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Abstract
Outliers are unexpected observations, which deviate from the majority of observations. Outlier detection and prediction are
challenging tasks, because outliers are rare by definition. A stream is an unbounded source of data, which has to be processed
promptly. This article proposes novel methods for outlier detection and outlier prediction in streams of sensor data. The
outlier detection is an independent, unsupervised process, which is implemented using an autoencoder. The outlier detection
continuously evaluates if the latest data point xi from a stream is an inlier or an outlier. This distinction is based on the
reconstruction cost accompanied with Chebyshev’s inequality and the EWMA (exponentially weighted moving average)
model. The outlier prediction uses the results of the outlier detection to form the required training data. The outlier prediction
utilizes LR (logistic regression), SGD (stochastic gradient descent) and the hidden representation provided by the autoencoder
to predict outliers in streams. The results of the experiments show that the proposed methods (1) provide accurate results,
(2) are calculated in reduced computation time and (3) use a low amount of memory. Our proposed methods are suitable
for analyzing streams of sensor data and providing results with low latency. The experiments also indicated that the outlier
prediction is able to anticipate the occurrence of outliers in streams of sensor data.

Keywords Outlier detection · Outlier prediction · Data streams · Machine learning · Unsupervised learning

1 Introduction

Outliers are unexpected observations, which deviate sig-
nificantly from the expected observations and typically
correspond to critical events [22,40,82]. The expected obser-
vations are called inliers. Detecting outliers is beneficial,
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because outliers contain important information in many
application domains [18,32,34,38,62,65,86,91].

The prediction of the occurrence of the outliers is also
useful [27,57,80]. In the context of sensor networks, the pre-
diction of the occurrence of outliers could provide a prior
indication of mechanical faults [22] and sensor faults [93].
The prediction of the occurrence of outliers is challenging,
because outliers are observed infrequently [35] and the train-
ing data for detecting outliers is typically not available. This
article calls the prediction of the occurrence of outliers, or
rare events, as outlier prediction.

Many of the methods in outlier detection [17,43,49–
51,59,63,68,92] are designed to detect outliers in static
datasets,which have an infinite amount of data.Outlier detec-
tion is not limited to the static datasets, because data arrives
continuously inmany applications [3,21]. The outliers can be
detected in a continuous flow of data, which is called stream.
A stream is explained in detail in Chapter 2. In the con-
text of analyzing streams of sensor data, this paper proposes
novel methods for (1) detecting outliers and (2) predicting
the occurrence of outliers in t time steps in the future. The
methods learn to detect and predict the outliers in streams
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without labeled training data. The proposed approach uses
an unsupervised method for detecting outliers in streams.
The detected outliers are then used as labels for the predic-
tion algorithm. Chapter 3 introduces the proposed methods
in detail.

Evaluation experiments in Chapter 5, which use sen-
sor data, show that our proposed approach is an accurate
method compared to the relevant algorithms in the litera-
ture. Using real-world sensor data, our proposed method
provides comparable or better resultswith respect to the com-
pared algorithms in outlier detection. However, to acquire
superior or comparable results in the evaluation experi-
ments in relation to our proposal, the compared algorithms
allocate memory up to 10,000 floating point values. Our pro-
posed method allocates memory only from 17 to 83 floating
point values. Therefore, our proposed method allocates a
significantly smaller amount of memory. Additionally, the
processing of 17 to 83 floating point values is much faster
than constantly querying the 10,000 floating point values.

To elaborate further, an autoencoder has been utilized for
outlier detection in Ma et al. [55], Sakurada and Yairi [67],
Chen et al. [23], Lu et al. [53], Dong and Japkowicz [29]. See
Chapter 2.3 for a definition of an autoencoder. However,most
of the existing work detects outliers in static datasets and is
not suitable for analyzing streams of sensor data. In Dong
and Japkowicz [29], an ensemble of autoencoders has been
utilized for detecting outliers in streaming data. The classifi-
cation of a single data point into inliers and outliers happens
by the majority vote of the autoencoders. Autoencoders are
trained using outlier-free data stream with mini-batch gradi-
ent descent for multiple epochs and the detection threshold
is empirically set based on this training data. After the train-
ing phase, stochastic gradient descent is used to update the
parameters in the autoencoders. Chen et al. [23] also use
an ensemble of autoencoders to detect outliers, but only in
static data sets. They add random edge sampling between the
nodes and adaptive data sampling to increase the robustness
and to decrease overfitting of the autoencoders. A combina-
tion of a denoising autoencoder and recurrent neural network
is used in Lu et al. [53] for sequential outlier detection, and
the model is trained using static outlier-free training data.
Our work also extends the use of an autoencoder for outlier
detection in streams of sensor data, which are missing in the
literature. Some of the benefits and novelties of our work
include:

– A fully automated framework for lightweight and effi-
cient unsupervised outlier detection and prediction in
streams of sensor data is introduced by combining an
autoencoder and logistic regression (see Chapters 2.2 and
2.3). One of main the benefits of our proposed method of
automated outlier prediction is the sharing of information
between the outlier detection and outlier prediction.

– Amechanism for classifying data points into outliers and
inliers, which can adapt to the changes in the inlier dis-
tribution (see Chapter 3.1).

– An approach for training an initial version (calibration) of
the autoencoder in an unsupervised fashion (see Chapter
3.2).

– We propose novel methods for the automated calibra-
tion of outlier detection and outlier prediction and for
the automated and unsupervised outlier detection using
the reconstruction cost of the autoencoder. To our knowl-
edge, in outlier prediction, this publication is the first to
utilize the hidden representation of an autoencoder (see
Chapter 3.3).

– An analysis of the properties (autoencoder parameters,
distribution of the reconstruction cost, and integration of
outlier detection and prediction) of the outlier detection
using an autoencoder with streams (see Chapter 3.4).

– Our proposed methods use a small amount of memory
are fast to compute and are accurate for streams of sensor
data (see Chapters 4 and 5).

The proposed method for outlier detection is fast to com-
pute, because it does not store the observations from a stream,
which results in requiring a low amount of memory. This
is beneficial for analyzing sensor data when the readings
arrive at a high speed, and the results are expected to have
a low latency. The proposed method defines a parametric
model, which updates its parameters using one observation
at a time. Therefore, the model does not store a reference set
of the observations for neighbor queries (contrary to Angiulli
and Fassetti [3], Kontaki et al. [48], Yang et al. [90], Cao et
al. [20], in which the models stored a reference set). For
example, the majority of the recent outlier detection meth-
ods, which utilize autoencoders (Chen et al. [23], Lu et al.
[53]), are relying on the fact that there exists a static dataset
containing either outlier-free training data or labeled training
examples for the training of the autoencoder. These trained
autoencoders lack adaptation capabilities if the inlier data
distribution is evolving. Our method provides a more robust
approach by including an adaptation scheme for the inlier dis-
tribution, and our initial training of the autoencoder is based
on the unsupervised framework, which removes the need for
outlier-free training data or labeled training examples. It is
also important to detect the critical events accurately without
many false positive detections. The accuracy of our proposed
method for outlier detection is evaluated in Chapter 5.

For outlier prediction, our proposed method is capable
of predicting the occurrence of outliers. Unlike the previ-
ous work in outlier prediction, our proposed method uses an
autoencoder, which learns a hidden representation for outlier
detection, to provide additional information for the outlier
prediction. The hidden representation encodes the important
information in the data [73]. The hidden presentation can
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provide information to the outlier prediction, which is not
available in the original data. Our proposed method for out-
lier prediction is an unsupervised black box model, which
analyzes sensor data without external information. The lit-
erature does not contain research within the same scope as
our research. See Chapter 5.5 for further discussion and the
evaluation experiments of the outlier prediction. A complete
listing of the benefits and the novelties of our approach are
presented in detail in the end of Chapter 4.2.

Souiden et al. [74] list three key requirements associated
with the analysis of data streams. The algorithms, which ana-
lyze data streams, should be able to scan the arriving data in
real time and the possible changes in the data distribution
should be accounted for. Also, memory and time constrains
can exist and algorithms should be able to provide good per-
formance despite these constraints. Our proposed framework
is designed to address all of these three challenges and by
doing so we provide a clear contribution when compared to
existing methods.

The article is organized as follows. Chapter 2 introduces
the required theoretical foundation for understanding the pro-
posed method for outlier detection and prediction in this
article. Chapter 3 introduces the proposed methods for out-
lier detection and prediction. Chapter 4 surveys the recent
and related work in outlier detection in streams and outlier
prediction. Chapter 5 explains the experiments that validate
the proposed methods and reports the results of the experi-
ments. Chapter 6 is the final section, which summarizes and
concludes the article.

2 Preliminary topics

This section introduces the required theoretical foundation
for our proposed methods. The outliers are detected and pre-
dicted in a stream, which is a continuous transmission of
values. A stream is defined in detail in Chapter 2.1. The
outliers are detected using an autoencoder, which learns a
hidden representation of the data. The hidden representation
measures how unexpected the data are. An autoencoder is
defined in detail in Chapter 2.3. The outliers are predicted
using a classifier, which uses the received data and the hidden
representation of the autoencoder. The autoencoder has two
functions: (1) outlier detection and (2) provision of a hidden
representation (see Chapters 2.3 and 3.3) of data as a source
of additional information for the outlier prediction. Our arti-
cle uses logistic regression (LR) as the classifier, and it is
defined in detail in Chapter 2.2. A more detailed description
is given, because LR is optimized using stochastic gradi-
ent descent, instead of the more traditional methods such as
iterative re-weighted least squares or conjugate gradient. LR
also provides probabilities, which may be used in the future
research for measuring the confidence of the predictions.

Other widely used classifiers (e.g., support vector machines
and perceptrons) do not inherently output classification prob-
abilities, see Bishop [12]. The conversion of a classifier to
produce a probabilistic output typically provides poorly cali-
brated probabilities [58]. LR directly offers a well-calibrated
estimate of the classification probability. However, for com-
pleteness, Appendix A provides the outlier prediction results
using support vector machine and Appendix B using Per-
ceptron. The experimental results in Chapter 5, Appendix A
and Appendix B show that LR outperforms support vector
machine and perceptron in outlier prediction. Our proposed
methods, which utilize the autoencoder and LR, are defined
in detail in Chapter 3. The following subsection defines a
stream in detail, which is a source of the analyzed data.

2.1 Stream

A stream is a continuous transmission of values, which arrive
sequentially. Let a real valued vector (xi ∈ R

d ), which is
called a data point, denote the i th observed vector of d-
dimensional data from a stream. The elements (x j ∈ xi =
{x1, x2, . . . , xd}) of xi are called features. The vector space
(Rd ), which is spanned by the d features, is called the feature
space.

The high speeds of data flows in a stream requires an effi-
cient processing of the stream [20,45,48,78]. If the observed
values in a stream are analyzed, then the analysis has to be
fast to provide the results in real time [1]. The analysis of
a stream must adjust to the changes in the characteristics of
the data. The observed values are not assumed to be cre-
ated by a stationary process, which makes the most recently
observed values important, because they contain the newest
information [3]. The newest information may reveal changes
in the process, which creates the observations. Cao el al. state
that the recent observations have more impact on the out-
lier detection [20]. Angiulli and Fassetti state that the recent
observations are typically more significant in streams [3].

A typical definition of a stream is the following: it (1)
contains a high volume of data [1,20,48], (2) does not have
a distinctive termination, (3) is continuously updated [4] and
(4) is unbounded [3,45,48]. The data cannot be stored entirely
in the computer memory [48]. The previously listed facts
mean that recording a stream results in a static dataset (X ∈
R

∞×d ) with an infinite (n = ∞) or undefined number of
rows. It is impractical to store and handle a dataset, which
exhibits unlimited growth in size. The consumption of the
memory [48] and the number of rows have to be restricted.
Therefore the typical methods for outlier detection in static
datasets are not applicable for streams.

A stream can be utilized by using subsets of the stream.
Outlier detection using the subsets is a local method [45] for
outlier detection, because the data are used partially. The sub-
sets of the data are assumed to contain the characteristics of
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the normal data. The characteristics define the normal region
for inliers in the feature space. The outliers are outliers with
respect to the data within the subsets [4]. The subsets are
called windows, which are stored in the computer memory.

Our work utilizes an approach called count-based slid-
ing window [48] for the outlier prediction. The count-based
sliding window contains a continuously updated subset of
the stream data. The approach of using a sliding win-
dow for outlier detection is used in many publications
[1,3,6,20,36,48,75,76,88,90]. The subset of the data in the
sliding window defines two endpoints (a point of commence-
ment and a point of termination) in the stream [3]. The
members of the subset are called active objects [37], because
the objects are activated for use. Let PS (pattern size) denote
the number of data points or active objects in a sliding
window. A count-based sliding window contains PS active
objects [37,48,90] from the stream. The cardinality of the
subset (PS) is constant. An active object that is removed from
the subset is said to expire [20,48,90]. The count-based win-
dow implements a queue of PS objects where the first object
to arrive is the last object to expire. The expiration time for
an active object is PS, because an active object is removed
after PS subsequent observations.

2.2 Logistic regression

Logistic regression (LR) is a statistical model, which can
be used to classify or predict the outcome of a binary vari-
able. In binary classification, a classifier assigns a class (y)
to a given data sample (x) from the two available classes
(c = {c1, c2}, y ∈ c). The target classes belong in the
available classes (∀i yi ∈ c). The goal of a classifier is
to assign a data point (xi ) into a correct target class (yi )
[12]. Let w denote a d-dimensional vector of weight values
(w = {w1, w2, . . . , wd}). LR models the classified phe-
nomenon using a linear combination (wTx = ∑d

i=1 wi xi )
of an input vector (x) and the weight vector (w). The linear
combination is transformed using a logistic sigmoid function
[79], which forces the transformed value within a finite inter-
val (between 0 and 1) [12]. The logistic sigmoid function is
defined as

s(a) = ea

1 + ea
= 1

1 + e−a
. (1)

Let c = {0, 1} denote the set of the two available classes
and let P(c1|x) denote the probability (P) of a data point (x)
belonging to the first class (c1) and let P(c2|x) denote the
probability (P) of a data point (x) belonging to the second
class (c2). The model of LR for a data point is

P(c2|x) = s(wTx) = 1

1 + e−wTx
, (2)

which models the posterior probability of the data point
belonging to the second class.

The ratio between P(c2|x) and P(c1|x) is called odds
[12], which measures the relative likeliness of P(c2|x). LR
approximates the logarithm of the odds (log-odds) directly
using the linear combination wTx as

ln
P(c2|x)
P(c1|x) = ln

P(c2|x)
1 − P(c2|x) = wTx. (3)

Solving the log-odds (Eq. 3) for P(c2|x) results in Eq. 2. The
result can be derived from P(c2|x)

1−P(c2|x) = ew
Tx. For minimizing

the misclassification rate, a data point (x) is classified in the
second class if P(c2|x) > P(c1|x). The decision rule for the
second class (c2) is equivalent to P(c2|x) > 0.5, because
P(c2|x) > 1 − P(c2|x) = P(c1|x) given P(c2|x) > 0.5.

