Skip to main content
Log in

Bioinspired travelling wave generation in soft-robotics using ionic polymer-metal composites

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Biology inspired inventions have been of great interest to the researcher and engineer. Biomimicry offers special insight into nature’s methods of motion control, with significance in thrust and drag control for swimming and flying lifeforms. An array of actuators designed in an artificial wing could be used to control aerodynamic effects to adjust drag or lift according to given wind conditions for improved flight, or to control stability prior to touchdown for a smooth landing, providing an additional means of aerodynamic stability control. In this study, a method of generating a travelling wave motion in attempt to mimic that observed in the wings of flying-fish (Exocoetidae) during descent are presented. Ionic polymer-metal composite actuators were arranged in an array and oscillated in a travelling wave motion. The arrays were held rigid between glass slides and embedded into a flexible substrate to create the soft “wing” surface for free-end displacement measurements. Using a microcontroller and motor drivers, a controllable travelling wave motion was created. Additionally, an array of actuators was connected to a 3D printed wing skeleton based on the dimensions of a four-wing flying-fish like structure. The results indicate the travelling wave motion can be controlled with ionic polymer-metal composite actuators as arranged in several configurations. This offers an experimental platform for further study of the aerodynamic effects of a travelling wave across a wing during flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akle, B., Najem, J., Leo, D., Blottman, J.: Design and development of bio-inspired underwater jellyfish like robot using ionic polymer metal composite (IPMC) actuators. In: Bar-Cohen, Y., Carpi, F. (eds.) Electroactive polymer actuators and devices. p. 797624 (2011)

  • Attenborough, R.: BBC life: flying fish, BBC TV Series [video], (2009)

  • Aureli, M., Kopman, V., Porfiri, M.: Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatronics. 15, 603–614 (2010)

    Article  Google Scholar 

  • Aureli, M., Basaran, M.E., Porfiri, M.: Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids. J. Sound Vib. 331, 1624–1654 (2012)

    Article  Google Scholar 

  • Bandyopadhyay, P.R.: Flying fish sculls to taxi and perturbs wing lift with travelling waves to land. In: Proceedings of the ASME 2016 fluids engineering division summer meeting. pp. 1–12 (2016)

  • Bar-Cohen, Y.: Biomimetics—using nature to inspire human innovation. Bioinspir. Biomim. 1, P1–P12 (2006)

    Article  Google Scholar 

  • Batchelor, G.K.: An introduction to fluid dynamics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  • Bhushan, B.: Biomimetics: lessons from nature-an overview. Philos. Trans. R. Soc. A. 367, 1445–1486 (2009)

    Article  Google Scholar 

  • Breder, C.M.: On the structural specilization of flying fishes from the standpoint of aerodynamics published. Am. Soc. Ichthyol. Herpetol. 1930, 114–121 (1930)

    Google Scholar 

  • Brunetto, P., Fortuna, L., Graziani, S., Strazzeri, S.: A model of ionic polymer-metal composite actuators in underwater operations. Smart Mater. Struct. 17(2), 025029 (2008)

    Article  Google Scholar 

  • Cellini, F., Pounds, J., Peterson, S.D., Porfiri, M.: Underwater energy harvesting from a turbine hosting ionic polymer metal composites. Smart Mater. Struct. 23, 85023 (2014a)

    Article  Google Scholar 

  • Cellini, F., Intartaglia, C., Soria, L., Porfiri, M.: Effect of hydrodynamic interaction on energy harvesting in arrays of ionic polymer metal composites vibrating in a viscous fluid. Smart Mater. Struct. 23, 45015 (2014b)

    Article  Google Scholar 

  • Cha, Y., Porfiri, M.: Mechanics and electrochemistry of ionic polymer metal composites. J. Mech. Phys. Solids 71, 156–178 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, W., Cha, Y., Peterson, S.D., Porfiri, M.: Flow measurement and thrust estimation of a vibrating ionic polymer metal composite. Smart Mater. Struct. 24(9), 095018 (2015)

    Article  Google Scholar 

  • Chen, Z., Tan, X.: Monolithic fabrication of ionic polymer-metal composite actuators capable of complex deformation. Sens. Actuators A 157, 246–257 (2010)

    Article  Google Scholar 

  • Chen, