({ycit } | {θc} ,

{
βzi
}
, {xi t }

)

=
C∏

c=1

∏
i∈Ic

∏
t∈Tc

Z∑
z=1

[
θcz p

(
ycit |xi t ,βzi , z

)]
(9)

where p(ycit |xit , βzi , z) denotes the kernel of the binary
probit model conditional on z and where Tc denotes a sub-
set of t in which customer c purchased any product in a
store. Also, Ic is a subset of products i purchased by cus-
tomer c at least once during the period t = 1, . . . , T , i.e.,

Tc ∈
{

t |∑I
i=1 ycit > 0

}
and Ic ∈

{
i |∑T

t=1 ycit > 0
}
.

Equation (8) is difficult to use directly because the like-
lihood includes summations over latent class z. Instead, we
use a data augmentation approach [34] with respect to latent
variable z. We introduce variables zcit ∈ {1, . . . , z . . . , Z}
denoting the label of the latent class for each customer c,
each purchased product i and each purchasing event t . Con-
ditioning on the zcit for each purchasing transaction, as in
the LDA [6], the likelihood in (7) simplifies to

�
({ycit } | {θc} , {zcit } ,

{
βzi
}
, {xi t }

)

=
C∏

c=1

∏
i∈Ic

∏
t∈Tc

p (zcit = z|θc) p
(
ycit |xi t ,βzi , zcit = z

)

(10)

where p(zcit = z|θc) denotes a categorical distributionwhen
θc is given. Hereinafter, (zcit = z) is denoted as zcit to sim-
plify notation.
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The posterior distribution of parameters including latent
variables of states {zcit } and augmented utilities {u(z)

ci t } of
proposed model is then given as

p
(
{θc}, {zcit },

{
u(z)

ci t

}
, {βzi }, {μi }, {Vi } | {xi t }, {ycit }

)

= p ({θc} | {zcit })
× p

({zcit } | {θc,βzi , xi t , ycit
})

× p
({

u(z)
ci t

}
| {βzi , zcit , xi t , ycit

})

× p
({

μi , Vi
} | {βzi }

)

× p
({

βzi
} |
{

u(z)
ci t ,μi , Vi , xi t

})

∝ p
(
{θc}, {zcit },

{
u(z)

ci t

}
, {βzi }, {μi }, {Vi }, {xi t }, {ycit }

)

=
[

C∏
c=1

p (θc)

][
I∏

i=1

p
(
μi , Vi

) Z∏
z=1

p
(
βzi | μi , Vi

)
]

[ C∏
c=1

∏
i∈Ic

∏
t∈Tc

p (zcit | θc) p
(

u(z)
ci t | βzi , zcit , xi t , ycit

)

p
(
ycit | βzi , zcit , xi t

) ]
. (11)

4.2 Characteristics of the proposedmodel

Figure 1 presents a graphical representation of the proposed
model. Here, it is noteworthy that {βzi } differs from smooth-
ing parameters in the literature of LDA [6]. The {βzi } in our
model, which are regression coefficient vectors for market-
ing activities, play a key role in our analysis because latent
segments and augmented utilities are characterized by the
estimated {βzi }.

The latent classes z serve to define types of purchase bas-
kets across the I products. The first term of (7) defines a
vector of choice probabilities for each product under study,
assuming that the purchase occasion is of type z. Products
with highprobability are likely to be jointly present in the bas-
ket. Therefore, our model identifies likely bundles of goods
purchased for shopping trips of different types. The second

zi

Vi

iV
~,~µ

Ww
~,~

Augmented utility Data

c zcit
~

Latent segment

Response
coefficient

Marketing variables

Customer level
Purchase level ( Tc)

Product level

Segment level

xit

ycit

Fig. 1 Graphical representation of the proposed model

term is the probability that a customer’s purchases are of type
z. Our model does not model heterogeneity in a traditional
manner of marketing models, where there is a common set
of customer’s parameters for all purchases of an individual.
We instead assume that each purchase belongs to one of Z
types, and that customers can also be characterized in terms
of the probability their purchases are of these types.

Our model differs from related standard models in two
respects. First, the likelihood is defined over products and
time periods in which purchases are observed to take place
at least once, as indicated by variables Tc and Ic. It is com-
posed not only of purchase but also of nonpurchase occasions
for identifyingmarket response parameters. In this sense, our
model differs from topic models used in text analysis where
the likelihood is formed using the words present in a corpus,
not the words that are not present. Second, heterogeneity is
introduced at the observation, allowing the different trans-
actions of a customer to reflect different latent states, z at
every (c, i, t), as denoted by zcit . It provides us with use-
ful information for characterizing customers and products
and for predicting their purchases. This information dif-
fers from the traditional latent class model [21], where the
likelihood of all customer purchases contributes to infer-
ences about a customer’s latent class membership (z) and
parameters (β).

4.3 Estimation of personalizedmarket response
coefficients

The estimated posterior mean β̂zi , û(z)
ci t and ẑ(z)

ci t can be trans-
formed into statistics that are relevant for personalization.
Here, ẑ(z)

ci t ≡ E[p(zcit = z)], z =, 1..., Z at each point of

data cube (c, i , t). Given the estimates Λ̂ = {β̂zi , û(z)
ci t , ẑ(z)

ci t },
we can construct market response estimates for each cus-
tomer and each product from Λ̂ = {β̂zi , û(z)

ci t , ẑ(z)
ci t } by project-

ing the estimates of latent utility on marketing variables. The
estimates are obtained from an auxiliary regression of latent
utility Û (k)

ci stacked by û(k)
ci t with the state k = argmax ẑ(z)

ci t
changing over time on the correspondingmarketing variables
Xci constituted by xi t (t ∈ Tc).

α̂ci =
(

Xci
T Xci

)−1
Xci

T Û (k)
ci . (12)

The estimates presented above provide a bridge between the
granularity of the model, where heterogeneity is introduced
at each point in the data cube, and managerial inferences
and decisions that are made across products (e.g., which cus-
tomers to reward), across customers (e.g., which products to
promote) and over time. In addition, the standard t test in
the standard linear regression models is useful for testing the
significance of estimates.
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4.4 Parameter estimation

We use variational Bayes (VB) inference [5,20], instead of
the standard Markov chain Monte Carlo (MCMC) infer-
ence. MCMC methods can incur large computational cost
in large-scale problems. VB inference approximates a pos-
terior distribution of target by variational optimization in
a computationally efficient manner. This approximation is
necessary for our analysis. VB has another advantage over
MCMC in that it is not prone to the label-switching problem
encountered in MCMC estimation [24]. The VB inference,
the update equation and the derivations for our model are
detailed in Appendices A and B. The precision and compu-
tation time of parameter estimation of our model by the VB
and MCMC in some situations are shown in Appendices E
and F, respectively.

5 Application

5.1 Data description and settings

A customer database from a general merchandise store,
recorded from April 1 to June 30 in 2002, is used in our
analysis. A customer identifier, price, display and feature
variables were recorded for each purchase occasion. The
dataset includes 94,297 transactions involving 1650 cus-
tomers and 500 products. The products were chosen by being
displayed and featured at least once in the data period. The
marketing variables are price (Pit ), display (Dit ) and fea-
ture (Fit ); that is, xi t = [1 Pit Dit Fit ]T . Also, Pit is the
price relative to the maximum price of product i in the obser-
vational period. The display and feature are binary entries,
equal to one if the product i is displayed or featured at time
t , and zero otherwise.

