Skip to main content
Log in

Semantic-aware aircraft trajectory prediction using flight plans

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

Aircraft trajectory prediction (TP) is a challenging and inherently data-driven time-series modeling problem. Adding annotation or enrichment parameters further increases the search space complexity, especially when ‘blind’ optimization algorithms are employed. In this paper, flight plans, localized weather and aircraft properties are introduced as trajectory annotations that enable modeling in a space higher than the typical 4-D spatio-temporal. A multi-stage hybrid approach is employed for a new variation of the core TP task, the so-called Future Semantic Trajectory Prediction, including clustering the enriched trajectory data using a semantic-aware similarity function as distance metric. Subsequently, a separate predictive model is trained for each cluster, using a nonuniform graph-based grid that is formed by the waypoints of each flight plan. In practice, flight plans constitute a constrained-based training of each predictive model, one for each waypoint, independently. The proposed method is formulated and experimentally validated with real aviation dataset (flight plans and IFS radar tracks) and localized weather data for a 1-month time frame of flights in the Spanish airspace. Various types of predictive models are tested, including hidden Markov model (HMM), linear regressors, regression trees and feed-forward neural networks. The results show very narrow confidence intervals for the per-waypoint TP errors in HMM, while the more efficient linear and nonlinear regressors exhibit 3-D spatial accuracy much lower than the current state of the art, up to a factor of five compared to ‘blind’ TP for complete flights, in the order of 2–3 km compared to the actual flight routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.sesarju.eu/.

  2. https://www.faa.gov/nextgen/.

  3. For the area of the utilized dataset, i.e., flights between Barcelona and Madrid in Spain, the true geodesic resolution (mean) is 111.133 km/deg Lat and 83.921 km/deg Lon.

  4. LEMD/LEBL geodesic ranges: \(Lat=[40,\ldots ,43]^{o}, Lon=[-\,3,\ldots ,+\,3]^{o}, Alt=[0,\ldots ,40K]\) ft.

  5. Mathworks MATLAB v9.2/R2017a (\(\times \)64); Octave v4.2.1; R v3.4.3; WEKA v3.8.2; custom Java & C/C++ tools.

  6. Platform used: Intel i7 quad-core @ 2.0 GHz/8 GB RAM/MS-Windows 8.1 (\(\times \)64).

References

  1. Ankerst, M., Breunig, M., et al.: Optics: ordering points to identify the clustering structure. In: Proceedings of SIGMOD 1999 (1999)

  2. Ayhan, S., Samet, H.: Aircraft trajectory prediction made easy with predictive analytics. In: Proceedings of ACM SIGKDD 2016 (2016)

  3. Ayhan, S., Samet, H.: Time series clustering of weather observations in predicting climb phase of aircraft trajectories. In: Proceedings of the IWCTS 2016 (2016)

  4. Breiman, L., Friedman, J., Olsen, R., Stone, C.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

  5. Chen, L., Ng, R.: On the marriage of edit distance and lp norms. In: Proceedings of VLDB 2004 (2004)

  6. Chen, X., Landry, S., Nof, S.: A framework of enroute air traffic conflict detection and resolution through complex network analysis. Comput. Ind. 62(8), 787–794 (2011)

    Article  Google Scholar 

  7. Cheng, T., Cui, D., Cheng, P.: Data mining for air traffic flow forecasting: a hybrid model of neural network and statistical analysis. In: Proceedings of the ITSC 2003 (2003)

  8. Ciccio, C.D., var der Aa, H., Cabanillas, C., et al.: Detecting flight trajectory anomalies and predicting diversions in freight transportation. Decis. Support Syst. 88, 1–17 (2016)

    Article  Google Scholar 

  9. Coppenbarger, R.: En route climb trajectory prediction enhancement using airplane flight-planning information. In: American Institute of Aeronautics and Astronautics (AIAA-99-4147) (1999)

  10. de Leege, A., Paassen, M.V., Mulder, M.: A machine learning approach to trajectory prediction. In: Proceedings of AIAA GNC 2013 (2013)

  11. Enea, G., Poretta, M.: A comparison of 4d-trajectory operations envisioned for nextgen and sesar. In: Proceedings of the ICAS 2012 (2012)

  12. Fablec, Y.L., Alliot, J.: Using neural networks to predict aircraft trajectories. In: Proceedings of the ICIS 1999 (1999)

  13. Georgiou, H., Karagiorgou, S., Kontoulis, Y., Pelekis, N., Petrou, P., Scarlatti, D., Theodoridis, Y.: Moving objects analytics—survey on future location and trajectory prediction methods. Tech. rep., Data Science Lab, University of Piraeus, Greece (2018). arXiv:1807.04639

  14. Gong, C., McNally, D.: A methodology for automated trajectory prediction analysis. In: AIAA Guidance, Navigation, and Control Conference and Exhibit (2004)