Let X denote the available data ({xi , yi }ni=1) of n training
examples for determining the weight values (w). LR assumes
a binomial likelihood function for the given data and it is
defined as

L(w|X) =
n∏

i=1

P(c2|xi )yi P(c1|xi )1−yi , (4)

which measures the likelihood of observing the data given
the specific model. A log-likelihood function (�) is defined
as the logarithm of the likelihood function (� = lnL). The
log-likelihood function of LR model is

�(w|X) =
n∑

i=1

yi ln P(c2|xi ) + (1 − yi ) ln P(c1|xi ), (5)

where n is the number of training examples ({x, y}) in the
training data (X), P(ci |xi ) is the posterior probability of a
class (ci ) given a data point, yi is the target class of a train-
ing example and the vector w contains the weight values.
The optimal parameters (w) maximize the value of the log-
likelihood function. LR can be trained, given training data
(X), by estimating the parameters (w) that maximize the log-
likelihood (�).

Stochastic gradient descent (SGD) finds a local minimum
of a function with multiple variables [12]. If the function
is convex, then the local minimum is the global minimum.
If the function is not convex, then SGD does not guarantee
that the local minimum is the global minimum. Notice that a
maximization problem can be transformed into a minimiza-
tion problem by changing the sign of the objective function.
The negative log-likelihood function in LR is convex, which
means that given enough iterations and somegeneral assump-
tions (see Bottou [13] for details), SGD converges to a global
minimum. SGD moves the values of the parameters in the
direction of the gradient, which is the direction of the greatest
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rate of change in the function value. SGD estimates the gradi-
ent using one training example ({xi , yi }) at a time. Therefore
SGD is applicable when the training data does not fit entirely
in the computer memory [12]. Only a subset of the data set
is retained in the computer memory at once. We use SGD to
maximize the log-likelihood (�) with respect to the parame-
ters (w) given training data X.

For utilizing SGD, we use the partial derivatives (
∂�(w|X)

∂w j
)

of the log-likelihood function with respect to the individ-
ual weights (w j ∈ w). The partial derivatives let us to
adjust the weights individually for maximizing the log-
likelihood function. Let βi be defined as βi = wTxi . Notice
that P(c1|xi ) = 1 − P(c2|xi ). The expression evaluates
to 1+eβi

1+eβi
− eβi

1+eβi
= 1

1+eβi
using Eq. 1. After substitut-

ing P(c2|xi ) = eβi

1+eβi
, P(c1|xi ) = 1

1+eβi
in Eq. 5, and

doing algebraic simplification, the following form of the log-
likelihood function is acquired:

�(w|X) =
n∑

i=1

yiβi − ln(1 + eβi )

=
n∑

i=1

yiwTxi − ln(1 + ew
Txi ). (6)

A partial derivative of the previous form (Eq. 6) of the log-
likelihood function (Eq. 5) with respect to a single weight
value is defined as

∂�(w|X)

∂w j
=

n∑

i=1

yixi j − xi j ew
Txi

1 + ewTxi

=
n∑

i=1

(yi − P(c2|xi ))xi j , (7)

where xi j is the j th feature of the i th training example.
Instead of using all of the training examples (n), SGD uses a
training example at a time to re-evaluate the parameters as

w = w + α��(w|xi ), (8)

where the parameter α is called learning rate and �� is the
gradient formed by the partial derivatives. The learning rate
adjusts the magnitude of the change in the parameter values.
A high value of the learning rate adapts a model quickly
to newest information and makes it less dependent on the
old information. A low value of the learning rate adjusts the
parameters of the model carefully and relies more on the
previously learned information.

2.3 Autoencoder

An autoencoder is an artificial neural network, which learns
a hidden representation of the input data [9,84]. Let x (y)

Fig. 1 The structure of an autoencoder where x ∈ R
d contains the input

values, y ∈ R
h is the hidden representation of the input values, z ∈ R

d

is the reconstruction of the input, W is a matrix containing the weight
values and b,bz are bias vectors

denote the input data (hidden representation) as a d (h)-
dimensional vector (x ∈ [0, 1]d , y ∈ [0, 1]h) of values
between 0 and 1. Let W denote a weight matrix with h
rows and d columns (W ∈ R

h×d ). Let b and bz denote h-
dimensional vectors of real values (b ∈ R

h,bz ∈ R
h), which

are called bias vectors. The input data (x) are transformed into
a hidden representation (y) as

y = s(Wx + b), (9)

where s(a) is the logistic sigmoid function (see Eq. 1). The
bias vectors (b,bz) translate the location of the sigmoid func-
tion with respect to its input. The rows of the weight matrix,
the corresponding bias values and the nonlinear transforma-
tion create amodel called a neuron [84]. The neurons forming
the hidden representation are grouped as a layer called hid-
den layer. The hidden representation is transformed again
into the input space ([0, 1]d ) of the input data as

z = s(WTy + bz), (10)

where WT is the conjugate transpose of the weight matrix.
The vector z contains the reconstructed data of the input data
(x). The structure of an autoencoder is illustrated in Fig. 1.

We use a loss function (L) which measures the difference
of the reconstructed input to the original input data. The dif-
ference is measured as the sum of the absolute differences
between the features of the original input (xi ) and the recon-
structed input (zi ). The loss function for the reconstruction
cost is defined as:
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ri =
d∑

j=1

|x j − z j |, (11)

where all of the d variables are iterated. If the reconstruction
cost is zero (L = 0), then the hidden representation mod-
els the input data perfectly. Note that if L = 0, then noise
in the input data is also learned [84]. Therefore an autoen-
coder should discard the noise while retaining the important
information. In this article, the hidden representation has a
smaller dimensionality than the feature space of the mod-
eled data (h < l). This forces the hidden representation to
learn high-level features of the data by combining the orig-
inal features [84]. The smaller dimensionality alleviates the
analysis of the data, because (1) the resulting feature space
is denser and (2) the high-level features encode nonlinear
relationships between the original features. A dense feature
space, which is spanned by the learned features for model-
ing a complex event, alleviates the curse of dimensionality
(see Bishop [12]). This is a suitable point to commence the
analysis of the data.

Our work uses SGD to continuously re-estimate the
weight matrix (W) and the bias vectors (b,bz). SGD min-
imizes the value of reconstruction cost (L) using its par-
tial derivatives with respect to the autoencoder parameters
( ∂L
∂W , ∂L

∂b , ∂L
∂bz

). The minimization of L , which is called train-
ing, forces the autoencoder to learn a hidden representation
of the input data. Referring to the generic training mecha-
nism of SGD in Eq. 8, the training rules of an autoencoder
using SGD are defined as

Wnew = Wold − α
∂L

∂Wold , (12)

bnew = bold − α
∂L

∂bold
, (13)

bnewz = boldz − α
∂L

∂boldz
. (14)

The following chapter introduces the methods for outlier
detection and prediction, which are proposed in this article.
The novelty of the methods compared to the existing work is
explained in detail in Chapter 3.

3 The proposedmethods

The proposed system (see Fig. 2) for outlier prediction in
this article consists of two core functionalities: (1) outlier
detection in a stream and (2) outlier prediction in a stream.
The outlier detection is an independent process, which is
implemented using an autoencoder. The outlier detection
continuously evaluates if the latest data point (xi ) from a
stream is an inlier or an outlier. The outlier prediction uses
the results of the outlier detection to form the required train-
ing data. The outlier prediction is not an independent process,
because it relies on the results of the outlier detection. Our
study assumes that the data contains the required information
for the outlier predictionwithout having an external source of
data. The following subsections explain the proposed outlier
detection and prediction in detail.

3.1 Outlier detection in a stream

This section describes the framework for the outlier detec-
tion. We introduce how the discrimination between inliers
and outliers is built using Chebyshev’s inequality. Details
about the learning rate for the autoencoder and how to han-
dle subsequent identical data points are also given.

Outliers are detected using an autoencoder with a hid-
den layer of neurons, which use the sigmoid function as the
nonlinear transformation. The proposed system defines an
outlier as a data point (xi ), which has an unexpectedly high
value of the reconstruction cost (Eq. 11), given a distribu-
tion of values of the reconstruction cost. An outlier contains
unexpected information, which cannot be modeled or rea-
soned with the available data. The unexpected information is
observed as extreme values and deviations in the correlations
of the data features. The feature values are scaled between 0
and 1 (xi j ∈ [0, 1]) as

xi = xi − xmin

xmax − xmin
, (15)

where xmax and xmin are vectors that contain the maximum
and minimum values of the features, up to the evaluation
of the current data point. The scaling is computed element-
wise per feature. The limits of the features (xmax and xmin)
are not known in advance, because a stream is unbounded.

Fig. 2 An illustration of the
general process for the proposed
method

Outlier detection
calibration

Outlier detection
using autoencoder

Outlier pre-
diction using

logistic regression

Detected outliers

Predicted outliers

Calibrated outlier detector

Training examples for outlier prediction
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The limits are continuously updated when data arrives from
the stream. However, the limits are not updated if the data
point is classified as an outlier. This prevents outliers from
affecting the outlier detection, because they are not allowed
to modify the scaling limits (xmax, xmin).

Let xi denote a data point that has been acquired from
a stream. After scaling the feature values between 0 and 1,
the autoencoder model is updated using the data point. The
weights of the autoencoder are adjusted using SGD (Eqs. 12–
14), after which the reconstruction cost of the data point is
recalculated using the autoencoder. The reconstruction costs
are positive real numbers, which are not limited. The dis-
tribution of the reconstruction costs is not known. It is not
possible to define a precise value for a low reconstruction
cost (inlier) and a high reconstruction cost (outlier). If we
had the distribution available, then we could use it to define
a threshold for the reconstruction cost. This threshold would
then discriminate the outliers from the inliers with a given
probability.

Chebyshev’s inequality proves that the majority of distri-
bution values are clustered around the distributionmean [71].
The inequality is defined as

P(|X − μ| ≥ kσ) ≤ 1

k2
, (16)

where X is a random variable, σ is the standard deviation and
μ is the mean [71]. The inequality calculates an upper bound
for the probability of random variates to exceed k standard
deviations from the mean. Using the inequality, there is an
upper bound of 1

9 for the probability of observing random
variates, which exceed the mean by three standard devia-
tions. Therefore, we suggest to define an outlier as a data
point with a reconstruction cost (L) that exceeds the expected
reconstruction cost with three standard deviations. The three
standard deviations are also utilized in Zhao et al. [94], Fer-
dowsi et al. [31]. However, in the evaluation of our proposed
method in Chapter 5, we test a range of multipliers for the
standard deviation.

The data in a stream does not fit entirely in the memory,
so only the descriptive statistics (μ, σ ) of the reconstruction
cost are maintained. The descriptive statistics of the inlier
distribution may change with time, so the proposed system
calculates the mean and the standard deviation of the recon-
struction cost sequentially, using exponentially weighted
moving average model or EWMA model. The algorithm for
the sequential calculation comes from Finch [33], which is
also utilized in Schuhknecht et al. [70]; Schubert et al. [69].
The statistics are continuously updated as

μnew = (1 − γ )μold + γ L, (17)

Snew = (1 − γ )(Sold + γ (L − μold)
2), (18)

σnew = √
Snew, (19)

where μold and Sold are the current estimates of the mean
and the variance, L is the reconstruction cost (Eq. 11) of
the newest data point (xi ) from the stream and γ ∈ [0, 1]
controls the rate of the updates of the descriptive statistics
(e.g., if γ = 0, then the statistics do not change at all). As
the EWMA method has been shown to detect shifts in the
underlying process (see Lucas and Saccucci [54], Braimah
et al. [16], Raza et al. [66]), we utilize it in our method so
that the possible changes in the inlier distribution can adapted
to. However, data streams from different sources may need
different weighting the parameter γ , in order to achieve good
results. As a default value, we utilize the value γ = 0.1 as in
Schuhknecht et al. [70].

Identical subsequent data points are ignored for increasing
the efficiency and decreasing the computational complexity
of the outlier detection. The identical subsequent data points
deviate less when more evidence is gathered for their exis-
tence. In our work, evidence is defined as the amount of
observations of a given phenomenon. If one observes mul-
tiple instances of a specific data point, then there is more
evidence for the data point.

Ignoring the data points, which are identical and subse-
quent, protects the autoencoder from becoming too specific
(overfit) for the data and the noise in the data. The autoen-
coder overfits itself by modifying the weights (W) to
memorize (not learn) the data and the reconstruction cost
results in zero (L = 0), which is undesirable. By ignoring
identical data, the model is less likely to forget previously
learned information. Overfitting the identical data erases the
previously learned characteristics of the data. Notice that the
recently learned, and then erased, characteristics could still
be valid for the data. The erased characteristics are the fea-
tures, and their respective weight values inW, which are not
available anymore at the current time. The reconstruction of
data, which have the erased characteristics, results in high
values of the reconstruction cost (L) using Eq. 10. These
high values of the reconstruction cost result in incorrect out-
lier detections.

A data point with low evidence might become an inlier in
the future by gainingmore evidence. This can ultimately lead
to an incorrect outlier detection. From the point of viewof our
proposedmethod, a data pointwith low evidence is an outlier.
This is desired and normal behavior, because the goal of our
proposedmethod is to detect outliers without external knowl-
edge. Given a data point, the proposed method commences
the outlier detection and prediction without waiting for more
data. If more evidence becomes available, then the autoen-
coder will eventually learn the characteristics of the data. In
addition to outliers, our proposed method detects novelties
or change points, which are previously unseen and differ-
ent inliers. The novelties are significantly deviating inliers
without being outliers.
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The learning rate (α) of SGD for the autoencoder is chosen
to be a constant value instead of a gradually decreasing value.
The amount of the data in a stream is considered infinite and
thus the learning rate cannot be decreased as a function of
time. The data in a stream is not assumed to originate from a
stationary distribution and therefore the autoencoder has to
adapt to any changes in the concept of the normal and devi-
ating data. A constant small value of the learning rate allows
the model to forget the oldest information and to obtain a
small variance in the convergence of the updated parame-
ters. We select a constant learning rate of α = 0.1 for SGD
to train the autoencoder (as in Cho et al. [24]). The following
subsection discusses the calibration of the proposed method,
which is required before commencing the classification of
data points in outliers and inliers.