In VB estimation, the iterations are terminated when the
variational lower bound improves by less than 10−3% of the
current value in two consecutive iterations. (The variational
lower bound is described in Appendix C.) The hyperparam-
eters and initial values are set as explained in Appendix A.
These settings for the hyperparameters and the stopping rule
of the VB iterations are adopted hereinafter for all empirical
studies.

5.2 Prediction performance

Table 1 presents the root-mean-square error (RMSE) of
the four methods with respect to the number of Z . The
RMSE represents the difference between purchased behavior
ycit = 1 and p(ycit = 1) in the data cube and is calculated
using hold-out samples recorded during July 1–31 in 2002.
We measure the prediction performance of the four meth-
ods to unknown samples. The table includes results of the

Table 1 RMSEs of predictions of the four methods

Probit model .896

Logit model .895

Z 2 3 4 5 10 15 20

Latent class logit
model

.893 .890 .889 – – – –

Proposed method .859 .857 .857 .857 .856 .856 .856

probit model, the logit model, the latent class logit model
[21] and the proposed method. The RMSEs of probit model
and logit model are calculated on the presumption that the
data are generated by only one consumer’s behavior for each
product. The latent class logit model assumes latent class of
customer only. TheRMSEs of the threemodels are calculated
independently for each product. The calculation of RMSEs
of the latent class logit model with respect to Z = 10, 15
and 20 does not converge. We used R function glm for probit
and logit model. Then we used R package FlexMix for latent
class logit model. Results show that the proposedmethod has
a higher prediction performance than other methods.

Additionally, we find the decrease of RMSE of proposed
method to be smooth around Z = 10 from the table. We
illustrate the following analysis using a Z = 10 solution.
Conditioning on the number of segments using variational
lower bound is common practice in mixture model [5,11].
We tried, but were unsuccessful in estimating an optimal
Z because variances of estimated values of variational lower
bound inmultiple trials for each Z were too large to ascertain
an optimal Z . Therefore, we leave this as an area for future
research.

5.3 Insight to personalizedmarketing

5.3.1 Heterogeneity analysis

The management of pricing, displays and feature activity
within a store involves decisions that cut across time and
customers, and which require knowledge of which prod-
uct categories are most sensitive to these actions. More
recently, targeted coupon delivery systems have allowed for
the individual-level customization of prices. Managing these
decisions requires a view of the sensitivity of customers and
product categories to these actions.

Individual-level estimates ofmarket response are obtained
using Eq. (12), and two-sided significance test on each esti-
mate with the level of 5% is conducted by t test for deciding
effectiveness of marketing variables in empirical analysis.
In fact, customers will display variation in their sensitivity
to variables such as price across product categories because
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Fig. 2 Marginal distribution of parameter estimates of individual cus-
tomers

of varying aspects of the product categories (e.g., necessary
versus luxury goods, amount of product differentiation, price
expectations) and different purposes of the shopping visit
over time (e.g., shopping for oneself or others, large versus
small shopping trip).

We can marginalize α̂ci by either of its arguments, c and i ,
to obtain characterizations of customers and products useful
for analysis. The empirical marginal distribution of customer
parameter estimates is obtained by averaging across the 500

products in our analysis, i.e.,
{∑C

c=1 α̂ci/C
}
. A histogram

of 500 products for each marketing variable is displayed on
the left side of Fig. 2, providing information related to the
general distribution of heterogeneity faced by the firm for
actions such as price customization. We find the individual
estimates to be plausible in that the price coefficients are
negative and the display and feature coefficients are estimated
as positive.

We can also summarize heterogeneity across customers
and examine the distribution of marketing variables for
the 500 products in our analyses. The empirical marginal
distributions of individual products, averaging over 1650

customers, i.e., of
{∑I

i=1 α̂ci/I
}
, are depicted in Fig. 2.

The products that were never displayed and featured in the
data period have been omitted from the histograms in Fig. 3.
These estimates are useful for ascertaining which product
categories should receive merchandising support in the form
of in-store displays and feature advertising. Results show
that the estimates are plausible in most product categories
with negative price coefficients, and positive display and fea-
ture coefficients, but there exists fairly wide variation in the
effectiveness of these variables across products. Many prod-
uct categories appear to be unresponsive to merchandising
efforts.
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Fig. 3 Marginal distribution of parameter estimates of individual prod-
ucts

Fig. 4 Personalized effective marketing variables for individual cus-
tomers and products: 100 customers and 100 products

5.3.2 Personalized effective marketing promotions

Figure 4 provides a two-dimensional summary of the data
and coefficient estimates for top 100 products and customers.
Figure 4a is a scatter plot of two-dimensional data cube with
respect to customers (c) and products (i), aggregated along
the time (t) dimension. If a customer has never purchased a
specific product in the dataset, then the coordinate (i, c) is
colored “white.” It is “black" if they have purchased the prod-
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uct at least once. We observe that customer-product space is
still very sparse.

Figures 4b–d shows the results of testing with a 5% level
of significance level for nonzero individual response coef-
ficients. In Fig. 4b, the coordinates with a significant price
coefficient indicated as “black" and “white" show that the
estimate is not significant. The effectiveness of displays and
feature promotions is defined similarly. We find that our
model produces many significant price, display and feature
coefficients.

An interesting aspect of our analysis is that because of
the imputation present in the latent variable model for non-
purchases, significant coefficients can arise even when a
customer has never purchased a product. The latent variable
model greatly reduces the dimensionality of the data cube and
produces individual estimates in a sparse data environment.
Our analyses yield coefficient estimates at the individual
customers and products by way of the latent topics that tran-
scend the product categories. Ourmodel enablesmarketers to
develop effective pricing and promotional strategies by rec-
ognizing the presence of latent topics, or shopping baskets,
present at each point in time in the data cube.

6 Conclusion

We proposed a descriptive model of demand based on the
idea of latent variables where products purchased by cus-
tomers. We allow for a product’s purchase probability to be
affected by price, display and feature advertising variables,
but do not treat purchases as arising from a process of con-
strained utility maximization. An important benefit of this
approach is that it enables us to side-step complications asso-
ciated with competitive effects and model a much larger set
of products than that possible with existing economic mod-
els. By retaining prices and other marketing variables in our
model, we can predict the effects of these variables on own
sales. This trade-off is unavoidable in the analysis of transac-
tion databases where purchases are tracked across thousands
of products. The proposed model is applicable to personal-
ized marketing across numerous and diverse products. We
show how the model is useful to produce information useful
for personalized marketing for both specific customers and
specific products, and how it effectively accommodates data
sparseness caused by infrequent customer purchases.