  15. Hadjaz, A., Marceau, G., Saveant, P., etal.: Online learning for ground trajectory prediction (2012). CoRR arXiv:1212.3998

  16. Hamed, M., Gianazza, D., Serrurier, M., Durand, N.: Statistical prediction of aircraft trajectory: regression methods vs point-mass model. In: Proceedings of the ATM 2013 (2013)

  17. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning with Applications in R. Springer, Berlin (2013)

    Book  Google Scholar 

  18. Krumm, J., Horvitz, E.: Predestination: inferring destinations from partial trajectories. In: Proceedings of the UbiComp 2003 (2003)

  19. Kuncheva, L.: Combing Pattern Classifiers—Methods and Algorithms. Wiley, Hoboken (2004)

    Book  Google Scholar 

  20. Liu, Y., Hansen, M.: Predicting aircraft trajectories: a deep generative convolutional recurrent neural networks approach. Tech. rep., Institute of Transportation Studies, University of California (2018). arXiv:1812.11670

  21. Loh, W.: Regression trees with unbiased variable selection and interaction detection. Stat. Sin. 12, 361–386 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Matsuno, Y., Tachiya, T., Wei, J., et al.: Stochastic optimal control for aircraft conflict resolution under wind uncertainty. Aerosp. Sci. Technol. 43, 77–88 (2015)

    Article  Google Scholar 

  23. Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., Theodoridis, Y.: Online event recognition from moving vessel trajectories. Geoinformatica 21(2), 389–427 (2017)

    Article  Google Scholar 

  24. Pelekis, N., Theodoridis, Y.: Mobility Data Management and Exploration. Springer, Berlin (2014)

    Book  Google Scholar 

  25. Qiu, J., Wu, Q., Ding, G., et al.: A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process. 2016, 67 (2016)

    Article  Google Scholar 

  26. Scarlatti, D.: Dart white paper. Tech. rep., DART—Data-Driven Aircraft Trajectory Prediction Research (H2020) (2017). http://dart-research.eu/2017/04/03/dart-white-paper/

  27. Sip, S., Green, S.: Common trajectory prediction capability for decision support tools. In: ATM 5th USA/Europa R&D seminar (2003)

  28. Song, Y., Cheng, P., Mu, C.: An improved trajectory prediction algorithm based on trajectory data mining for air traffic management. In: Proceedings of the IEEE ICIA 2012 (2012)

  29. Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and indexing of moving objects with unknown motion patterns. In: Proceedings of the ACM SIGMOD 2004 (2004)

  30. Tastambekov, K., Puechmorel, S., Delahaye, D., et al.: Aircraft trajectory forecasting using local functional regression in sobolev space. Transp. Res. Part C Emerg. Technol. 39, 1–22 (2014)

    Article  Google Scholar 

  31. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, Cambridge (2008)

    MATH  Google Scholar 

  32. Thipphavong, D., Schultz, C., et al.: Adaptive algorithm to improve trajectory prediction accuracy of climbing aircraft. J. Guid. Control Dyn. (JGCD) 36(1), 15–24 (2013)

    Article  Google Scholar 

  33. Trasarti, R., Guidotti, R., Monreale, A., Giannotti, F.: Myway: location prediction via mobility profiling. Inf. Syst. 64, 350–367 (2017)

    Article  Google Scholar 

  34. Vouros, G., Pelekis, N., Kravaris, T., Georgiou, H., et al.: Dart—a machine-learning approach to trajectory prediction and demand-capacity balancing. In: 7th SESAR innovation days (SIDs 2017), SESAR (2017)

  35. Vouros, G., Vlachou, A., Santipantakis, G., Doulkeridis, C., Pelekis, N., Georgiou, H., et al.: Big data analytics for time critical mobility forecasting - recent progress and research challenges. In: 21st international conference on extending database technology (EDBT 2018), ACM (2018)

  36. Vouros, G., Vlachou, A., Santipantakis, G., et al.: Big data analytics for time critical mobility forecasting: recent progress and research challenges. In: Proceedings of the EDBT 2018 (2018)

  37. Zheng, Y.: Trajectory data mining: an overview. Trans. Intell. Syst. Technol. 6(3), 1–41 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the projects \(\textit{datAcron}\) (http://datacron-project.eu/) and \(\textit{DART}\) (http://dart-research.eu/), which have received funding from the European Union’s Horizon 2020 (H2020) program under Grant Agreements No: 687591 and No: 699299, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harris Georgiou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiou, H., Pelekis, N., Sideridis, S. et al. Semantic-aware aircraft trajectory prediction using flight plans. Int J Data Sci Anal 9, 215–228 (2020). https://doi.org/10.1007/s41060-019-00182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-019-00182-4

Keywords

Navigation