3.2 Calibration of the outlier detection

Our proposed method for outlier detection needs to be
calibrated before commencing the classification of the obser-
vations in outliers and inliers. The calibration is required,
because the method does not impose assumptions on the
characteristics of the stream data. The calibration consists
of two consecutive phases:

1. Phase 1 The determination of initial scaling limits
(xmax, xmin in Eq. 15).

2. Phase 2 Initial training of the autoencoder (Eqs. 12–14
and Eqs. 17–19).

The determination of the initial scaling limits is the first
phase of the calibration. Our proposed method is unsuper-
vised and does not impose assumptions on the data of the
analyzed sensor stream. As a result of having no prior infor-
mation, the scaling limits (xmax, xmin) in Eq. 15 are not
defined in advance. The initial scaling limits are calibrated
when the d elements of the lower limits (xmin) are lower
than the elements of the upper limits (xmax). Data points are
received from the stream until the initial scaling limits are
calibrated. The equation xmax − xmin > 0 holds element-
wise for the calibrated scaling limits. As a result, the scaling
in Eq. 15 does not divide by zero for any element-wise fea-
ture. This is important, because the autoencoder is trained
using data points with scaled values of the features.

The initial training of the autoencoder is the second phase
of the calibration, which follows after the determination of
the initial scaling limits. The autoencoder does not have prior
information available of the distribution of the analyzed data.
Therefore, for informed outlier detections, we need initial
training for (1) the autoencoder and (2) the running estimates
of the descriptive statistics (μ, σ ) of the reconstruction cost.
A sufficient number of data points are processed from the
sensor stream before classifying the data points into outliers

and inliers. The initial data points train an initial version
of the model for outlier detection. The next section intro-
duces a heuristic, which determines when the calibration of
the autoencoder is finished (phase 2). The utilization of the
heuristic is beneficial, because we do not need to explicitly
define a value for the sufficient number of initially consumed
data points. The autoencoder calculates the reconstruction
cost for the data points. The running estimates are consid-
ered as the final estimates at any give time (∀i), because a
stream is an unbounded source of data.

3.2.1 Patience heuristic

To automate the calibration of the autoencoder and to deter-
mine what is a sufficient number of data points, we apply a
heuristic called patience [8]. Let ri denote the reconstruction
cost of a data point (xi ). The reconstruction cost is calculated
using Eq. 11. The maximum reconstruction cost per feature
is one using Eq. 11. The reconstruction cost has a defined
minimum value (zero) and maximum value (the number of
features d). This results from scaling the input (Eq. 15) and
the output (Eq. 10) features between zero and one. Therefore,
the maximum reconstruction cost of a data point is 1∗d = d,
because there are d measured features.

Let rmin denote the smallest reconstruction cost, which is
observed since the initiation of the calibration. Let Pc denote
a counter variable, which identifies the determination of the
calibration (Pc = 0). The variable Pc is a counter, because
every iteration in the calibration decrements the value of the
counter by one (Pc = Pc − 1). Let Pr denote a reset value,
which resets the counter (Pc = Pr). If the calibration needs
to reset the counter variable (Pc), then the new value of the
counter variable is Pr. The patience heuristic continues to
train the autoencoder until the counter Pc equals zero. Every
training iteration of the autoencoder decreases the value of
the counter by one (Pc = Pc−1). If a training iteration of the
autoencoder is successful (ri < rmin), then the counter is reset
(Pc = Pr) and the minimum reconstruction cost is updated
(rmin = ri ). Therefore, the patience heuristic attempts to train
the autoencoder in a limited number of iterations, which is
suitable for the calibration of our proposedmethod.However,
the patience heuristic does not guarantee a termination in a
limited number of iterations because, in theory, the improve-
ments in rmin could be arbitrarily small [64]. To have an
absolute guarantee of termination, Prechelt [64] suggests to
define a maximum number of training iterations. The next
section introduces an approach for determining a reset value
(Pr), which conforms to a limit for the maximum number of
training iterations.
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3.2.2 Determination of the reset value

To determine when the calibration of the outlier detection
is ready, we use the previously described patience heuristic
and utilize a limit of a maximum number of initially con-
sumed data points, which is motivated by Prechelt [64]. Let
M denote themaximumnumber of data points for calibration
anddecmin denote the smallest decrease in the reconstruction
cost: rmin = ri if rmin −ri > decmin. The smallest decrease
(decmin) is required, because the decreases of the value of
rmin could be arbitrary small. The number of updates is the-
oretically infinite, because even the smallest decreases in
rmin would reset the patience counter. The smallest decrease
(decmin) limits the number of possible updates of the value of
rmin, because the maximum number of updates is d/decmin.
The utilization of decmin and the patience heuristic, belong
to a category of techniques called early stopping. Early stop-
ping attempts to train a model, without overfitting the model,
in a finite amount of time. See Bishop [12], Prechelt [64],
Barber [7] for a detailed definition of the early stopping. We
define and use the following formula to define a reset value
(Pr) for a given M and decmin:

Pr = M ∗ decmin

d
. (20)

The equation defines a value for Pr given an absolute upper
bound of the number of data points (M). In the theoreti-
cal worst case, the autoencoder reduces the reconstruction
cost by decmin and resets the patience counter (Pc = Pr)
at the last possible iteration (Pc = 1). This results in a total
consumption of decmin−1 ∗ d ∗ Pr data points, because a
maximum value of the reconstruction cost is d. If the model
would reset the patience counter every time at the last itera-
tion (Pc = 1), and the reconstruction cost would decrease by
decmin at a time, thenM is the resulting number of consumed
data points. The autoencoder uses a sigmoid activation func-
tion, which ensures that the reconstructed values per feature
are between zero and one. As established, the input values
are scaled between zero and one. Therefore, the maximum
possible reconstruction cost is d.

Fortunately, M is a very conservative maximum bound of
the required data points. Instead of constantly reducing the
reconstruction cost by decmin, the autoencoder is expected
to learn the hidden representation faster. Indeed, on aver-
age, the number of consumed data points for the calibration
was 72 in the experiments in Chapter 5. In our work, we
defineM =10,000 as the upper bound, which is suggested for
the patience value in Bengio [8]. For the minimum decrease
of the reconstruction cost (decmin), we utilize a value of
decmin = 0.01, because it is a minor (1%) improvement of
the maximum reconstruction cost for data with one feature
(d = 1).

The first phase, which is the calibration of the initial scal-
ing limits, consumes data points from the stream. These
consumed data points have to be accounted for in the determi-
nation of themaximumbound (M). Otherwise, themaximum
bound is defined only for the calibration of the autoencoder
(phase 2) and not for the calibration of the scaling limits
(phase 1). The solution is to decrement the value of the max-
imum bound by the number of consumed data points in the
first phase. This ensures that the maximum bound (M) is a
true maximum bound for the entire calibration procedure.
The only requirement for the calibration of the scaling limits
is that the variance of the features is greater than zero. If the
variance is zero, then a signal of constant values is observed
for the feature and the maximum bound is not defined.

3.2.3 Algorithm for calibration of outlier detection

Our proposed method for outlier detection is calibrated
and ready to use when (1) the scaling limits are calibrated
(xmin < xmax element-wise) and (2) the autoencoder is cal-
ibrated (Pc = 0). Algorithm 1 describes the calibration of
the outlier detection. Algorithm 2 describes the proposed
approach for outlier detection using an autoencoder, which
utilizes the calibration approach in Algorithm 1. The follow-
ing subsection introduces our proposed method for outlier
prediction.

3.3 Outlier prediction in a stream

Outlier detection is responsible for providing the outliers,
which are used to continuously train a classifier for predict-
ing the outliers. Our work uses LR as the classifier, and SGD
is applied to continuously re-evaluate theweight vector (w) as
data arrive from a stream. We utilize LR, because it typically
provides a well-calibrated probability of the classification
results. The probabilitymaybe used in the future as an indica-
tor of how confident the model is in the classification results.
LR is previously used to analyze data with outliers by King
and Zeng [46]. Classifying the occurrence of an outlier is
modeled as a binary outcome of LR. The second class (c2)
denotes the outliers and the first class (c1) denotes the inliers.
A positive classification is performed for the occurrence of
an outlier if the probability of an outlier occurring is higher
than the probability of an inlier occurring.

Let xi denote a data point that is read from a stream. LR
predicts an outlier by classifying a successor of xi in t time
steps (xi+t ) as an outlier or as an inlier. The successor of xi
in t time steps is one data point at time i + t . Therefore the
time step (t) defines the duration of how far in the future the
outliers are predicted.

Logistic regression is trained using PS previous readings
({xi−PS+ j−t }PSj=0) from the streamand the autoencoder labels
the data point xi to provide the target class. The hidden
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Algorithm 1 Calibration of the outlier detection.
Input: A predefined structure for the autoencoder
Output: Calibrated reconstruction distribution statistics and weights for the autoencoder
1: Set μnew = μold = Snew = Sold = 0, rmin = ∞
2: Set M =10,000 and decmin = 0.01 � See Chapter 3.2.3 for justification
3: Initialize b, bz with zeroes, and W with random values between zero and one
4: while xmin = xmax for any feature do � Phase 1, see Chapter 3.2
5: Acquire a data point xi from the stream
6: Update the limits of the data features (xmax and xmin)
7: M = M − 1 � Calibration of scaling limits consumes data points
8: end while
9: Pr = M ∗ decmin ∗ d−1 � The reset value for patience heuristic (Eq. 20)
10: Set Pc = Pr
11: while Pc > 0 do � Phase 2, see Chapter 3.2
12: Acquire a data point xi from the stream
13: Update the limits of the data features (xmax and xmin)
14: Scale the feature values (xi j∀ j) using Eq. 15
15: Calculate the reconstruction (zi ) of the data point (xi ) using Eq. 10
16: Calculate the reconstruction cost (L) of the data point (xi ) using

the autoencoder (Eq. 11) and the reconstruction (zi ) of the data point (xi )
17: Update the autoencoder weights using SGD (Eq. 12–14)
18: Update the statistics of the distribution of reconstruction cost (Eq. 17–19)
19: Calculate r = ∑d

i=1 |xi − zi | � Absolute loss for patience (Eq. 11)
20: if rmin − r > decmin then � Is the minimum decrease exceeded?
21: Set rmin = r and Pc = Pr � Update the patience variables
22: end if
23: Pc = Pc − 1 � Decrement the patience counter
24: end while

Algorithm 2 The proposed algorithm for the outlier detection in streams.
Input: A predefined structure for the autoencoder
Output: Outlier classification for non-identical data points xi in the stream
1: Calibrate the outlier detection based on the autoencoder structure given (Algorithm 1)
2: Initialize xold with zeroes
3: Acquire a data point xi from the stream
4: Go to (3) if xi is identical with xold
5: Set xold = xi
6: if IS_OUTLIER(xi ) == false then � Outliers do not affect the scaling
7: Update the limits of the data features (xmax and xmin)
8: end if
9: if IS_OUTLIER(xi ) == true then
10: The data point (xi ) is an outlier
11: end if
12: Update the autoencoder weights using SGD (Eq. 12–14)
13: Update the statistics of the distribution of reconstruction cost (Eq. 17–19)
14: Set i = i + 1 and go to (3) � Ready to analyze the next data point

15: function is_outlier(xi ) � xi : analyzed data point
16: Scale the feature values (xi j∀ j) using Eq. 15
17: Calculate the reconstruction (zi ) of the data point (xi ) using Eq. 10
18: Calculate the reconstruction cost (L) of the data point (xi ) using the autoencoder (Eq. 11) and the reconstruction (zi ) of the data point (xi )
19: return Outlier detection if L > μnew + kσ � k = 3 suggested by Eq. 16
20: end function

representation of data ({yi−PS+ j−t }PSj=0, see Eq. 9) is also
utilized if Algorithm 2 is used for the outlier detection. The
hidden representation, in addition to the original data, is a
source of information for predicting the occurrence of the
outliers. To our knowledge, a hidden representation has not
been utilized in outlier prediction in the literature. However,
our proposed method for outlier prediction does not assume
the availability of the hidden representation. If a hidden rep-

resentation of the data is not available, then only the original
data ({xi−PS+ j−t }PSj=0) are utilized for the outlier prediction.
In this article, we use an autoencoder for outlier detection,
because the autoencoder provides additional data for the out-
lier prediction.

The PS readings are formed into sliding windows. There-
fore, as defined earlier, the PS is the size of the sliding
window. The first element of the sliding window at time i is
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xi−PS+0−t , the second is xi−PS+1−t , the third is xi−PS+2−t

and so on. The hidden representation of data is appended in
the end of the sliding window. The minimum value of PS
is 1. There is no maximum value of PS. The number of the
parameters of LR (|w|) increases linearly with the size of the
sliding window (PS). The feature space (Rd ) has d dimen-
sions of real values. Let h be the number of hidden neurons
in the autoencoder. There is a total of (PS ∗ (d + h)) + 1
parameters (|w| = (PS ∗ (d + h)) + 1) in LR. The weight
vector (w) is grown with d + h elements. LR becomes more
complex when the value of PS increases. As with autoen-
coder, if there are many parameters (w), then the LR only
memorizes the training examples. This results in overfitting
in which LR does not learn the training examples. The value
of PS and the number of parameters (|w|) are constant during
the outlier prediction.

The time step (t) is subtracted from the time indices (i)
of the elements in the sliding window. The sliding win-
dows, which contain the data of t time steps from the past
({xi−PS+ j−t }PSj=0 or {{xi−PS+ j−t }PSj=0 ∪ {yi−PS+ j−t }PSj=0}),
are the features used for learning to predict. LR requires
multiple windows of data for learning to predict outliers.
The learning is a continuous process in which the sliding
windows are used to train the LR. The target classes (yi )
for the sliding windows are obtained by the outlier detec-
tion. In our work, the training examples ({{xi−PS+ j−t }PSj=0 ∪
{yi−PS+ j−t }PSj=0, yi }) with the corresponding autoencoder
features teach the classifier to recognize the patterns of data
points, which indicate the occurrence of the outliers in t steps
in the future. LR learns to predict outliers, because the train-
ing examples define a mapping of previously observed data
points and the occurrence of outliers at a later point in time.
The training examples are pairs of sliding windows and clas-
sification targets (yi )where the classification targets originate
from the future from the point of view of the slidingwindows.

Algorithm 3 describes our proposed method for the out-
lier prediction, which requires an outlier detection algorithm
(line 8) to provide the outlier labels (y) (line 9) for the training
examples (line 10). Notice that the outlier prediction is not
limited to only using our proposed algorithm for the out-
lier detection (Algorithm 2) to provide the outlier labels.
Our work uses our proposed method for outlier detection
(Algorithm 2) to provide the outlier labels (y) and the hid-
den representation as additional features ({yi−PS+ j−t }PSj=0).
However, we want to emphasize that the utilization of the
hidden representation is not required, if an autoencoder is
not available (training examples are {{xi−PS+ j−t }PSj=0).