Future research will combine marketing models and other
latent variable models or tensor factorization methods and
compare the predictionperformancewith that of the proposed
model. We would like to apply the method to other market
datasets to verify the prediction performance. Additionally,
our model includes the assumption that the stability of the
topic structure is over time. However, it is possible that cus-
tomers’ market response and purchase patterns change over

time because of factors such as new trends, state dependence
and the arrival of new purchase and delivery technologies.
We believe that the development of a dynamic topic model
for purchase is an interesting extension of ourwork, and leave
this point for future research.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix A: Variational Bayes inference for
the proposedmodel

This appendix details the variational inference of proposed
model. The target and approximate distributions are denoted,
respectively, as p and q. The latter is called the variational
distribution. Distributions p and q share a parameter set Θ .
In general, when the data D are given, the log marginal like-
lihood log p(D) of the target distribution is decomposed into
two components as

log p (D) = L (q) + K L (q ‖p ) (A1)

L (q) =
∫

q (Θ) log
{

p (D,Θ) q(Θ)−1
}

d Z (A2)

K L (q ‖p ) = −
∫

q (Θ) log
{

p (Θ|D) q(Θ)−1
}

d Z ,

(A3)

where L(q) is the variational lower bound in VB inference,
and K L (q ‖p ) is the Kullback–Leibler divergence of the
target and variational distributions. Actually, K L (q ‖p ) is
well known to be zero if p and q are the same distribution.
Therefore, a reasonable solution to estimating the poste-
rior distribution p is the variational distribution q for which
K L (q ‖p ) is minimized. However, it is difficult to evaluate
the value of K L (q ‖p ) because the expression involves a
posterior distribution of p(Θ|D).

In contrast, L(q) involves a joint distribution p(D,Θ)

that is easily evaluated in many cases because it is obtained
as the product of the prior and the likelihood in Bayesian
models. In fact,maximizing L(q) is equivalent tominimizing
K L (q ‖p ) because the log marginal likelihood of the target
distribution is constant for a given dataset. Under these cir-
cumstances, assuming that the distribution q and parameter
setΘ are decomposable for some groups, the parameters are

called variational parameters q (Θ) =
J∏

j=1
q j

(
Θ( j)∗

)
and
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can be maximized by the following updating algorithm [20]:

Θ ( j)∗{new} ← argmax
Θ( j)∗

L

(∏J

j
q j

(
Θ( j)∗)

)

∝ exp
(
Ek 
= j

[
log p (D,Θ)

])
. (A4)

The variational parameters are updated for each variational
parameter set Θ ( j)∗ until convergence of the algorithm. The
initial variational parameters are proper random values. The
VB is guaranteed to converge after several iterations because
L(q) is convex with respect to each q j (Θ

( j)∗) [5]. The
variational lower bound increases monotonically as the iter-
ation proceeds. Therefore, convergence can be confirmed by
checking the value of L(q) at each iteration.

We introduce the variational distributions and parame-
ters for the proposed model. The parameters and variational
parameters are denoted as

Θ =
{
{θc}, {zcit },

{
u(z)

ci t

}
, {βzi }, {μi }, {Vi }

}
and

Θ∗ = { {
γ ∗

c

}
,
{
θ∗

ci t

}
,
{
β∗

zi

}
,
{

V β∗
i z

}
,
{
μ∗

i

}
,
{
σ

μ∗
i

}
,{

w∗
i

}
,
{
W ∗

i

} }
, respectively, while the variational distribu-

tions are configured as

q
(
Θ | Θ∗, {xi t }, {ycit }

)

=
[

C∏
c=1

qc
(
θc | γ ∗

c

)]
⎡
⎣

C∏
c=1

∏
i∈Ic

∏
t∈Tc

qz
(
zcit | θ∗

ci t

)
⎤
⎦

⎡
⎣

C∏
c=1

∏
i∈Ic

∏
t∈Tc

qu

(
u(z)

ci t | θ∗
ci t ,β

∗
zi , xi t , ycit

)⎤⎦

[
I∏

i=1

Z∏
z=1

qβ

(
βzi | β∗

zi , V β∗
zi

)]

[
I∏

i=1

qμ,V
(
μi , Vi | μ∗

i , σ
μ∗
i , w∗

i , W ∗
i

)]
(A5)

where qc is a Dirichlet distribution with variational param-
eter γ ∗

c . Also, qz represents a categorical distribution with
variational parameter θ∗

ci t , qu denotes a truncated normal
distribution, qβ stands for an M-dimensional multivariable
normal distribution with two variational parameters (mean
vector β∗

zi and covariance matrix V β∗
zi ), and qμ,V signifies a

multivariable normal–inverse Wishart distribution with vari-
ational parameters μ∗

i , σ
μ∗
i , w∗

i , W ∗
i .

We set hyperparameters as γ̃ = [0.01, . . . , 0.01]T , μ̃ =
[0, . . . , 0]T , σ̃ 2 = 1, W̃ = IM and w̃ = 10 and ini-
tial values as {θ (0)∗

ci t } ∼ Dirichlet(γ̃ ), {β(0)∗
zi ,μ

(0)∗
i } ∼

NM ([−1, 0, 0, 0]T , 0.1 × IM ), {σμ(0)∗
i } = (σ̃−2 + Z)−1,

{w(0)∗
i } = w̃ + Z and {V β(0)∗

i z , W (0)∗
i } = IM . These settings

are adopted in all empirical studies. {γ (0)∗
c } are given by other

initial parameters in VB procedure.

Appendix B: Derivation of VB algorithm for
proposedmodel

The update procedure derives from the analytical calculation
of Equation (13). The update equation for each variational
parameter is obtained from the following expectation values

E 
=q j

[
log p (D,Θ)

]

≡ Ek 
= j
[
log p (D,Θ)

]

=
∫

log p (D,Θ)
∏
k 
= j

qi

(
Θ(i)∗) dΘ (i)∗, (B1)

where D = {{xi t } , {ycit }}.
The update procedures of variational parameters γ ∗

c , θ
∗
ci t ,

β∗
i z , V β∗

i z , μ∗
i , σ

μ∗
i , w∗

i and W ∗
i are presented below.

Optimization of γ ∗
c

The Dirichlet and categorical distributions are of the follow-
ing forms.

Dirichlet (θc | γ̃ ) =
∏Z

z=1 Γ (γ̃z)

Γ
(∑Z

z=1 γ̃z

)
Z∏

z=1

θ
γ̃z−1
cz

Categorical (zcit | θc) =
Z∏

z=1

θδ(zci t =z)
cz (B2)

Therein, Γ (·) is the gamma function. Also, δ(zcit = z)
is the Dirac delta function defined as δ(zcit = z) = 1
if zcit = z and δ(zcit = z) = 0. The expectation value
E 
=qθ

[
log p (D,Θ)

]
is then calculated for each c as

E 
=qθ

[
log p (D, Θ)

] = log p (θc) + Eqz

[
log p ({zcit } | θc)

]

+ const.

= logΓ

(∑Z

z−1
γ̃z

)
−

Z∑
z=1

logΓ (γ̃z)

+
Z∑

z=1

⎡
⎣
⎛
⎝γ̃z +

∑
i∈Ic

∑
t∈Tc

θ∗
ci t z − 1

⎞
⎠
⎤
⎦ log θcz + const,

(B3)

where θ∗
ci t z is an element of θ∗

ci t . Here and hereinafter, const.
denotes any term not included in the relevant parameters. The
second line of the above equations describes a log-Dirichlet
function with parameter γ̃z + ∑

i∈Ic

∑
t∈Tc

θ∗
ci t z . Therefore, we

obtain the following.

γ ∗
c ← γ̃ +

∑
i∈Ic

∑
t∈Tc

θ∗
ci t (B4)
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Optimization of θ∗
cit

Here we designate a digamma function as Ψ (·), which will
be useful for later discussion, and summarize the property
of truncated normal distribution in the probit model. u(z)

ci t
follows a normal distribution with mean xT

itβzi and variance

1. Moreover, u(z)
ci t must satisfy ycit = 1 if ucit > 0 and

ycit = 0 if ucit ≤ 0. Therefore, u(z)
ci t is generated from a

truncated normal distribution as

u(z)
ci t ∼

{
T N(0,∞)

(
xT

itβzi , 1
)

if ycit = 1

T N(−∞,0)
(
xT

itβzi , 1
)

if ycit = 0
. (B5)

Therein, T N(n1,n2) (·, ·) denotes a normal distribution trun-

cated from n1 to n2. The distribution of u(z)
ci t is therefore

expressed as

p
(

u(z)
ci t | βzi , zcit , xi t , ycit

)

= 1

Ω
(z)
ci t

1√
2π

exp

{
−1

2

(
u(z)

ci t − xT
itβzi

)2}
, (B6)

with Ω
(z)
ci t ≡ {

F
(
xT

itβzi
)}ycit

{
1 − F

(
xT

itβzi
)}(1−ycit ). In

addition, the expectation value and variance are expressed
as

E
[
u(z)

ci t

]
= xT

itβ
∗
zi + ϕ

(z)
ci t (B7)

V
[
u(z)

ci t

]
= 1 − xT

itβ
∗
ziϕ

(z)
ci t −

(
ϕ

(z)
ci t

)2
, (B8)

where ϕ
(z)
ci t ≡ (−1)(1−ycit ) f

(
xT

itβ
∗
zi

)
/Ω

(z)∗
ci t and Ω

(z)∗
ci t ≡{

F
(
xT

itβ
∗
zi

)}ycit
{
1 − F

(
xT

itβ
∗
zi

)}(1−ycit ). Consequently, the
expected value E 
=qz

[
log p (D,Θ)

]
is given as

E 
=qz

[
log p (D,Θ)

] = Eqc

[
log p (zcit | θc)

]

+ Equ ,qβ

[
log p

(
u(z)

ci t | βzi , zcit , xi t , ycit

)]
+ const.

(B9)

The first term in the right-hand side of Eq. (B9) is obtained

as Ψ
(
γ ∗

cz

)− Ψ
(∑Z

z−1 γ ∗
cz

)
[6], whereas the second term is

evaluated as

Equ ,qβ

[
log p

(
u(z)

ci t | βzi , zcit , xi t , ycit

)]

= Equ ,qβ

[
− log

√
2πΩ

(z)
ci t − 1

2

(
u(z)

ci t − xT
itβzi

)2]

= − Eqβ

[
logΩ

(z)
ci t

]
− 1

2
Equ

[(
u(z)

ci t

)2]

+ Equ ,qβ

[
u(z)

ci t x
T
itβzi

]
− 1

2
Eqβ

[(
xT

itβzi

)2]+ const.

(B10)

To solve Eq. (B9) for θ∗
ci t z , we must evaluate the four terms

of Eq. (B10). The first term includes a CDF from which the
expectation value is difficult to obtain analytically. Therefore,
we expand the term as a zeroth-order Taylor expansion in
terms of the CDF of normal distribution and the logarithm
function. Such bold approximation is standard strategies for
adapting topicmodelswithVB topractical computation (e.g.,
zeroth-order Taylor approximation by [4,33], and zeroth- and
first-order delta approximation by [8]). The four expectation
values in Eq. (B10) are then written as

Eqβ

[
logΩ

(z)
ci t

]
≈ const,

Equ

[(
u(z)

ci t

)2] = V
[
u(z)

ci t

]
+
(
xT

itβ
∗
zi + ϕ

(z)
ci t

)2
,

Equ ,qβ

[
u(z)

ci t x
T
itβzi

]
=
(
xT

itβ
∗
zi + ϕ

(z)
ci t

)
xT

itβ
∗
zi + xT

it V
β∗
zi xi t ,

Eqβ

[(
xT

itβzi

)2] = xT
it V

β∗
zi xi t +

(
xT

itβ
∗
zi

)2
. (B11)

Finally, θ∗
ci t z is updated as

θ∗
ci t z ← exp (ρci t z)

Z∑
j=1

exp
(
ρci t j

) , (B12)

where

ρci t z = Ψ
(
γ ∗

cz

)− Ψ

(∑Z

z−1
γ ∗

cz

)
+ 1

2
xT

itβ
∗
ziϕ

(z)
ci t

+ 1

2
xT

it V
β∗
zi xi t . (B13)

Optimization of β∗
zi and V

β∗
zi

First, we derive an inverse Wishart distribution function and
adopt some well-known properties of multivariable normal
and inverse Wishart distributions [2,5].

IW
(

W̃ , w̃
)

=
∣∣∣W̃
∣∣∣
w̃/2

2w̃MΓ (w̃/2)
|Vi |− w̃+M+1

2 exp

{
−1

2
tr
(

W̃ V −1
i

)}
,

EqV

[
log |Vi |

] =
M∑

m=1

Ψ

(
w∗

i + 1 − m

2

)
+ M log 2 + log

∣∣∣W ∗−1
i

∣∣∣ ,

EqV

[
V −1

i

]
= w∗

i W ∗−1
i ,

Eqμ,qV

[(
βzi − μi

)T
V −1

i

(
βzi − μi

)]

= (βzi − μ∗
i

)T
w∗

i W ∗−1
i

(
βzi − μ∗

i

)+ σ
μ∗
i . (B14)

We obtain the optimization procedures of β∗
zi and V β∗

i z by the
following expected value:

E 
=qβ

[
log p (D,Θ)

] = Eqμ,qV

[
log p

(
βzi | μi , Vi

)]
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+ Equ ,qz

[
log p

({
u(z)

ci t

}
| βzi , {zcit , xi t , ycit }

)]
+ const.

= − 1

2
Eqμ,qV

[(
βzi − μi

)T
V −1

i

(
βzi − μi

)]

− 1

2

C∑
c=1

∑
t∈Tc

Equ ,qz

[(
u(z)

ci t − xT
itβzi

)2]+ const.

(B15)

The first and second terms of the second line are given by
the last and third lines of Eq. (B11), whereas the third and
fourth terms are given, respectively, by Eqs. (B2) and (B3),
derived in a manner similar to Equation (B10). β∗

zi and V β∗
zi

are then updated arithmetically as

β∗
zi ←

{
w∗

i W ∗−1
i + Xzi X T

i

}−1 {
w∗

i W ∗−1
i μ∗

i + Xzi ūzi

}

V β∗
zi ←

{
w∗

i W ∗−1
i + Xzi X T

i

}−1

(B16)

where ūzi ≡
[{

E
[
u(z)

ci t

]}
c=1,...,C,t∈Tc

]T

,

Xi ≡ [{xi t }c=1,...,C,t∈Tc

]
,

and Xzi ≡
[{

θ∗
ci t zxi t

}
c=1,...,C,t∈Tc

]
.

The ūzi is a vector, and Xi and Xzi arematrices. The numbers
of elements in ūi , Xi and Xzi are decided by the size of the
customer base and by Tc.

Optimization ofμ∗
i , σ

μ∗
i ,w∗

i andW
∗
i

Here we consider a joint distribution of a multivariable nor-
mal distribution of μi and an inverse Wishart distribution of
Vi and derive the update equations for variational parame-
ters of four types from this joint distribution. To this end,
we require the following expectation value from the joint
distribution function.

E 
=qμ,qV

[
log p (D,Θ)

] = log p
(
μi , Vi

)

+ Eqβ

[
log p

({
βzi
} | μi , Vi

)]+ const.

= −1

2
log |Vi | − 1

2
σ̃−1

μ

(
μi − μ̃μ

)T
V −1

i

(
μi − μ̃μ

)

− w̃ + M + 1

2
log |Vi | − 1

2
tr
{

W̃ V −1
i

}

− 1

2
Z · Eqβ

[
log |Vi |

]− 1

2

Z∑
z=1

Eqβ

×
[(

μi − βzi
)T

V −1
i

(
μi − βzi

)]+ const. (B17)

First, we extract from this expectation value all terms linked
to multivariable variational parameters μ

μ∗
i and σ

μ∗
i . That is

E 
=qμ

[
log p (D,Θ)

] = −1

2
σ̃−1

μ

(
μi − μ̃μ

)T
V −1

i

(
μi − μ̃μ

)

− 1

2

Z∑
z=1

Eqβ

[(
μi − βzi

)T
V −1

i

(
μi − βzi

)]+ const.

(B18)

The second term in the equation above is obtained in the same
manner as Eq. (B14). The multivariable normal distribution
function is then constructed in a straightforward manner as
shown below:

μ∗
i ←

(
σ̃−1

μ + Z
)−1

(
σ̃−1

μ μ̃μ +
Z∑

z=1

β∗
zi

)
,

σ
μ∗
i ←

(
σ̃−1

μ + Z
)−1

. (B19)

Next, we optimize w∗
i and W ∗

i using Eq. (B14) and the
relation log q (Vi ) = log q

(
μi , Vi

)− log q
(
μi | Vi

)
.

E 
=qV

[
log p (D,Θ)

]

= E 
=qμ,qV

[
log p (D,Θ)

]− E 
=qμ

[
log p (D,Θ)

]
(B20)

The expectation value E 
=qV

[
log p (D,Θ)

]
is calculated in a

straightforward manner using Eqs. (B15) and (B16). Finally,
we obtain the update equations for w∗

i and W ∗
i as

W ∗
i ←W̃ +

Z∑
z=1

V β∗
zi + σ̃−1

μ μ̃μ̃

+
Z∑

z=1

β∗
ziβ

∗T
zi −

(
σ̃−1

μ + Z
)

μ∗
i μ

∗T
i ,

w∗
i ←w̃ + Z . (B21)

It is noteworthy that σμ∗
i and w∗

i are constant if the hyperpa-
rameters and the number latent class are given.

Posterior mean β̂zi, û
(z)
cit and ẑ

(z)
cit

The estimated posterior means β̂zi , û(z)
ci t and ẑ(z)

ci t used in
Sect. 4 in order to construct statistics for joint segmentation
and personalization are calculated as β̂zi ≡ E[βzi ] = β∗

zi ,

û(z)
ci t ≡ E[u(z)

ci t ] = xT
itβ

∗
zi + ϕ

(z)
ci t and ẑ(z)

ci t ≡ E[p(zcit =
z)] = θ∗

ci t z using VB estimates after the iterative procedure
converges.
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Appendix C: Variational lower bound of pro-
posedmodel

The variational lower bound L
(
Θ∗) is given as

L
(
Θ∗) =

∫ [
q
(
Θ|Θ∗) log p (Θ, {xi t } , {ycit })

q
(
Θ|Θ∗)

]
dΘ

= EqΘβ

[
log

p (Θ, {xi t } , {ycit })
q
(
Θ|Θ∗)

]

= L(p)
θ + L(p)

z + L(p)
u + L(p)

β + L(p)
μ,V

− L(q)
θ − L(q)

z − L(q)
u − L(q)

β − L(q)
μ,V , (C1)

where each component of L
(
Θ∗) represents the expectation

of variables of the proposed model. The expectations except
L(p)

u and L(q)
u are the following:

L(p)
θ = Eqc

[
log p ({θc})

]

=
C∑

c=1

[
logΓ

(∑Z

z=1
γ̃z

)
−

Z∑
z=1

logΓ (γ̃z)

+
Z∑

z=1

(γ̃z − 1)

{
Ψ
(
γ ∗

cz

)− Ψ

(∑Z

z=1
γ ∗

cz

)}]
, (C2)

L(p)
z = Eqz ,qc

[
log p ({zcit } | {θc})

]

=
C∑

c=1

∑
i∈Ic

∑
t∈Tc

Z∑
z=1

θ∗
ci t z

{
Ψ
(
γ ∗

cz

)− Ψ

(∑Z

z=1
γ ∗

cz

)}
,

(C3)

L(p)
β = Eqβ ,qμ,qV β

[
log p

({
βzi
} | {μi , Vi
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and
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Derivation of L( p)
u − L(q)

u

The entropy of u(z)
ci t is given as
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where ξ is a random variable of the distribution [16]. There-
fore,
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The value of L
(
Θ∗) is calculated using summation of the

10 expectations from (C1)–(C10) above.
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Appendix D: Gibbs sampler

The joint posterior distribution, assuming conditional inde-
pendence between variables, provides the full conditional
posterior distributions:

θc | − ∼ p (θc | zcit )

zcit | − ∼ p
(
zcit | θc, {βzi }, {xi t }, {ycit }

)

u(z)
ci t | − ∼ p

(
u(z)

ci t | zcit ,βzi , xi t , ycit

)

βzi | − ∼ p
(
βzi | {u(z)

ci t },μi , Vi , {xi t }
)

μi | − ∼ p
(
μi | {βzi }, Vi

)

Vi | − ∼ p
(
Vi | {βzi },μi

)

(D1)

Sampling of θ c

The θc is generated by a Dirichlet categorical relation. The
Dirichlet distribution is a conjugate prior of a categorical
distribution. For each customer c, nc = [nc1, . . . , ncZ ]T

denotes the number of generated latent classes zcit by cate-
gorical distribution of parameter θc in each MCMC step. A
Dirichlet categorical relation gives the posterior distribution
with respect to θc as

p (θc | −) = p (θc) p (zcit | θc) = Dirichlet (nc + γ̃ ) .

(D2)

Sampling of zcit

The posterior probability of (zcit = z) is given as shown
below.

Pr
{
zcit = z | θc, {xi t } ,

{
βzi
}
, {ycit }

} = θczΩ
(z)
ci t∑Z

j=1 θczΩ
( j)
ci t

(D3)

Sampling of u(z)
cit

The distribution of u(z)
ci t is described in Appendix B.2. u(z)

ci t
is sampled from a truncated normal distribution in Eq. (B5).
This well-known sampling approach is called data augmen-
tation [34].

Sampling of βzi,μi and Vi

The full conditional posterior distribution of β i z , μi and Vi

is derived from a hierarchical linear regression model. In our
case, βzi for each i and each z is sampled from

β i z ∼ NM

(
R−1

{(
X̄ T

ziu
(z)
zi

)
+ V −1

i μi

}
, R−1

)
, (D4)

where R ≡ X̄ T
zi X̄zi + V −1

i , u(z)
zi ≡

[{
u(z)

ci t

}
c∈zc=z, t∈Tc

]T

and X̄zi ≡ [{xi t }c∈zc=z,t∈Tc

]T .
μi is sampled from

μi ∼ NM

((
Z + σ̃μ

)−1
Z∑

z=1

βzi , Vi + (Z + σ̃μ

)−1 IM

)
,

(D5)

for each i . Here, the hyperparameters are set to μ̃ =[
0 0 0 0

]T
.

Finally, Vi for each i is sampled from

Vi ∼ I W
(
w̃ + Z , W̃ + BT B

)
, (D6)

where B ≡∑Z
z=1

(
βzi − Z−1

Z∑
z=1

βzi

)
.

Appendix E: Simulation study

In this simulation study, purchase records are generated by
simulation using marketing variables. The marketing vari-
ables are extracted from a real customer database of a general
merchandise store. The marketing variables vector com-
prises discount (D̄it ), display (Dit ) and feature (Fit ), that
is, xi t = [1 D̄it Dit Fit ]T . Discount, display and feature
are binary entries, equal to one if the product i is discounted,
displayed or featured at time t , and zero otherwise.

We assume that any customer belongs to one of three seg-
ments characterized by response coefficients for marketing
variables. First segment (Segment 1) has a response coeffi-
cient β̄1 = [− 0.5, 1, 0, 0]T , i.e., customers in the segment
sensitively respond to discount of products and are unaf-
fected from display or feature. Similarly, we use β̄2 =
[− 0.5, 0, 1, 0]T and β̄3 = [− 0.5, 0, 0, 1]T as response
coefficient vectors for second (Segment 2) and third seg-
ments (Segment 3) that are influenced, respectively, from
display and feature promotion only. The three vectors are set
as true values of the response parameter. This setting means
that all products have the same properties on the response to
marketing promotions for a simplification of analysis. The
verification or check of parameter estimation will be too
complicated if we use a different coefficient vector for each
product.

Next, we make coefficient vectors of individual cus-
tomers. Here, we presume that each segment consisting
of 100 customers and 50 products is in a store. The
individual coefficient vectors ᾱci are generated by the
following: ᾱci ∼ NM (β̄1, σ IM ) (c = 1, . . . , 100),
ᾱci ∼ NM (β̄2, σ IM ) (c = 101, . . . , 200) and ᾱci ∼
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Table 2 Estimates of simulation data

Estimates (posterior mean)

Intercept Discount Display Feature

Segment 1 −0.42 0.83 0.04 0.02

(0.03) (0.04) (0.04) (0.01)

Segment 2 −0.45 −0.01 0.93 0.04

(0.01) (0.01) (0.02) (0.02)

Segment 3 −0.46 −0.04 0.01 0.94

(0.02) (0.02) (0.01) (0.02)

Simulated data (C = 300, I = 50, T = 30)

NM (β̄3, σ IM ) (c = 201, . . . , 300), and σ is set as 0.1. IM

is the identity matrix of size M . Then, the utilities for 30 days
are simulated by ūci t = xT

it ᾱci + ε̄ci t (ε̄ci t ∼ N (0, 1)). The
purchased records {ȳci t } are generated as ȳci t = 1 if ūci t > 0
and ȳci t = 0 otherwise.

Here, we generate 10 simulation datasets using the pro-
cedures explained above. Table 2 presents the means and
standard deviations of estimates with 200 iteration using the
ten simulation dataset. The numbers in Table 2 are calculated
as 50−1∑I

i=1 β̂zi . (β̂zi represents a estimated posteriormean
of βzi .) Results indicate that the VB estimates are close to
true values for all parameters in every segment.

Appendix F: Computation time

The computation time is investigated for C = {1000, 5000,
10000}, I = {100, 500, 1000}, T = 30 and Z = {5, 10, 20}
in the same situation of simulation study in Appendix E.
Consequently, 27 scenarios were explored in the study. The
MCMCestimator is described inAppendixD. Then,we fore-
cast the simulation times for 6000 MCMC samples from 10
samples for computational feasibility. In fact, the selection of
6000MCMC samples is consistent with the simulation study
of [8]. The simulated data are the same as those used above.
The results reported below were calculated in identical com-
putational environment (64-bit version of Python 2.7.5 with
NumPy, implemented on a 3.5-GHz processor (Quad-Core
Xeon; Intel Corp.) with 256-GB memory).

Table 3 reports the computation time in hours for the VB
and MCMC estimators. For both algorithms, the compu-
tational cost increases linearly with the size of the dataset
specified in terms of the numbers of customers, products and
latent classes. In all scenarios, the times of MCMC computa-
tions exceed those ofVB.TheVBalgorithm is approximately
20–50 times more efficient than MCMC, depending on the
scenario. The time of computation using large-scale data
(C = 10000, I = 1000) by MCMC is estimated as over
450 h. MCMC becomes increasingly prohibitive as the num-
bers of customers and choice alternatives increase.

Table 3 Simulation time by VB and MCMC

VB MCMC

Z 5 10 20 5 10 20

I C = 1000

100 0.6 0.8 1.1 5.3 7.1 14.2

500 1.4 1.7 2.3 21.7 29.6 41.7

1000 2.0 2.2 2.7 49.0 54.6 62.4

C = 5000

100 2.1 2.3 3.0 23.4 30.3 46.8

500 2.3 3.2 5.2 65.5 81.2 104.1

1000 4.4 5.2 8.2 128.7 144.0 166.2

C = 10000

100 3.5 4.2 5.7 49.4 67.9 102.5

500 5.3 7.0 10.4 213.3 261.0 343.0

1000 8.9 12.6 17.2 430.1 482.7 580.8

Unit: hours

Appendix G: Interpretation of latent classes

We obtain the probability of customer segment membership
by aggregating over products (i) and time (t):

p
(

c ∈ z|Λ̂
)

=
∑

i∈I
∑

t∈Tc
ẑ(z)

ci t × I (ycit = 1)
∑Z

zk=1
∑

i∈I
∑

t∈Tc
ẑ(z)

ci t × I (ycit = 1)
(C1)

and aggregating over customers (c) and time (t) yields the
probability of product segment membership.

p
(

i ∈ z|Λ̂
)

=
∑C

c=1
∑

t∈Tc
ẑ(z)

ci t × I (ycit = 1)
∑Z

zk=1
∑C

c
∑

t∈Tc
ẑ(z)

ci t × I (ycit = 1)
(C2)

Therein, I (·) is the indicator function equal to one if the aug-
ment holds and zero otherwise. We take the sums over the
instances of purchase because we believe that nonpurchase
can occur for many reasons other than nonmembership (e.g.,
having large household inventory of the product). Our esti-
mates of customer and product latent membership are driven
by customer actions and not their inactions.

Our model of purchase behavior allows for heterogene-
ity at each observation that acknowledges that each purchase
occasion can be viewed as the building block for analysis.
Someoccasions are associatedwith trips to the store,whereas
other occasions might have been more focused on a specific
set of offerings. Moreover, customers might exhibit behav-
ior consistent with multiple occasions, or topics, over time.
Although it might be desirable for firms to classify goods and
respondents to segments for understanding customers and
goods of different types, our model can be applied to anal-
ysis at a more disaggregate level. Alternatively, our model
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Table 4 Characteristics of latent classes

Brand Category Price Display Feature Brand Category Price Display Feature

Segment 1 (C = 31, I = 9) Segment 2 (C = 114, I = 28)

No. 1 Drink .99 .06 .06 No. 6 Dessert .94 .13 .06

No. 2 Coffee .89 .10 .02 No. 7 Drink .72 .92 .24

No. 3 Iced noodle .77 .60 .03 No. 6 Dessert .94 .17 .04

No. 4 Bean paste .75 .21 .05 No. 6 Dessert .93 .22 .05

No. 5 Coke .89 .24 .02 No. 6 Dessert .93 .19 .06

Segment 3 (C = 22, I = 4) Segment 4 (C = 28, I = 6)

No. 8 Fish sausage .93 .08 .08 No. 13 Noodle 89. .23 .05

No. 9 Water .60 .47 .04 No. 14 Food .90 .03 .01

No. 10 Detergent .69 .20 .26 No. 13 Noodle .78 .09 .11

No. 11 Ice cream .91 .02 .02 No. 15 Fish sausage .91 .01 .01

No. 12 Water .87 .11 .04 No. 6 Drink .87 .11 .04

Segment 5 (C = 24, I = 5) Segment 6 (C = 26, I = 6)

No. 17 Soup .84 .16 .09 No. 20 Drink .81 .29 .17

No. 18 Dressing .76 .72 .09 No. 9 Drink .76 .33 .02

No. 19 Ice cream .76 .57 .22 No. 11 Ice cream .99 .03 .03

No. 18 Dressing .83 .42 .15 No. 20 Drink .75 .31 .17

No. 19 Ice cream .82 .14 .10 No. 21 Drink .64 .73 .11

Segment 7 (C = 67, I = 14) Segment 8 (C = 267, I = 68)

No. 6 Dessert .96 .13 .06 No. 12 Cookie .98 .29 .06

No. 14 Food .90 .03 .01 No. 22 Coffee .81 .28 .08

No. 12 Sugar .99 .26 .05 No. 20 Ice cream .89 .36 .02

No. 22 Drink .77 .63 .17 No. 23 Dressing .74 .80 .08

No. 20 Drink .75 .52 .16 No. 15 Fish sausage .91 .01 .01

Segment 9 (C = 946, I = 332) Segment 10 (C = 124, I = 28)

No. 24 Cleaner .85 .48 .11 No. 27 Drink .99 .25 .11

No. 21 Sauce .74 .35 .07 No. 12 Water .87 .26 .01

No. 25 Snack .86 .16 .09 No. 11 Ice cream .99 .03 .03

No. 26 Noodle .68 .98 .09 No. 19 Yogurt .88 .10 .16

No. 9 Energy drink .68 .88 .06 No. 25 Curry .67 .98 .08

is useful to associate both offerings and customers to latent
topics, or segments, for understanding and managing market
basket purchases.

Table 4 displays the results of the joint segmentation of
products and customers using Eqs. (C1) and (C2). The five
products with the highest probability and their average levels
of marketing activity are shown for the respective segments.
The first column reports the brand name. The second column
reports the product category associated with the offering.
The remaining columns display the average level of market-
ing activity, i.e., the average price rate, average display rate
and average feature rate. The title of each segment includes
the numbers of products and customers who are jointly clas-
sified into the same segment. The segments are interpreted
as follows.

The first segment has 31 customers and 9 products
assigned to it. This segment includes beverages across dif-

ferent categories with small discount rates and low rates of
feature advertising. The second segment is characterized as
being composed of the identical brands in the dessert cat-
egory. The products are infrequently discounted and have
a higher rate of display than the first segment. Segments 3
through 7 have fewer customers and products. They exhibit
greater variation in the level of marketing activity. Particu-
larly, Segment 5 contains two offerings in both the ice cream
and dressing categorieswith the same brand names, bothwith
high rates of display and feature activity. Segment 6 includes
mainly products from the drink category. It is similar in mar-
keting activity with segment 5. Segment 7 also comprises
drink products with higher marketing levels as well as other
products with lower levels of activities. Products in segment
8 comprise a variety of product categories with higher level
of display. Segment 9, the largest cluster with 946 customers
and 332 products, is characterized as having the highest level
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of display activity. Segments 8 and 10 include less discount-
ing and more displayed products. The former is double-sized
and triple-sized in terms of customers and products.

The potential use of this information is inmanaging cross-
category behavior.Knowing the products typically purchased
for shopping trips of different types is useful to ascertain
the range of impact of price promotions and merchandising
activity. If customers have a budget for a particular shopping
occasion, rather than for a particular product category, then
the influence of a price reduction will have a broader effect
in traditional models of demand. Our model allows for the
identification of the boundary of effects as part of the topic,
or latent segment, characterization.

References

1. Allenby, G.M., Rossi, P.E.: Marketing models of consumer hetero-
geneity. J. Econom. 89(1), 57–78 (1998)

2. Anderson, T.W.: An Introduction to Multivariate Statistical Anal-
ysis. Wiley, Hoboken (2003)

3. Ansari, A.,Mela, C.F.: E-customization. J.Mark. Res. 40, 131–145
(2003)

4. Asuncion,A.,Welling,M., Smyth, P., Teh,Y.W.:On smoothing and
inference for topic models. In: Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence, pp. 27–34 (2009)

5. Bishop, C.M.: Pattern Recognition and Machine Learning.
Springer, New York (2006)

6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J.
Mach. Learn. Res. 3, 993–1022 (2003)

7. Blei, D., McAuliffe, J.: Supervised topic models. Proc. Neural Inf.
Process. Syst. 3, 993–1022 (2007)

8. Braun,M.,McAuliffe, J.:Variational inference for large-scalemod-
els of discrete choice. J. Am. Stat. Assoc. 105, 324–335 (2010)

9. Chintagunta, P.K., Nair, H.S.: Discrete-choice models of customer
demand in marketing. Mark. Sci. 30, 977–996 (2011)

10. Chung, T.S., Rust, R., Wedel, M.: My mobile music: an adaptive
personalization system for digital audio players. Mark. Sci. 28,
52–68 (2009)