Our work integrates Algorithms 2 and 3 to implement
an unsupervised method for outlier detection and prediction.
Instead of coupling the proposed Algorithms 2 and 3, and
losing their generality, we introduce Algorithm 4. The algo-
rithm integrates our proposed methods for outlier detection

and outlier prediction and defines a single algorithm. Lines
1–15 inAlgorithm4 implement the outlier detection,which is
described in Algorithm 2 (lines 1–14). The detected outliers
and the observed data are used to create training examples for
LR topredict the occurrenceof outliers (line 16 and17).Lines
16–19 implement the outlier prediction, which is described
in Algorithm 3 (lines 10–12). The next subsection discusses
the properties of our proposed methods.

3.4 Properties of the proposedmethods

Our proposed methods for outlier detection (Algorithm 2)
and outlier prediction (Algorithm 3) consume a stream by
processing a data point (xi ) at a time. The outliers in the con-
text of our work are individual data points (xi ), which do not
resemble previously observed data points (x j , j < i). There-
fore, the outliers are not unexpected patterns of multiple data
points, but defined outlier points in the outlier detection. Out-
lier detection in the patterns of data points requires a more
complex model, because the number of inputs increases,
which increases the number of model parameters and the
amount of cached data points. The scope of our work is to
define an accurate and fast model for outlier detection using
individual observations.

Our proposed method for outlier detection needs to be
calibrated initially (Algorithm 1), because the method does
not impose assumptions on the distribution of the analyzed
data. The model needs to configure itself into an initial state
before classifying the data points as outliers and inliers. In
an optimal situation, the initial data points for calibration
do not contain outliers. Using calibration data without out-
liers, the autoencoder learns a hidden representation of the
inlier data. Outliers obtain a high value of the reconstruction
cost, because the hidden representation is trained only for the
inliers. This helps to distinguish the outliers from the inliers,
because the outliers have distinctively larger values of the
reconstruction cost than the inliers. The proposed method
does not impose an assumption where inlier data is available
for the calibration. However, the feature values of the ini-
tial data points are required to have a variance greater than
zero. If the variance is zero for any feature, then the scaling
limits of the outlier detection cannot be defined. We assume
that the sensor data contains at least noise from the avail-
able sensors, which guarantees that the variance is not zero.
This completes the first phase (see Chapter 3.2 and line 4 of
Algorithm 1) of the calibration.

3.4.1 Updates of the autoencoder parameters

The magnitude of the gradient updates of the parameters of
the autoencoder and LR are limited by a learning rate (Eq.
8). Therefore, the parameter updates, which are based on the
possible outliers during the initial calibration phase, have a
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Algorithm 3 The proposed algorithm for the outlier prediction in streams.
Input: Pattern size (PS), time step variable t
Output: Outlier prediction in t time steps in the future
1: Set i = μnew = μold = Snew = Sold = 0
2: Initialize xold with zeroes and w with random values between zero and one
3: Acquire a data point xi from the stream
4: Go to (3) if xi is identical with xold
5: Set xold = xi
6: Update the limits of the data features (xmax and xmin)
7: Scale the feature values (xi j∀ j) using Eq. 15
8: Classify xi as an outlier or an inlier using an algorithm for outlier detection (for instance, using Algorithm 2)
9: Store the outlier detection result in variable yi ∈ {0, 1}
10: Create a training example {{xi−PS+ j−t }PSj=0 ∪ {yi−PS+ j−t }PSj=0, yi } for LR, which is used as xi in Eq. 8
11: Use SGD to update the parameters (w) of the LR model given the training example (Eq. 8)
12: Predict if an outlier occurs in t time steps in the future using Eq. 2
13: Update i = i + 1 and go to (3)

Algorithm 4 An integration of the proposed algorithms for outlier detection and outlier prediction in streams.
Input: A predefined structure for the autoencoder, Pattern size (PS) and time step variable t
Output: Outlier classification for non-identical data points xi in the stream and outlier prediction in t time steps in the future
1: Calibrate the outlier detection (execute Algorithm 1)
2: Initialize xold with zeroes and w with random values between zero and one
3: Acquire a data point xi from the stream
4: Go to (3) if xi is identical with xold
5: Set xold = xi
6: if IS_OUTLIER(xi ) == false then � IS_OUTLIER from Algorithm 2
7: Update the limits of the data features (xmax and xmin)
8: end if
9: Set yi = 0
10: if IS_OUTLIER(xi ) == true then � IS_OUTLIER from Algorithm 2
11: The data point (xi ) is an outlier
12: Set yi = 1
13: end if
14: Update the autoencoder weights using SGD (Eq. 12–14)
15: Update the descriptive statistics of the distribution of the reconstruction cost (Eq. 17–19)
16: Compute the hidden representation ({yi−PS+ j−t }PSj=0) for the data points in the sliding window ({xi−PS+ j−t }PSj=0) using Eq. 9

17: Create a training example {{xi−PS+ j−t }PSj=0 ∪ {yi−PS+ j−t }PSj=0, yi } for LR, which is used as xi in Eq. 8. The hidden representation ({yi }PSj=0)
is utilized for an additional source of features for the prediction.

18: Use SGD to update the parameters (w) of the LR model given the training example (Eq. 8)
19: Predict if an outlier occurs in t time steps in the future
20: Update i = i + 1 and go to (3)

negligible influence, because the learning rate limits themag-
nitude of the gradient. Outliers are also rare by they definition
[22], and therefore, their occurrence during the initial cali-
bration phase can be assumed to have a low probability. The
possible individual outlier-based updates are also addressed
by the consecutive inlier-based updates, which adjust the
autoencoder to represent the inlier data by rotating the gra-
dient (Eq. 12–14) toward a low reconstruction cost for the
inlier data.

Training the autoencoder is a non-convex optimization
task where a global optimum cannot be guaranteed in the
minimization of the reconstruction cost [58]. However, as
discussed in Chapter 2.3, a reconstruction cost of zero is
not desired, because the autoencoder should not model the
background noise in the observed data. A local minimum of
the reconstruction cost provides an estimate of the important
information (which are encoded in the hidden representa-

tion [73]) of the data. The background noise is not important
information in the data. Therefore the optimization for a local
minimum is a compromise between a low reconstruction cost
and not overfitting the data. The overfitting would result in
an increased number of false positive detections of outliers,
because the differences in the observed noise would be incor-
porated in the definition of an outlier. This is not a desired
behavior, because two inliers with different noise are still
inliers. The following subsection discusses properties of the
distribution of the reconstruction cost, which is used to dis-
criminate outliers from inliers (Algorithm 2, line 19).

3.4.2 Properties of the distribution of the reconstruction
cost

Our method assumes that the mean and the variance for the
unknown inlier reconstruction cost distribution are defined
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and the estimates for these two parameters are continuously
updated. Using Chebyshev’s inequality and these estimated
parameters (see Eq. 16) allows to discriminate reconstruction
cost values, that have a low probability of originating from
the inlier reconstruction distribution. The work in Bouguessa
[15] models inlier and outlier scores using Beta distributions
(see Bishop [12] for a definition). An outlier score is a value,
which measures the magnitude of the deviation of a data
point. Note that the definition of outlier score is not equiv-
alent to the statistical definition of a score (see Hyvärinen
[41]). Outlier score only measures the magnitude of how
unexpected a data point is and, in our work, the reconstruc-
tion cost is an outlier score. The experiments in Bouguessa
[15] show that a mixture of Beta distributions can model the
scores: the beta component that corresponds to the highest
score values for the outliers and the other components for the
inliers. The data are more likely to originate from the inlier
distribution, which is in line with our analysis. However, we
impose fewer assumptions than in Bouguessa [15] bymodel-
ing the reconstruction costs using only the first two moments
of the inlier reconstruction distribution.

Outliers may occur during the initial calibration of the
outlier detection. If outliers occur during the initial cali-
bration, then the values of the estimated statistics (μ, σ )
of the reconstruction cost increase (compared to observing
inliers). This increases the value of the threshold (Algorithm
2, line 19), which discriminates data points into outliers and
inliers. However, the consecutive inliers decrease the values
of the estimated statistics (μ, σ ). Therefore, the values of
the estimated statistics are expected to be increased tem-
porarily, when an outlier is encountered. As an effect of
the increased discrimination threshold, the detected outliers
are more deviating with respect to the inliers. The outlier
detection continues to function, but the detected outliers are
temporarily themore obvious outliers. The following subsec-
tion discusses properties that apply for the outlier detection
and prediction.

3.4.3 Outlier detection and prediction

If outliers are detected and predicted frequently, then the
outliers are not rare anymore and the outliers become
inliers. There is no external knowledge available for denoting
changes in the characteristics of the inliers. The detection of
the transformation between outliers and inliers is not in the
scope of our work. The abundance of outliers may indicate,
for example, of a change in the phenomenonmeasured by the
sensors or a new configuration of the sensors. Our proposed
method adapts to these potential changes, which modify the
process and the distribution that generates the observed data
points. The adaptation is provided by the continuous adjust-
ment of parameters of the autoencoder and LR.

The outlier prediction requires correct results from the
outlier detection, because the outlier prediction is trained to
predict outliers, which are defined by an algorithm for outlier
detection. Therefore, a limitation and a requirement for the
outlier prediction is the availability of a reliable source of
outlier detection.

3.5 Computational complexities

Both the outlier detection module (autoencoder) and outlier
predictionmodule (logistic regression) useSGD toupdate the
parameters within the module. SGD has shown to be appli-
cable in the online setting and its time complexity, when
updating parameters based on a single sample, is O(1), if
we omit constant factors such as the data dimension d [14].
Generally, the time complexity for neural networks (includ-
ing autoencoders) is constant w.r.t the number neurons. As
only one hidden layer is used in the autoencoder, the number
of neurons remains at a reasonable level. For the baseline
algorithms, time complexities are connected to the window
size (O(W ) for STORM2 andO((1− c)Wlog((1− c)W )+
kWlogk) for MCOD, see Tran et al. [81] for more details),
which is typically much higher than the dimension of the
data, making our approach clearly faster to compute.

The values that are stored in our framework are the autoen-
coder parameters, the weights for logistic regression, the two
inlier distribution statistics and scaling limits for the features.
In the experiments, inwhich the data dimension varied from2
to 5, these resulted in 17–83 floating points being stored. The
main factors affecting the space requirements of our method
are the structure of the autoencoder and the data dimension.
Compared to themore efficient baselines, the space complex-
ities areO(W ) for the STORM2 andO(cW+(1−c)kW ) for
MCOD [81], which are again connected to the window size.
So given the structure of our autoencoder and the standard
window sizes for the baselines (1000–10,000), our method
also has significantly lower space requirements.

The next section surveys the related work in (1) outlier
detection in streams and (2) outlier prediction. Our proposed
methods are compared to the work in the literature. The ben-
efits and the novelty of our methods are recapitulated in the
end of the next section.

4 Related work

4.1 Outlier detection in streams

In the context of analyzing sensor data, our proposed method
for outlier detection has three major benefits:
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1. Our proposed method detects outliers with a good accu-
racy. The accuracy is evaluated in the experiments in
Chapter 5.

2. Our proposedmethod uses a low amount of memory. The
low memory usage is discussed with respect to existing
algorithms of the literature in this section.

3. Our proposed method is fast to compute. The fast com-
putation is discussed with respect to the literature in this
section.The computation speed is discussed also inChap-
ter 5 with respect to baseline algorithms in the evaluation
experiments.

To define a computationally lightweight model for out-
lier detection, our proposed method does not store the
observations from an analyzed stream. Our proposed outlier
detection method does not utilize sampling (as in Mai et al.
[56], Aggarwal et al. [2]) or a sliding window (as in Angiulli
and Fassetti [3], Kontaki et al. [48], Aggarwal [1], Cao et al.
[20], Yang et al. [90], Assent et al. [6], Subramaniam et al.
[75], Wu and Ma [88], Franke and Gertz [36], Tao and Pi
[76]). The utilization of sampling and a sliding window (1)
requires the storing of observations from a stream for further
analysis and (2) requires the determination of the parame-
ter values for the storing of the values (e.g., the number of
stored samples). Signal processing methods that have been
used for outlier detection include autoregressive models and
signal filtering [39]. These methods are typically computed
from a set of observations [7,39]. Therefore, sampling, slid-
ing windows and signal processing are not utilized in our
work for outlier detection. By not storing the observations,
our proposed method saves computation time and memory
for other tasks in resource-limited environments.

The approaches of detecting outliers in the streams include
distance-based outlier detection [3,20,48,90], distribution-
based outlier detection [75], clustering-based outlier detec-
tion [6], sampling-based outlier detection [2,56] and super-
vised learning-based outlier detection [1]. Our proposed
method for outlier detection is distance-based, because the
reconstruction cost (L) is a distance of the input data (x) to its
reconstruction (z). Thereforewe focus to survey and compare
distance-based work in outlier detection in streams. Many of
the distance-based work [3,20,48,90] for outlier detection in
streams use the definition of Knorr et al. [47] of an outlier. An
outlier is a data point (x) with less than k data points within a
distance T in the local neighborhood. A distance-based out-
lier is an isolated data point in the feature space with a high
distance to the neighboring data points.

Angiulli andFassetti [3] proposed three variants (STORM1,
STORM2 and STORM3) of an outlier algorithm called
Stream Outlier Miner (STORM) for distance-based outlier
detection in streams. STORM1 provides exact results for the
outlier detection if all of the active objects (data points in

a sliding window) can be stored. STORM2 and STORM3
provide approximated results when the memory for storing
the active objects is limited. The approximation is required
when the size of the window (PS) is large, considering the
capacity of available memory. The algorithms use a concept
called safe inlier, which is an active object that is guaranteed
to be an inlier until its expiration. A safe inlier xi at time i has
at least k data points (x j ) in the local neighborhood. The data
points (x j ) arrive after xi , which satisfies the requirements
of j > i and D(xi , x j ) < T where D is a distance function.
To determine a safe inlier, at least two data points (xi , x j ,
given j > i) are required. A data point (xi ) is a safe inlier
if D(xi , x j ) < T and k = 1. The use of safe inliers reduces
the needed calculations, because the safe inliers will stay as
inliers even when more data are acquired from the stream.
STORM algorithms utilize the definition of a distance outlier
byKnorr et al. [47]. The definition requires the determination
of the nearest neighbors, which is a calculationally complex
process. Our approach processes a data point at a time. Com-
pared to the work of Angiulli and Fassetti [3], our method (1)
does not determine local neighborhoods in outlier detection
and (2) does not use a sliding window in outlier detection.
These benefits result in a low calculational complexity, and
there is no need to approximate the results or determine safe
inliers.