11. Corduneanu, A., Bishop, C.M.: Variational Bayesian model selec-
tion formixture distributions. In: Jaakkola, T., Richardson, T. (eds.)
Artificial Intelligence andStatistics, pp. 27–34.MorganKaufmann,
Los Altos (2001)

12. Gerrish, S.M., Blei, D.M.: Predicting legislative roll calls from
text. In: Proceedings of the 28th Annual International Conference
on Machine Learning (2011)

13. Goodman, L.: AnalyzingQualitative/CategoricalData: Log-Linear
Models and Latent-Structure Analysis. ABT Books, Cambridge
(1978)

14. Greenacre, M., Blasius, J. (eds.): Multiple Correspondence Anal-
ysis and Related Methods. Chapman & Hall, London (2006)

15. Griffiths, T., Ghahramani, Z.: Infinite latent feature models and
the Indian buffet process. In: Proceedings of Advances in Neural
Information Processing Systems, p. 18 (2006)

16. Grimmer, J.: An introduction to Bayesian inference via variational
approximations. Polit. Anal. 19, 32–47 (2011)

17. Ishigaki, T., Takenaka, T., Motomura, Y.: Category mining by het-
erogeneous data fusion using PdLSI model in a retail service. In:
Proceedings of IEEE International Conference onDataMining, pp.
857–862 (2010)

18. Iwata,T.,Watanabe, S.,Yamada,T.,Ueda,N.:Topic trackingmodel
for analyzing customer purchase behavior. In: Proceedings of Inter-

national Joint Conference onArtificial Intelligence, pp. 1427–1432
(2009)

19. Iwata, T., Sawada, H.: Topic model for analyzing purchase data
with price information. Data Min. Knowl. Discov. 26, 559–573
(2012)

20. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An intro-
duction to variational methods for graphical models. Mach. Learn.
37, 183–233 (1999)

21. Kamakura, A.W., Russell, G.: A probabilistic choice model for
market segmentation and elasticity structure. J.Mark.Res. 26, 379–
390 (1989)

22. Kemp, C., Tenenbaum, J.B., Yamada, T., Ueda, N.: Learning sys-
tems of concepts with an infinite relational model. In: Proceedings
of AAAI, pp. 381–388 (2006)

23. Kim, J., Allenby, G.M., Rossi, P.E.: Modeling consumer demand
for variety. Mark. Sci. 21(3), 229–250 (2002)

24. Puolamäki, K., Kaski, S.: Bayesian Solutions to the Label Switch-
ing Problem. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut,
J.F. (eds) Advances in Intelligent Data Analysis VIII. IDA 2009.
Lecture Notes in Computer Science, Vol. 5772, Springer, Berlin
(2009)

25. Matsubayashi, T., Kohjima, K., Hayashi, A., Sawada, H.: Brand-
choice analysis using non-negative tensor factorization. Trans. Jpn.
Soc. Artif. Intell. 30(6), 713–720 (2015). (in Japanese)

26. Naik, P., Wedel, M., Bacon, L., Bodapati, A., Bradlow, E.,
Kamakura,W., Kreulen, J., Lenk, P.,Madigan, D.M.,Montgomery,
A.: Challenges and opportunities in high-dimensional choice data
analyses. Mark. Lett. 19, 201–213 (2008)

27. Nowicki, K., Snijders, T.A.B.: Estimation and prediction for
stochastic block structures. J. Am. Stat. Assoc. 96, 1077–1087
(2001)

28. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA:
a supervised topic model for credit attribution in multi-labeled
corpora. In: Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pp. 248–256 (2009)

29. Ramaswamy, V., Chatterjee, R., Cohen, S.H.: Joint segmentation
on distinct interdependent bases with categorical data. J. Mark.
Res. 33(3), 337–350 (1996)

30. Rossi, P.E., Allenby, G.M., McCulloch, R.: Bayesian Statistics and
Marketing. Wiley, Chichester (2005)

31. Rust, R.T., Chung, T.S.: Marketing models of service and relation-
ships. Mark. Sci. 25, 560–580 (2005)

32. Spirling, A., Quinn, K.: Identifying intraparty voting blocs in the
U.K. house of commons. J. Am. Stat. Assoc. 105, 447–457 (2010)

33. Sato, I., Nakagawa, H.: Rethinking collapsed variational Bayes
inference for LDA. In: Proceedings of International Conference on
Machine Learning, pp. 999–1006 (2012)

34. Tanner, M.A., Wong, W.H.: The calculation of posterior distribu-
tions by data augmentation. J. Am. Stat. Assoc. 82, 528–540 (1987)

35. Teh, Y.W., Jordan, M.I.: Hierarchical Bayesian nonparametric
models with applications. In: Hjort, N., Holmes, C., Mueller, P.,
Walker, S. (eds.) Bayesian Nonparametrics: Principles and Prac-
tice. Cambridge University Press, Cambridge (2010)

36. Train, K.E.: Discrete Choice Methods with Simulation, 2nd edn.
Cambridge University Press, Cambridge (2009)

37. Tsiptsis,K.,Chorianopoulos,A.:DataMiningTechniques inCRM:
Inside Customer Segmentation. Wiley, Hoboken (2010)

38. Weng, S.S., Liu, M.J.: Feature-based recommendations for one-to-
one marketing. Exp. Syst. Appl. 26(4), 493–508 (2003)

39. Xiong, L., Chen, X., Huang, T.K., Schneider, J., Carbonell, J.G.:
Temporal collaborative filtering with Bayesian probabilistic ten-
sor factorization. In: Proceedings of the 2010 SIAM International
Conference on Data Mining, pp. 211–222 (2010)

123


	Personalized market response analysis for a wide variety of products from sparse transaction data
	Abstract
	1 Introduction
	2 Related works
	2.1 Marketing model for personalization
	2.2 Dimension reduction method
	2.3 Topic modeling and latent variables model

	3 Preliminary
	3.1 Hierarchical Bayes probit model
	3.2 Dimension reduction by LDA
	3.3 Problem settings

	4 Proposed method
	4.1 Model development
	4.2 Characteristics of the proposed model
	4.3 Estimation of personalized market response coefficients
	4.4 Parameter estimation

	5 Application
	5.1 Data description and settings
	5.2 Prediction performance
	5.3 Insight to personalized marketing
	5.3.1 Heterogeneity analysis
	5.3.2 Personalized effective marketing promotions


	6 Conclusion
	Appendix A: Variational Bayes inference for the proposed model
	Appendix B: Derivation of VB algorithm for proposed model
	Optimization of γcast
	Optimization of  θcitast
	Optimization of βziast and Vziβast
	Optimization of µiast, σiµast, wiast and Wiast
	Posterior mean zi, cit(z) and cit(z)

	Appendix C: Variational lower bound of proposed model
	Derivation of Lu(p) - Lu(q) 

	Appendix D: Gibbs sampler
	Sampling of θc
	Sampling of zcit
	Sampling of ucit(z)
	Sampling of βzi, µi and Vi

	Appendix E: Simulation study
	Appendix F: Computation time
	Appendix G: Interpretation of latent classes
	References