Kontaki et al. [48] proposed three distance-based algo-
rithms for detecting outliers in streams: Continuous Outlier
Detection (COD), Advanced Continuous Outlier Detection
(ACOD) andMicro-cluster-based ContinuousOutlier Detec-
tion (MCOD). ACOD and MCOD are extensions of COD.
COD detects outliers within a sliding window (as done by
STORM1, STORM2 and STORM3). The motivation for
COD in Kontaki et al. [48] is based on the observations that
(1) an expiration can transform inliers into outliers and (2)
new active objects can transform outliers into inliers. Simi-
lar to the work of Angiulli and Fassetti [3], COD uses local
neighborhoods and the concept of safe inliers. The neigh-
borhood of an expired inlier is checked for outliers, because
inliers can turn into outliers. COD schedules these checks
in advance in a priority queue, because the expiration time
of an inlier is known in advance. If an inlier becomes a safe
inlier, then it is removed from the queue. The actual outlier
detection of COD is similar to the work of Angiulli and Fas-
setti [3] where the number of the neighbors of a data point
determines the outlier status. A threshold for the number
of neighbors discriminates the inliers from the outliers. The
neighbors (x j ) of a data point (xi ) have a distance D(xi , x j )

less than a threshold T . The main difference between COD
and STORMalgorithms is that COD analyzes a smaller num-
ber of data points in the sliding windows [37]. Our proposed
method for outlier detection processes a data point at a time.
Therefore it (1) does not use a sliding window and (2) does
not need a mechanism to alleviate the computational com-

123



International Journal of Data Science and Analytics (2020) 9:285–314 299

plexity of determining the local neighborhood. The work of
Angiulli and Fassetti [3], and Kontaki et al. [48], analyze
the data in a local scope (nearest neighbors). Our proposed
method estimates the global distribution of the data.

As previously stated, the neighborhood queries of COD
utilize a threshold (T ) and the number of neighbors (k).
ACOD is an extension of COD where multiple neighbor-
hood queries are combined concurrently [37]. The outliers
are detected using a range of parameter values (T , k).
ACOD combines multiple queries to improve the results of
the outlier detection. However, ACOD is computationally
more complex than COD, because ACOD performs multi-
ple neighborhood queries. MCOD is an extension of COD
that alleviates the computational cost of COD and ACOD.
MCOD maintains clusters of the inlier data, which are used
for the neighborhood queries [37]. The number of clusters
is smaller than the number of data points within the sliding
windows. The utilization of the clusters reduces the number
of required computations. MCOD is a computationally less
complex version of COD.

Cao et al. [20] state that the work in Kontaki et al. [48] and
Angiulli and Fassetti [3] suffers from a considerable over-
head in the execution of the outlier detection. The following
observations by Cao et al. [20] help to alleviate the overhead:

– Outliers are rare by definition [22]. The computation
should focus on inspecting the outlier candidates instead
of determining the neighborhoods for the whole popula-
tion. Our method proposed in this publication removes
the need to determine the neighboring data points at all.

– Time should be used as a contextual attribute in a stream
to process the data in an order. The time-aware processing
speeds up the outlier detection in the stream since safe
inliers can be ignored. The benefits of using the recent
data are also addressed in [90].

The proposed solution in Cao et al. [20] counts the number
of the neighbors only when necessary. The recent observa-
tions are defined to be more important than the previous
observations, because the recent observationswill be retained
in the local neighborhoods longer than the previous ones.
Inliers are identified as observations with long neighbor-
hood memberships. The approach in Cao et al. [20] gathers a
required amount of evidence for inliers and avoids the com-
plete neighborhood searches (as done in Kontaki et al. [48]
and Angiulli and Fassetti [3]). An active object is an inlier
if it has the smallest possible evidence for being an inlier.
The smallest evidence is a set of distances, which is called
Minimal Evidence Set for Inlier (MESI). MESI contains the
minimum number of distances in the local neighborhood for
classifying an observation as an inlier. MESI typically con-
tains a smaller number of the active objects than there are
available in the complete neighborhood. The outliers are the

active objects that do not satisfy MESI. Our work does not
maintain the local neighborhoods of the data points, which
(1) does not require the calculations of the intensive neigh-
borhood searches and (2) does not suffer from the overhead
of using a sliding window in outlier detection.

Siddiqui et al. [72] introduce an anomaly detection frame-
work, where the feedback received from a human analyst
is used to reduce the number of false positives among
the detected anomalies or outliers. They show that the
human feedback can guide the anomaly detector to give
higher anomaly scores to the most important anomalies. The
importance can depend on the application and the external
information from the human analyst can help the anomaly
detector to recognize application-specific anomalies. While
their work incorporates external human feedback efficiently,
our work focuses more on the case in which adopting exter-
nal information or feedback from a human analyst is difficult
or not even possible. Pang et al. [61] focuses on combin-
ing learning expressive low-dimensional representations of
ultrahigh-dimensional data and outlier detection. Their main
idea is to learn optimal representation for a specific outlier
detector. Our work does not focus on ultrahigh-dimensional
data, but the ideas presented in Pang et al. [61] could be
utilized to our work if the input data stream has very high
dimensionality.

Ma et al. [55] used an autoencoder to detect outliers. The
method trains an autoencoder with a large amount of train-
ing data by using parallelized SGD. The trained autoencoder
is used to detect outliers in test data. The proposed system
is used for static datasets. The training data are assumed to
define the probability distribution of the normal data. Saku-
rada and Yairi [67] proposed a similar method of using an
autoencoder for outlier detection. Unlike the approach by
Ma et al. [55], Sakurada and Yairi [67] use SGD instead
of parallelized SGD. These previous works [55,67] with
autoencoders for outlier detection do not define or classify
an arbitrary data point (xi ) as an inlier or an outlier. Our
work extends the use of the autoencoder for outlier detection
by proposing a mechanism, which classifies an arbitrary data
point (xi ) as an inlier or an outlier. This is important, because
the outlier detection in streams is often integrated with time-
criticalmechanisms [1]. TheworkofSakurada andYairi [67],
andMa et al. [55], require the possession of data for defining
the inliers. The data are not allowed to contain outliers. The
requirement of defining the normal data in advance is not
suitable for streams, because the distribution of the normal
data may change as time passes. Obtaining the training data
might be expensive or impossible [1]. Our work proposes an
approach for using autoencoders to detect outliers in streams
without using separate training data or test data.

Dong and Japkowicz [29] proposed an anomaly detection
method for streaming data using an ensemble of autoen-
coders. However, the threshold for classifying outliers is

123



300 International Journal of Data Science and Analytics (2020) 9:285–314

decided during training time and the method also requires
the possession of outlier-free training data. The reconstruc-
tion cost distribution of the normal data may change as time
passes and the threshold value set during training time does
not take this into consideration. Chen et al. [23] also use an
ensemble of autoencoders to perform anomaly detection for
static datasets. They utilize randomized connection dropping
between neurons to introduce diversity among autoencoders
and also use adaptive data sampling during training to reduce
the computational cost. Lu et al. [53] propose sequential out-
lier detection for time series data by combining denoising
autoencoder and recurrent neural networks, but the model is
trained using static outlier-free training data.

4.2 Outlier prediction

The previous work in the outlier prediction includes the use
of regression [46,80], inferred rules [83], genetic algorithm
[87] and artificial neural network [35]. Most of the previ-
ous work has been based on regression [35] in which the
outliers are modeled as extreme values of the dependent vari-
able (response variable, explained variable). Our work does
not limit the definition of an outlier to be an extreme value.
Multivariate data may have outliers, which are not defined as
observations with extreme values. These types of outliers are
detectedwhen the variables contain unlikely combinations of
the values. The proposed approach in this article detects and
predicts outliers that are (1) extreme values and (2) unlikely
combinations of the observed values. Our method also uses
the hidden representation of an autoencoder to provide more
information for the outlier prediction. To our knowledge, the
publication is the first to utilize a hidden representation for
outlier prediction.

The work in Torgo and Ribeiro [80] studied the prediction
of outliers using standard regression trees with custom split-
ting criteria. The outliers are predicted in a static dataset. Our
work extends the outlier prediction for streams. A regression
tree is a supervised method, which poses challenges in out-
lier detection. The regression in Torgo and Ribeiro [80] maps
a set of inputs into an output. Many tasks in outlier detec-
tion do not have a dependent variable which is regressed, for
example, in intrusion detection. Forcing a problem to have
a dependent variable for a set of inputs is very restricting.
Our solution does not have a dependent variable, because
the analysis of outlier prediction is based on the data itself.
The work in Torgo and Ribeiro [80] depends on a set of
inputs and outputs while our work depends only on the set of
the inputs. The outliers are defined as rare and extreme val-
ues. The approach of using a regression tree does not detect
outliers which are deviating combinations of the variable val-
ues. Our solution uses an autoencoder for outlier detection in
which both types of the outliers are detected. Additionally,

our solution does not force the task of the outlier detection
to be fitted for regression.

Vilalta and Ma [83] use sets of events to predict outliers
in static datasets using a sliding window. The sets are con-
structed using an a priori algorithm, which creates frequent
sets of observed events. The events in the sets are observed
simultaneously. The frequent events are assumed to be cor-
related and to precede the outliers. The sets of the frequent
events are extracted from the data. The feature space of the
events is discrete, because there is a finite amount of defined
events. Our work also uses the preceding data to predict the
values of the future, but our work operates in a real-valued
feature space. The predicted outliers are called target events.
The target event is defined in advance to be an event from the
collection of possible events. The target events are assumed
low in numbers in comparison with the other events. The
requirement of defining the outlier is very restricting, because
an outlier is rare by definition. The supervised information
for defining an outlier and selecting the target event is typi-
cally not available. Our approach is unsupervised and does
not require such knowledge in advance.

Weiss and Hirsh [87] proposed a similar approach to the
work of Vilalta and Ma [83] for predicting outliers in a dis-
crete feature space. Instead of using the frequent item sets
of Vilalta and Ma [83], Weiss and Hirsh [87] use a genetic
algorithm to identify the patterns for predicting the target
events. The target events, which are monitored by the sys-
tem in Weiss and Hirsh [87], have to be selected in advance.
This is a strict requirement, because outliers are rare. There-
fore the required knowledge to define the important events
might not exist. The benefits of our work compared to Weiss
and Hirsh [87] are the same as in Vilalta and Ma [83]: (1)
our method uses a real-valued feature space and can analyze
complex phenomenon, (2) our method is unsupervised and
does not require knowledge of the data in advance and (3)
our method does not use an external source of information
to define an outlier.

The following list recapitulates the novelty and the bene-
fits of our work compared to the state of the art:

– To our knowledge, the publication is the first to use the
combination of an autoencoder, SGD and LR to detect
and predict outliers in streams.

– To our knowledge, the publication is the first to utilize
a hidden representation provided by the autoencoder for
outlier prediction. This hidden representation is learned
by packing and reconstructing the original data. See
line 16 of Algorithm 4.

– The detection of outliers is unsupervised, and it provides
labeled data for the prediction algorithm, which means
that no training data is required for defining the charac-
teristics of an outlier. The training data for outliers are
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rarely available [49,92], because outliers are rare by the
definition [22].

– The outliers are detected and predictedwithin unbounded
streams of data. The algorithms for outlier detection in
static datasets are not designed to be used with data
streams.

– Our work defines outliers as (1) extreme values and (2)
values, which do not follow the observed correlation
structure of the features. An autoencoder detects the both
types of outliers as data points with a high reconstruction
cost.

– The proposed method includes a mechanism for the
autoencoder to classify an arbitrary data point (xi ) as
an inlier or an outlier. For example, the work in Ma et
al. [55] with autoencoders for outlier detection in static
datasets does not classify an arbitrary data point (xi ) as
an outlier or an inlier.

– Our proposed method does not maintain relationships
of neighboring data points, which is a computationally
complex process. Instead, the proposed method learns a
hidden representation of the data and applies one data
point at a time. Additionally, there is no need to search
for a suitable distancemetric (D) for defining the distance
between twodata points. Therefore, our proposedmethod
has a very low computational complexity. Our proposed
method can be executed within resource-limited environ-
ments, which include embedded systems.

– The outliers can be predicted further than one time step
(t ≥ 1) in the future, unlike in Fong et al. [35], Torgo and
Ribeiro [80]. For outlier prediction, the experiments in
the next section use a range of time step (t) values from
one to ten (t ∈ {1, . . . , 10}).

5 Experiments

This section defines and executes experiments to validate
our proposed methods for outlier detection and the outlier
prediction. The evaluation consists of two phases. The out-
lier detection is experimented and evaluated separately in the
first phase. In the second phase, the integration of the outlier
detection and outlier prediction is experimented and evalu-
ated. Before delving into the details of the evaluation phases,
the overall setup and the quality metrics of the evaluation
process are introduced.

5.1 Baseline algorithms

Our proposed method for outlier detection is compared
against STORM2, COD and MCOD, which are established
algorithms for outlier detection in streams. The selected algo-
rithms were introduced in Chapter 4.1. STORM2 is selected
over STORM, because STORM2 is computationally more

efficient than STORM by providing approximated results.
This is important, because the conducted experiments, which
are defined later in this section, execute the algorithms thou-
sands of times. The computation of STORM is infeasible
in comparison with STORM2. Like STORM2, STORM3 is
an approximate version of STORM. However, the results
of STORM3 are more approximated than the results of
STORM2. Because of the heavier approximation, STORM3
is less accurate than STORM2.Our proposedmethod for out-
lier detection is compared to STORM2, because STORM2
provides a compromise between the approximation of the
results and the computation time. Unlike COD and MCOD,
ACOD is not experimented, because the computation time of
ACOD is infeasible. The computation ofACODandSTORM
both individually exceedmonths. This is not suitable for ana-
lyzing streamsof sensor data. Therefore,ACODandSTORM
are scoped out of the evaluation experiments.

The baseline algorithms (STORM2, COD and MCOD)
are utilized by accessing their implementations in Massive
Online Analysis (MOA, Bifet et al. [10]). MOA is a software
platform for implementing and executing algorithms against
data streams. The implementations of STORM2, COD and
MCOD in MOA can be accessed programmatically using
Java. We developed an evaluation environment for the algo-
rithms. Therefore, our proposed algorithm and the baseline
algorithms are evaluated using same data. This results in a
comparable set of results.

5.2 Metrics

The metrics for evaluating the outlier detection are recall
(REC), false positive rate (FPR), Receiver Operating Char-
acteristics curve (ROC) and the area under ROC (AUROC).
See Fawcett [30] for a detailed definition of the evaluation
metrics. The recall is also known as true positive rate in the
context of ROC. Let TP be the number of detected true pos-
itives, FP the number of detected false positives, TN the
number of detected true negatives and FN the number of
detected false negatives. Recall and false positive rate are
defined as follows:

REC = TP/(TP + FN), (21)

FPR = FP/(FP + TN). (22)

Recall (REC) is the fraction of relevant data in all of the
acquired data, which is the percentage of the detected out-
liers. False positive rate (FPR) is the fraction of the detected
false positives to the number of all negative (inlier) data
points. Therefore, a good algorithm for outlier detection
results in high REC and low FPR [30].

Algorithms for outlier detection typically utilize a thresh-
old [3,20,47,48,90],whichdiscriminates outliers from inliers.
For our proposedmethod, themultiplier value of the standard
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deviation in Eq. 16 defines a threshold for the discrimination
of outliers and inliers. The compared baseline algorithms
(STORM2, COD and MCOD) utilize a threshold (T ), which
determines the distance of deciding if two data points are
neighbors with each other. A high value of the threshold
makes the outlier detection very conservative: only the most
deviating outliers are detected. This results in a low value
of recall and false positive rate. An efficient algorithm for
outlier detection attempts to minimize the false positive rate
while maximizing the recall [30]. To study how efficient the
algorithms are with different values of the threshold, we uti-
lize ROC to summarize the resulting pairs of recall and false
positive rate. ROC is a graph of the resulting REC (y-axis)
and FPR (x-axis) values when the threshold is varied. For
our proposed method, the number of standard deviations is
experimented from 0.1 to 4.0 with increments of 0.1. For
STORM2, COD and MCOD, the threshold (T ) is experi-
mented from 0.1 to 10.0with increments of 0.1. The intervals
0.1−4.0 and 0.1−10.0 are chosen, because they covered the
range ofRECandFPRvalues (REC∈ [0, 1], FPR∈ [0, 1]) in
the experiments. Therefore, we alter the classification mech-
anism of outliers and inliers by varying the threshold. As a
result, the algorithms generate different value pairs of REC
and FPR. Computing ROC performs a complete evaluation
of the efficiency of the algorithms. See Fawcett [30] for a
detailed tutorial on ROC. ROC is used to evaluate outlier
detection in Tax and Duin [77], Kriegel et al. [50], Lee et
al. [52]. The values for the remaining parameters (number of
neighbors k, sliding window sizeW ) of STORM2, COD and
MCOD are selected from their original publications.

The resulting ROC graphs are not plotted, because the
experiments generate hundreds of ROC graphs. Instead, the
ROC graphs are quantified and reported as values between
zero and one by computing the area under the ROC curve
(AUROC). The value of AUROC encodes the efficiency of
an outlier algorithm over a range of parameter values. A per-
fect algorithm acquires AUROC = 1.0 by detecting all of
the outliers without false positives [30]. The worst possible
algorithm acquires AUROC = 0.0 by intentionally misclas-
sifying the data points [30]. Notice that AUROC = 0.5 is
acquired by randomly guessing if a data point is an outlier
or an inlier [30]. The general efficiency of the algorithms is
determined by comparing the resulting values of AUROC.
The algorithm with the highest value of AUROC is declared
the best performing algorithm.

The metrics for the evaluation of the outlier prediction are
precision (PRE) and recall (REC), which are used in Kriegel
et al. [49], Wang et al. [85], Dokas et al. [28]. Precision is
defined as follows:

PRE = TP/(TP + FP). (23)

Precision measures the confidence of correctly classify-
ing the outliers. A high precision means that the acquired
results are reliable. A perfect method predicts all of the out-
liers without false positives (REC=PRE=1.0). To alleviate
the process of defining a good pair of precision and recall, a
metric called F1 score is used to integrate the precision and
the recall into a single value. The F1 score is defined as

F1 = 2 ∗ PRE ∗ REC

PRE + REC
, (24)

which is the harmonic mean of the precision and recall. Har-
monicmean,which is defined as n∑n

i=1 x
−1
i
, ismore sensitive to

extreme values than the arithmetic mean [58]. This is desired
behavior, because we want simultaneously high values of the
precision and the recall for the outlier prediction. The out-
lier prediction results are ranked using the F1 score, which
allows ameaningful comparison based on a single value. The
following subsections describe and report the results of the
experiments for evaluating the outlier detection and predic-
tion.

5.3 Outlier detection

The outlier detection is evaluated using synthetic sensor data
and real-world sensor data. The real-world sensor data is
acquired using Simple Measurement and Actuation Profile
(sMAP, Dawson-Haggerty et al. [26]). sMAP is a protocol
specification for storing, organizing, and publishing large
amounts of heterogeneous stream data. sMAP attempts to
alleviate the problems that are encountered in handling a
large amount of time series data.

5.3.1 Datasets

The real-world sensor data consists of readings of electric
sensors from east passenger elevator in Cory Hall at Uni-
versity of California, Berkeley. The sensors measure the
apparent power, the apparent power factor, the current and
the reactive power. The stream contains four dimensions
of positive real values. The evaluation dataset consists of
100,000 data points between the dates of February 16, 2011
and March 19, 2011. The dataset is extracted using a pub-
lic front-end [25] for sMAP data. However, for the outlier
detection, the 100,000 data points are divided into five sets of
20,000 data points, because the computation time was infea-
sible for STORM2, COD and MCOD to evaluate multiple
experiments. The evaluation of the outlier prediction inChap-
ter 5.5 is experimented using all of the available (100,000)
data points as one dataset.

The five sMAP datasets, which are denoted by SMAP1-
SMAP5 in the experiments, are time series data and the data
points are dependent of the previous observations. Any pat-
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tern, which consists of dependent data points, is lost if the
data points are selected randomly from the sMAP data. To
preserve the dependency between the observations, the data
points are emitted in their original order in the sMAP data.
The original sMAP stream has a sampling rate of 20 seconds
but the experiment environment emits the data points as fast
as the proposed system can process.

The sMAP data do not have labels, which denote out-
liers within the data. However, the labels are required for
determining if an outlier algorithm detected an outlier or an
inlier. The calculation of the quality metrics (REC, T PR,
AUROC) requires the existence of the outlier labels. There-
fore, to create outliers on demand, we swap the values of
random feature pairs of a data point. The approach of swap-
ping feature values (1) preserves the order of the data points
in the real-world sensor data and (2) provides the evaluation
an access to outliers in a deterministic manner. In the litera-
ture, feature swapping has been previously utilized to create
data for model compression [19].

The synthetic data is sampled from a mixture of two
multivariate Gaussian distributions. See Bishop [12] for a
definition of a mixture model of multivariate Gaussian dis-
tributions. Themultivariate Gaussian distribution is selected,
because it is a distribution of maximum entropy given a
mean and variance [12]. Therefore a minimum number of
assumptions are imposed on the synthetic data. The first (sec-
ond) multivariate Gaussian distribution represents the class
of inlier (outlier) observations. The combination of these two
observation distributions constitute to a mixture model (of
two distributions). The approach of using multivariate Gaus-
sian distributions for evaluation of outlier detection is utilized
in Angiulli and Fassetti [3] and Papadimitriou et al. [63]. The
synthetic datasets simulate sensor readings, which have spec-
ified mean values and a covariance structure. The covariance
structure encodes the correlations between sensors where
sensor readings depend on each other. The outlier algorithms
have to detect two types of outliers in the sensor readings:
(1) unexpected individual values and (2) unexpected simul-
taneous values between the sensors. Therefore, a method for
outlier detection has to model the underlying marginal dis-
tributions and joint distribution of the sensor values. The
following configurations of the mixture of two Gaussian dis-
tributions are experimented:

– GAUSS1 The first and the second multivariate Gaus-
sian distributions have the same mean values, which are
sampled from a uniform distribution. The distributions
have different covariance structures, which are randomly
generated. The challenge for an outlier algorithm is to
understand how the features vary together.

– GAUSS2 The dataset uses the configuration of GAUSS1
withdifferentmeanvalues,which are sampled fromauni-

form distribution. The task is less challenging for outlier
detection, because the mean values are different.

– GAUSS3 The dataset uses the configuration of GAUSS1
with randomly scaled covariance structure. The covari-
ance structure of every feature of the second (outlier)
distribution is scaled with a random real value between
−2.0 and 2.0. As in GAUSS1, the challenge for an out-
lier algorithm is to understand how the features vary
together. However, the variation of the features is larger
in GAUSS3 than in GAUSS1, because the covariances
in GAUSS3 are doubled in extreme cases. The task for
outlier detection is less challenging than inGAUSS1 and
GAUSS2, because the features can have a strong relation-
ship with each other.

– GAUSS4 The dataset uses the configuration of GAUSS1
with randomly scaled covariance structure. The covari-
ance structure of every feature of the second (outlier)
distribution is scaled with a random real value between
−4.0 and 4.0. The task for outlier detection using
GAUSS4 is similar as forGAUSS3. However, the covari-
ances in GAUSS4 can vary even more than in GAUSS3.
Therefore the task for outlier detection in GAUSS4 is
easier than in GAUSS1–GAUSS3.

Notice that the Gaussian experiments are sorted by the
expected challenge of the task of detecting an outlier.
GAUSS1 creates data where outliers resemble inliers and
GAUSS4 creates data where the outliers do not resemble
the inliers as much as in GAUSS1–GAUSS3. The mul-
tivariate Gaussian experiments (GAUSS1–GAUSS4) are
repeated with a number of features (d) from two to five
(d ∈ {2, 3, 4, 5}). Therefore, the outlier algorithms are eval-
uated using 16 synthetic datasets and five real-world datasets
(SMAP1-SMAP5). This results in a total of 21 types of
evaluation datasets, which offer a thorough evaluation of the
outlier detection algorithms.

5.3.2 Experimental setting

The experimental environment simulates a stream by emit-
ting rows in their original order from a dataset to an evaluated
outlier algorithm. The labels of the utilized datasets allow a
controlled selection of inliers and outliers. The experiment
environment emits an inlier or outlier at will and observes
the result of the outlier detection. The values of TP, FP, TN
and FN are updated after observing the result of the outlier
detection. The values of themetrics (Eq. 22 and 21) are recal-
culated. Determining the values of FPR and REC is possible,
because it is known when outliers and inliers are emitted.

The outliers are emittedwith 3%probability and the inliers
are emittedwith 97% probability. Therefore the outliers form
a group of unexpected data points, which is the definition of
an outlier [22]. A total of twenty thousand records emitted
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to simulate a stream. The synthetic sensor data and the real-
world sensor data contain from two to five features.

5.3.3 Parameter setting

The autoencoder employs from two to five weight values
per a hidden neuron according to features. We do not want
the autoencoder to overfit the data. Therefore the autoen-
coder is experimented with a low number of hidden neurons:
between two (4–10 hidden weight values) and ten (20–50
hidden weight values). However, to reduce the computation
time of the experiments, the autoencoder is experimented
with an even number of hidden neurons (h ∈ 2, 4, 6, 8, 10).
The resulting AUROC of each autoencoder configurations
(h ∈ 2, 4, 6, 8, 10) is reported before reporting and compar-
ing AUROC of STORM2, COD and MCOD.

STORM2 uses a sliding window size of W =10,000 and
the number of neighbors k = 30, which were used for
the experiments in Angiulli and Fassetti [3]. MCOD uses
a sliding window size of W =10,000 and the number of
neighbors k = 10, which were used for the experiments
in Kontaki et al. [48]. COD could not be experimented with
W =10,000, because the computation would have lasted for
months, which is not a suitable for analysis of stream data.
Therefore COD uses a sliding window size of W =1000 in
the experiments (instead ofW =10,000). However, for COD,
the number of neighbors k was 10 as in the experiments in
Kontaki et al. [48]. For completeness and to provide addi-
tional test results, we evaluate STORM2 and MCOD using
a sliding window size of W = 1000. Notice that STORM2
andMCODutilizemore information (W =10,000) compared
to our proposed method (W = 1). Our proposed method
allocates from 17 to 83 floating point values. Therefore our
proposed method is faster to compute than the compared
algorithms as the amount of processed information is consid-
erably smaller. Our proposedmethod allocates memory from
0.17% ( 17

10,000 ) to 8.30% ( 83
1000 ) with respect to the memory

utilized by the compared methods.
The evaluation experiments are repeated ten times to form

a sampling distribution of AUROC values. The utilization of
ten repetitions per experiment is a typical approach to eval-
uate learning algorithms for streams [11]. The generation of
the evaluation data includes randomness (emission of out-
liers and inliers). Therefore, the mean value of the AUROC
sampling distribution is reported for the comparison of the
algorithms. Algorithm 5 describes the method for evaluating
the outlier detection using our proposedmethod and the base-
line algorithms. The data points in SMAP1–SMAP5 datasets
are emitted in their original order (line 6 in Algorithm 5),
which retains the time dependency in the time series data.
The data points for GAUSS1–GAUSS4 are repeatedly sam-
pled (line 6 in Algorithm 5) from the Gaussian distributions.

5.4 Results

Table 1 reports the outlier detection results of our pro-
posedmethod using synthetic data (GAUSS1–GAUSS4) and
real-world data (SMAP1–SMAP5). The number of hidden
neurons was varied to provide an extensive evaluation of
our proposed method. The cells denote the average AUROC
value of ten repetitions. The results show that the dataset
types (GAUSS1–GAUSS4) are ordered by the challenge
of the outlier detection task. This is evident as the aver-
age AUROC increases consistently between GAUSS1 and
GAUSS4 dataset types. Based on the evaluation results, the
outlier detection is more effective when the data contains
multiple features. The autoencoder learns a hidden represen-
tation of the data, which encodes the relationships between
the original features in a compact form. The utilization of
the hidden representation is an effective approach for outlier
detection, because the hidden representation models how the
original features vary together. All of the average AUROC
values were above 0.5. Therefore, our proposed method for
outlier detection succeeded to deterministically classify out-
liers from inliers. For the dataset typeGAUSS4withmultiple
features, the results are near of a perfect method for outlier
detection.

Using the real-world data, the number of hidden neu-
rons did not change the values of AUROC significantly. The
results imply that the autoencoders did not overfit the real-
world data by maintaining a hidden representation of the
sensor data. Therefore, the possibly complicated interactions
between the sensor values can be modeled using a various
number of hidden neurons. The averageAUROCof all results
was above 0.8. Our proposed method is capable of detecting
outliers in real-world data.

The previous results show that our proposed method for
outlier detection is effective using a various number of
hidden neurons. This is especially evident using the real-
world data in which the results do not significantly change
with the number of hidden neurons. The autoencoder imple-
mented a successful dimensionality reduction, which learned
h features (hidden representation) that represent the data.
The features spanned a vector space, which contained the
most of the variance of the data. The features are nonlin-
ear transformations (Eq. 1) of linear combinations of the
original features. As a comparison, consider principal com-
ponent analysis (PCA), which is a widely used method for
dimensionality reduction [12]. PCA models the data using
orthogonal linear combinations of the features. Unlike PCA,
an autoencoder with nonlinear transformations can model
nonlinear relationships between the features. The nonlinear-
ity of an autoencoder becomes evident when the autoencoder
uses multiple layers of hidden, nonlinear neurons.

Figure 3 is a histogramof the number of calibration rounds
(Algorithm 1) for our proposed method in the experiments.
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Algorithm 5 The evaluation algorithm for an outlier detection algorithm in streams.
1: Read a dataset
2: Let k1 be the number of repetitions to form a sampling distribution of AUROC and k2 be the number of data points in the simulated stream
3: for k1 = 1; k1 ≤ 10 do
4: for T ∈ {0.1, 0.2, . . . , 4.0} for our proposed method and T ∈ {0.1, 0.2, . . . , 10.0} for COD/MCOD/STORM2 do
5: Install the threshold: T for COD/MCOD/STORM2 and T for the number of standard deviations in Eq. 16 for our proposed method
6: for k2 = 1; k2 ≤ 20000 do
7: Sample a random value (v), which is a random value, from the uniform distribution (v ∼ U(0, 1))
8: Sample an inlier (x) if v > 0.03
9: Sample an outlier (x) if v <= 0.03
10: Process x using the experimented outlier algorithm: our proposed method (Algorithm 2), COD, MCOD or STORM2
11: Classify x as an inlier or as an outlier
12: end for
13: end for
14: Calculate the resulting AUROC
15: end for
16: Form the sampling distribution of AUROC

Fig. 3 Histogram of the calibration iterations (Algorithm 1) of our pro-
posed method in the experiments. On average, 72 calibration iterations
were carried in all of the experiments. The maximum bound (M) for
the number of calibration rounds was M =10,000 in the experiments.
Therefore, the maximum bound is very conservative as discussed in
Chapter 3.2.3

In the experiments, 72 calibration iterations were carried on
average. The maximum number of calibration rounds was
231 and the minimum number of calibration rounds was 22.
Therefore, aswediscussed inChapter 3.2.3, the bound (M) of
maximum calibration rounds in Eq. 20 is very conservative.
The observed results support our reasoning of the conser-
vative nature of the maximum bound. The maximum bound
in our experiments was M =10,000, which is a much larger
value than the observed maximum of 231 calibration rounds
in our experiments.

The evaluation results in Table 1 show that our proposed
method is efficient with variety of configurations. For a com-
plete evaluation of our proposed method, we compare the
experiment results of STORM2, COD and MCOD to the
experiment results of our proposedmethod. For our proposed
method, the results using two hidden neurons (h = 2) and

ten hidden neurons (h = 10) are reported in the comparison.
These two configurations represent a simple configuration
(h = 2) and a complex configuration (h = 10) of our pro-
posed method in the experiments.

Table 2 reports the evaluation results for STORM2, COD
and MCOD using a sliding window with 1000 elements.
Our proposed method detected outliers with better accu-
racy or comparable accuracy to those of STORM2, COD
and MCOD. However, our proposed method outperformed
STORM2, COD and MCOD using GAUSS1 and GAUSS2,
which were the most challenging datasets of the synthetic
datasets. Our proposed method utilizes less information
(W = 1) than STORM2, COD and MCOD (W = 1000).
Therefore, our proposed method implements a deterministic
method for detecting outliers that (1) is more effective than
random guessing (AU ROC > 0.5) [30] and (2) allocates a
minimal amount of memory (17 to 83 floating point values).

Outlier detection in synthetic data with multiple features
was an easier task for STORM2, COD and MCOD. These
methods provided slightly better results than our proposed
method using datasets GAUSS3-GAUSS4 (see Table 2).
STORM2, COD andMCOD have 1000 data points available
at any given time in the sliding window. With multiple fea-
tures, the outliers in GAUSS3 and GAUSS4 are effectively
detected by comparing the data points with each other using
the nearest neighbor queries. Our proposed method has to
determine the characteristics of outliers using one data point
at a time. Therefore, our proposed method (1) is computa-
tionally much more efficient, because there is no need to
maintain a sliding window and (2) outperforms or acquires
comparable results to those of STORM2, COD and MCOD.

For the challenging datasets (GAUSS1,GAUSS2), our
proposed method provided consistently better results than
STORM2, COD and MCOD. The outliers in the datasets
GAUSS1 and GAUSS2 are detected by modeling how the
feature values vary together. COD, MCOD and STORM2
do not explicitly model the relationships between the fea-

123



306 International Journal of Data Science and Analytics (2020) 9:285–314

Table 1 The evaluation results
of our proposed method (AE) for
outlier detection using synthetic
datasets (GAUSS1–GAUSS4)
and real-world sensor data
(SMAP1–SMAP5)

GAUSS1 GAUSS2

d = 2 d = 3 d = 4 d = 5 d = 2 d = 3 d = 4 d = 5

Panel A: synthetic datasets

AE h = 2 0.61 0.61 0.65 0.62 0.74 0.69 0.76 0.72

AE h = 4 0.62 0.66 0.71 0.68 0.74 0.72 0.80 0.79

AE h = 6 0.62 0.67 0.73 0.70 0.73 0.72 0.81 0.80

AE h = 8 0.62 0.67 0.73 0.71 0.72 0.71 0.81 0.81

AE h = 10 0.62 0.67 0.73 0.72 0.72 0.71 0.81 0.81

GAUSS3 GAUSS4

d = 2 d = 3 d = 4 d = 5 d = 2 d = 3 d = 4 d = 5

AE h = 2 0.77 0.78 0.85 0.88 0.82 0.91 0.94 0.95

AE h = 4 0.75 0.81 0.86 0.91 0.80 0.90 0.94 0.96

AE h = 6 0.73 0.80 0.86 0.92 0.80 0.89 0.93 0.96

AE h = 8 0.73 0.78 0.85 0.92 0.80 0.88 0.93 0.96

AE h = 10 0.72 0.78 0.85 0.91 0.79 0.87 0.92 0.95

SMAP1 SMAP2 SMAP3 SMAP4 SMAP5

Panel B: real-world sensor data

AE h = 2 0.88 0.89 0.88 0.88 0.88

AE h = 4 0.88 0.89 0.88 0.88 0.87

AE h = 6 0.89 0.89 0.88 0.89 0.87

AE h = 8 0.89 0.89 0.88 0.89 0.87

AE h = 10 0.89 0.89 0.88 0.88 0.88

The number of hidden neurons was varied (h ∈ 2, 4, 6, 8, 10) to provide an extensive evaluation of our
proposed method. For the synthetic data, the number of data features (d) was varied (d ∈ 2, 3, 4, 5). The cells
denote the average AUROC value of ten repetitions. The best individual results per dataset type are bolded

tures. COD, MCOD and STORM2 rely on nearest neighbor
queries, which are based on distance measurements between
the data points. However, the autoencoder in our proposed
method for outlier detection does model the dependencies
between the features and is able to detect the outliers.

For the real-world data (SMAP1–SMAP5), COD and
MCODvery slightly outperformed our proposedmethod (see
Table 2 for exact AUROC results). However, the differences
are minimal and the benefit of our proposed method is in the
computational efficiency, whichmakes our proposedmethod
very fast to compute. Our proposed method outperformed
STORM2. As previously discusses, our proposed method
learns a hidden representation of the input features, unlike
COD, MCOD and STORM2. By utilizing the hidden repre-
sentation, our proposedmodel is capable of detecting outliers
in various types of sensor data. The benefits of our unsuper-
vised approach for the streams include:

– The approach uses a small amount of memory, because
the data are processed for a data point at a time. The
method is suitable for larger datasets.

– The method does not need separate training data, which
are labeled in advance. The labeling of the training data

is especially challenging, because the outliers are rare
by definition. The proposed method relaxes this require-
ment.

– Our proposed model is computationally more effi-
cient than the compared methods (COD, MCOD and
STORM2), because our proposedmethod does not utilize
a sliding window in outlier detection.

Table 3 reports the evaluation results for STORM2 and
MCOD using a sliding window of 10,000 elements. The
results of COD are not reported, because the computa-
tion would have lasted for months, which is not a suitable
performance for analyzing streams of data. As in the exper-
iment results in Table 2, the results of our proposed method
(h ∈ {2, 10}) are included for comparison.

Out of the 16 evaluation experiments with synthetic
data, our proposed method outperformed or acquired similar
results to MCOD and STORM2 in seven evaluation experi-
ments. As in the evaluation results in Table 2, the outliers are
effectively detected by comparing the data points with each
other. Our proposedmethod has only access to one data point
at a time, which is not as informative as having 10,000 data
points available. However, the computational complexity of
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Table 2 Evaluation results of
outlier detection for COD,
MCOD and STORM2 using
synthetic sensor datasets
(GAUSS1–GAUSS4) and
real-world sensor data
(SMAP1–SMAP5)

GAUSS1 GAUSS2

d = 2 d = 3 d = 4 d = 5 d = 2 d = 3 d = 4 d = 5

Panel A: synthetic datasets

AE h = 2 0.61 0.61 0.65 0.62 0.74 0.69 0.76 0.72

AE h = 10 0.62 0.67 0.73 0.72 0.72 0.71 0.81 0.81

COD 0.61 0.63 0.68 0.67 0.75 0.70 0.79 0.80

MCOD 0.61 0.63 0.68 0.67 0.75 0.70 0.79 0.80

STORM2 0.58 0.58 0.62 0.62 0.74 0.66 0.74 0.74

GAUSS3 GAUSS4

d = 2 d = 3 d = 4 d = 5 d = 2 d = 3 d = 4 d = 5

AE h = 2 0.77 0.78 0.85 0.88 0.82 0.91 0.94 0.95

AE h = 10 0.72 0.78 0.85 0.91 0.79 0.87 0.92 0.95

COD 0.78 0.80 0.88 0.93 0.84 0.93 0.96 0.98

MCOD 0.78 0.80 0.88 0.93 0.84 0.93 0.96 0.98

STORM2 0.76 0.75 0.85 0.90 0.83 0.92 0.95 0.97

SMAP1 SMAP2 SMAP3 SMAP4 SMAP5

Panel B: real-world sensor data

AE h = 2 0.88 0.89 0.88 0.88 0.88

AE h = 10 0.89 0.89 0.88 0.88 0.88

COD 0.90 0.91 0.90 0.90 0.90

MCOD 0.89 0.87 0.89 0.88 0.89

STORM2 0.87 0.88 0.86 0.86 0.86

The size of the sliding window for COD, MCOD and STORM2 was W = 1000. For comparison, the results
of our proposed method (AE, hidden neurons h ∈ {2, 10}) are reported from Table 1. The cells denote the
resulting average values of AUROC after ten repetitions. The best individual results per dataset type are bolded

MCOD and STORM2 is very high, because the sliding win-
dow contains 10,000 elements.With the challenging datasets
(GAUSS1,GAUSS2), our proposed method slightly outper-
formed MCOD and STORM2, while they have 10,000 times
more of information available. Our proposed method detects
outliers effectively in different types of data. Similar results
are visible in Table 2.

For real-world data, our proposed method outperformed
the compared methods. Additionally, the complex computa-
tionMCOD and STORM2 impose restrictions on the latency
of the results in outlier detection. The results using the real-
world sensor data, and the interpretation of the results, are
similar with the results in Table 2.

In the experiments in Table 2, the sliding window size
was 1000 for COD, MCOD and STORM2. In the experi-
ments in Table 3, the sliding window size was 10,000 for
MCODandSTORM2.Thebaseline algorithms stored at least
10,000 data points, which were updated and analyzed every
time when a new data point arrived. The analysis using the
baseline algorithms (COD, MCOD and STORM2) is a com-
putationally demanding process. The long processing time
should be justified by a high accuracy for outlier detection.
However, the experiment results show that the baseline algo-

rithms provide comparable or slightly better results than of
our proposedmethod.Our proposedmethod for outlier detec-
tion provides accurate results consistently using a range of
parameter values. Therefore, for analyzing streams of sensor
data, our proposed method is capable of providing accurate
results with a computationally lightweight model. Our pro-
posed method, unlike MCOD, COD and STORM2, (1) does
not store data points and (2) is fast to evaluate, becausenearest
neighbor queries are not used. Nearest neighbor queries are
computationally demanding operations, and approximated
solutions are sometimes preferred (see [5,42]).

The previous experiments (Tables 1, 2, 3) show that our
proposed method (Algorithm 2) detects outliers efficiently.
The experiments also showed that the optimal window size
for the baseline algorithms (STORM2, COD and MCOD),
when performance metrics are considered, is dataset depen-
dent. The two different window sizes used (1000 and 10,000)
give a general overview on how the window size may affect
performance in the baseline algorithms compared to our
work.When both window sizes are considered, our proposed
method provided significantly better results for real-world
sensor data and synthetic sensor data with a low number
of dimensions. For outlier prediction, an accurate detection
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Table 3 Evaluation results of
outlier detection for MCOD and
STORM2 using synthetic sensor
datasets (GAUSS1–GAUSS4)
and real-world sensor data
(SMAP1–SMAP5)

GAUSS1 GAUSS2

d = 2 d = 3 d = 4 d = 5 d = 2 d = 3 d = 4 d = 5

Panel A: synthetic datasets

AE h = 2 0.61 0.61 0.65 0.62 0.74 0.69 0.76 0.72

AE h = 10 0.62 0.67 0.73 0.72 0.72 0.71 0.81 0.81

MCOD 0.61 0.66 0.73 0.72 0.69 0.72 0.81 0.84

STORM2 0.60 0.64 0.69 0.68 0.73 0.71 0.79 0.81

GAUSS3 GAUSS4

d = 2 d = 3 d = 4 d = 5 d = 2 d = 3 d = 4 d = 5

AE h = 2 0.77 0.78 0.85 0.88 0.82 0.91 0.94 0.95

AE h = 10 0.72 0.78 0.85 0.91 0.79 0.87 0.92 0.95

MCOD 0.75 0.83 0.90 0.95 0.83 0.94 0.97 0.99

STORM2 0.77 0.81 0.89 0.94 0.84 0.93 0.96 0.98

SMAP1 SMAP2 SMAP3 SMAP4 SMAP5

Panel B: real-world sensor data

AE h = 2 0.88 0.89 0.88 0.88 0.88

AE h = 10 0.89 0.89 0.88 0.88 0.88

MCOD 0.76 0.72 0.77 0.70 0.76

STORM2 0.88 0.83 0.88 0.81 0.86

The size of the sliding window forMCOD and STORM2wasW =10,000. The results of COD are not reported
forW =10,000, because of a very long computation time. For comparison, the results of our proposed method
(AE, hidden neurons h ∈ {2, 10}) are reported from Table 1. The cells denote the resulting average values of
AUROC after ten repetitions. The best individual results per dataset type are bolded

of outliers is important, because the prediction is trained
using the outlier detection. It is essential to train the outlier
prediction to predict outliers and not inliers. The following
subsection evaluates the integration of outlier detection and
prediction.

5.5 Outlier prediction

This section evaluates the outlier prediction using the real-
world sensor data, which was acquired using sMAP and used
in the evaluation of the outlier detection.

The literature does not have an unsupervised method for
predicting the occurrence of outliers in streams. The pro-
posed methods in Torgo and Ribeiro [80], King and Zeng
[46], Vilalta and Ma [83], Weiss and Hirsh [87], Fong et al.
[35] use separate training data or are used to analyze offline
datasets, and are not applicable for analyzing streams of data
in an online setting. Our proposed method for outlier pre-
diction does not use separately annotated training data and
provides analysis results with a low latency. A distinctive
difference to the existing work is that our proposed method
is a black box model, which analyzes a stream of sensor data
without having knowledge of the analyzed data in advance.
The literature does not have existing work available as a

comparable baseline in the scope of our work, which is the
unsupervised outlier prediction in streams of sensor data.

The experiment environment, as in the outlier detection,
simulates a stream by continuously emitting rows from the
extracted dataset. The outlier detection and prediction are
continuously applied to the emitted data points. As in the
evaluation of the outlier detection, the emitted data points
are selected in the original order within the dataset. This
preserves the dependence between two successive data points
and therefore keeps time as an underlying element in the
outlier prediction.

The experiments test the combinations of the following
parameter values:

– The pattern size (PS) of the training examples for training
LR: 1–10

– The number of time steps in the future (t) of the predic-
tion: 1–10 time steps

– The number of the hidden neurons in the autoencoder for
the outlier detection: 1–10

A specific combination of the parameter values is called
a configuration. There is a total of 1000 different configu-
rations, which evaluate the quality of the outlier prediction.
Notice that the data have four features (d = 4): the apparent
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power, the apparent power factor, the current and the reactive
power. It is not reasonable to evaluate the autoencoder with
the number of hidden neurons being significantly greater than
the number of data features. The autoencoder would overfit
the training examples. The number of tested configurations
grows quickly, which requires a compromise between com-
putation time and the test coverage. Adding a new parameter
value to the current test coverage results in 100 new configu-
rations. Therefore a subset of the configurations is evaluated
exhaustively.

As with the evaluation of the outlier detection, we use ten
repetitions to form sampling distributions of the precision,
recall and F1 score. The ten repetitions compute a total of
10,000 values of recall, precision and F1 score. Algorithm 6
describes the method for evaluating the outlier prediction of
a single configuration.

Algorithm 6 The evaluation algorithm for the outlier detec-
tion and prediction in streams.
1: Read a dataset and set a temporal variable k1 = 10, which is the

number of repetitions for forming the sampling distribution of the
PRE, REC and F1

2: while k1 > 0 do
3: Use Algorithm 2 to detect the outliers in the dataset
4: while The dataset has unread rows do
5: Read a row from the dataset
6: Emit the row for the outlier detection and prediction (Algo-

rithm 4)
7: end while
8: Calculate the resulting PRE,RECand F1 for the outlier prediction
9: k1 = k1 − 1
10: end while
11: Form the sampling distribution of the PRE, REC and F1 for the

outlier prediction

Table 4 lists the ten configurations with the highest F1
scores. The best configuration obtained a precision of 0.8190
and a recall of 0.5062 on average with the standard devi-
ation being close to zero. The configuration was able to
predict 50.62% of all outliers and the predictions were cor-
rect 81.90% of the time. The results are good, because over
half of the present outliers are predicted correctly with a high
confidence.

The best result in Weiss and Hirsh [87] for predicting out-
liers (t = 1) has a precision of 0.9000, a recall of 0.0044 and
F1 score of 0.0088. The proposedmethod inWeiss and Hirsh
[87] is not designed for streams and uses a separate dataset
for training the model. Therefore, the results of the model in
Weiss and Hirsh [87] are not directly comparable, because
the model uses separate training data. However, no previ-
ous results in outlier prediction in our scope are available.
The results in Weiss and Hirsh [87] are compared to provide
a rough indication of the significance of the results of our
proposed method for outlier prediction. In our evaluation,
a total of 100 configurations out of the 1000 configurations

Table 4 Mean and standard deviation of the sampling distributions of
the precision and the recall for the outlier prediction

F1 score PRE REC PS t h

0.625 ± 0.025 0.819 ± 0.017 0.506 ± 0.031 5 1 4

0.624 ± 0.015 0.792 ± 0.009 0.515 ± 0.017 7 1 4

0.622 ± 0.033 0.791 ± 0.011 0.514 ± 0.046 4 1 9

0.620 ± 0.040 0.754 ± 0.018 0.528 ± 0.051 7 1 9

0.619 ± 0.024 0.849 ± 0.019 0.488 ± 0.029 3 2 4

0.619 ± 0.021 0.780 ± 0.019 0.513 ± 0.022 7 1 5

0.619 ± 0.022 0.815 ± 0.016 0.499 ± 0.027 4 1 6

0.618 ± 0.033 0.809 ± 0.015 0.502 ± 0.042 4 1 7

0.618 ± 0.021 0.844 ± 0.026 0.488 ± 0.025 3 2 5

0.618 ± 0.029 0.821 ± 0.019 0.495 ± 0.032 4 1 5

The top ten configurations of the 1000 configurations are listed. Notice
that the top configurations predict one time step in the future (t = 1)

predicted the outliers in the immediate future (t = 1, as in
Weiss and Hirsh [87]). The maximum F1 score of the 100
configurations for our proposed method was 0.6251 and the
minimum was 0.2490. Each of the 100 configurations had a
considerably higher F1 score than the best result of 0.0088
in Weiss and Hirsh [87]. The remaining 900 configurations
predicted further in the future (t > 1) and are not compared
with the work in Weiss and Hirsh [87].

Appendix A provides the outlier prediction results using
support vector machine. The evaluation experiment using
support vector machine was identical with the evaluation
experiment using LR. The results for outlier prediction using
LR (Table 4) are better than the results of outlier predic-
tion using support vector machine (Appendix A). LR also
provides classification probabilities, which can be used as a
confidence of the predictions. Support vector machine does
not provide the classification probabilities without an explicit
conversion [58].

Appendix B provides the outlier prediction results using
perceptron. The evaluation experiment using perceptron was
identical with the evaluation experiments using LR and sup-
port vector machine. The results for outlier prediction using
LR (Table 4) and support vector machine (Appendix A) are
better than the results of outlier prediction using perceptron
(Appendix B). As with support vector machine, perceptron
does not provide classification probabilities.

Figure 4 plots all the values of the precision and the recall,
which were obtained in all the 1000 configurations. Many
false positives were predicted if the time step was between
five and ten. The explanation is that the data itself do not con-
tain the information for predicting the outliers fromfive to ten
time steps in the future. The data may also contain periodic
patterns, which are not detected in the local neighborhood
of the current location in the stream. The periodic patterns
include sinusoidal curves with varying frequencies, which

123



310 International Journal of Data Science and Analytics (2020) 9:285–314

Fig. 4 All the resulted values of the precision and the recall, which
were acquired in all the 1000 experiments

could be detected using Fourier transform. These patterns
could offer additional information for the outlier prediction.
Feature engineering should be applied in the future work
for determining a set of variables, which would offer more
information for the outlier detection and prediction. As an
example, the concept of time (day, hour, etc.). could be incor-
porated in the time series measurements.

The configurations with the best results prefer to classify
the outliers correctly byminimizing the number of false posi-
tives, which increases the precision and lowers the recall. The
trade-off between the recall and precision can be adjusted by
changing the number of standard deviations in the definition
of an outlier in the line 19 of Algorithm 2. A small (high)
number of standard deviations results in high (low) recall and
low (high) precision.

5.6 Scalability test

We examine the scalability of our proposed method w.r.t.
the data size and the dimensionality similarly to Pang et al.
[60], Xu et al. [89], Jian et al. [44]. The tests are executed on
the GAUSS1 dataset, which is the most challenging dataset
presented in this paper. First, we draw six datasets from the
mixture of two multivariate Gaussian distribution with five
dimensions to examine the scalability w.r.t. the data size. The
smallest dataset consists of 6250 data points. Each succes-
sive dataset increases the data size by the factor of two until
the largest dataset that consists of 200,000 data points. Then,
we draw five more datasets from the mixture of multivariate
Gaussian distribution to examine the scalabilityw.r.t. the data
dimensionality. Each of these datasets consists of 6250 data
points, while the number of dimensions is varied. The dataset
with the lowest dimensionality consists of 250 dimensions.
The dimensionality is increased in each successive dataset
by the factor of two until the dataset with the largest dimen-
sionality (with 4000 dimensions) is acquired.

Fig. 5 Scalability test results

The results of the scalability test are illustrated in Fig. 5.
The execution time of our proposedmethod is linear w.r.t. the
data size. The execution time is linear for COD, too, and for
MCODand STORM2with the larger datasets withmore than
25000 data points (which is more than twice the window size
W =10,000 for both MCOD and STORM2). The execution
times for all the methods (AE, COD, MCOD and STORM2)
are quadratic w.r.t. the data dimensionality. Our proposed
method has the fastest execution time out of all the tested
methods w.r.t. both the data size and the dimensionality. The
following section concludes this article by recapitulating our
study and discussing about the possibilities of future work.

6 Conclusion

The prediction of the occurrence of outliers is a challenging
task, because the outliers are rare by definition. The task is
even more challenging with streams in which the data has
to be processed immediately without having the option to
store the data. We have proposed a novel approach for (1)
detecting outliers in streams of sensor data and (2) predict-
ing the occurrence of the outliers in streams of sensor data. In
the context of analyzing streams of sensor data, the proposed
methods (1) provide accurate results, (2) use a low amount of
memory and (3) are fast to compute. The outlier detection is
implemented by an autoencoder and the outlier prediction is
implemented by LR. SGD is used to continuously and imme-
diately train the models whenever data are available from the
stream. The autoencoder learns a hidden representation of
the data, which is utilized by LR for outlier prediction.

The novelmethods for outlier detection and outlier predic-
tion in streams of sensor data were evaluated using synthetic
sensor data and real-world sensor data (electric readings).
The experiments show that the outlier detection and predic-
tion acquire good values of precision, recall and AUROC.
For outlier detection, our proposed method outperforms the
following algorithms found in the literature: STORM2, COD
and MCOD. Our proposed method provides higher or com-
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parable accuracy and has a significantly lower computation
time.

Most of the previous work, which uses autoencoders to
detect outliers [23,53,55,67], analyze static datasets and are
not usable for streamsof sensor data. Sequential outlier detec-
tion is proposed inLuet al. [53], but static outlier-free training
data is required, which makes their method unsuitable for
streams of sensor data. Dong and Japkowicz [29] detect out-
liers using an ensemble of autoencoders from streaming data.
Their detection threshold is empirically set during training
time. However, the reconstruction cost distribution of nor-
mal data may change as time passes. We provide an adaptive
mechanism for classifying outliers into inliers, by allowing
the reconstruction cost distribution of inliers to change as
time passes. We also provide a calibration algorithm for our
proposedmethod for outlier detection in streams and an anal-
ysis of the properties of our proposed method for outlier
detection.

The experiments also show that our proposed method for
outlier prediction is capable of predicting the occurrence
of outliers. However, an exact baseline is not available for
our proposed method of outlier prediction in the literature,
because our scope is in the unsupervised prediction of out-
liers in a black box approach. This scope has not been studied
in the literature. However, for outlier prediction, LR pro-
vides better results (Table 4) than support vector machine
(Appendix A) and perceptron (Appendix B). The topics of
the future research and implementation work include:

– The experiments of using of stacked autoencoders [84] in
the outlier detection, which are autoencoders with mul-
tiple layers of hidden neurons.

– The experiments of using denoising autoencoders [84] in
the outlier detection, which are autoencoders that corrupt
the input data for learning abstract and robust features.

– The evaluation of various (including nonlinear) classi-
fiers for outlier prediction in an online setting.

– Apply the continuous outlier detection and prediction in
a variety of application domains.

– Study the effects of using an adaptive learning rate (α)
for SGD and an adaptive value of γ in Eqs. 17–18.

Acknowledgements Open access funding provided by Technical Res-
earch Centre of Finland (VTT). The authors wish to express their
gratitude to Timo Lintonen from VTT, Technical Research Centre of
Finland, for his assistance in Chapter 5.6 (Scalability test).

Compliance with ethical standards

Conflict of interest The author declares that there is no conflict of inter-
est.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix

A Outlier prediction results using support
vector machine

See Table 5.

Table 5 Mean and standard deviation of the sampling distributions of
the precision and the recall for the outlier prediction using support vector
machine

F1 score PRE REC PS t h

0.618 ± 0.024 0.755 ± 0.023 0.523 ± 0.029 4 1 6

0.612 ± 0.018 0.770 ± 0.023 0.508 ± 0.017 4 1 4

0.611 ± 0.030 0.750 ± 0.015 0.516 ± 0.036 4 1 5

0.610 ± 0.045 0.733 ± 0.038 0.524 ± 0.052 4 1 10

0.609 ± 0.032 0.732 ± 0.024 0.522 ± 0.038 5 1 5

0.608 ± 0.017 0.783 ± 0.023 0.496 ± 0.014 4 1 3

0.605 ± 0.021 0.725 ± 0.021 0.519 ± 0.025 5 1 7

0.604 ± 0.010 0.780 ± 0.013 0.492 ± 0.008 4 1 2

0.603 ± 0.018 0.779 ± 0.027 0.492 ± 0.019 3 2 4

0.601 ± 0.023 0.735 ± 0.026 0.509 ± 0.032 5 1 6

The top ten configurations of the 1000 configurations are listed

B Outlier prediction results using Perceptron

See Table 6.

Table 6 Mean and standard deviation of the sampling distributions of
the precision and the recall for the outlier prediction using Perceptron

F1 score PRE REC PS t h

0.595 ± 0.017 0.649 ± 0.016 0.549 ± 0.024 4 1 4

0.594 ± 0.038 0.642 ± 0.033 0.553 ± 0.043 4 1 6

0.587 ± 0.046 0.612 ± 0.047 0.565 ± 0.051 4 1 9

0.582 ± 0.030 0.636 ± 0.034 0.537 ± 0.031 4 1 5

0.578 ± 0.025 0.623 ± 0.034 0.538 ± 0.023 4 1 7

0.576 ± 0.040 0.619 ± 0.030 0.540 ± 0.054 5 1 8

0.571 ± 0.024 0.619 ± 0.018 0.531 ± 0.032 5 1 5

0.569 ± 0.033 0.605 ± 0.030 0.539 ± 0.045 5 1 9

0.569 ± 0.028 0.614 ± 0.037 0.531 ± 0.024 4 1 8

0.566 ± 0.017 0.607 ± 0.013 0.531 ± 0.022 7 1 4

The top ten configurations of the 1000 configurations are listed. Notice
that the top configurations predict one time step in the future (t = 1)
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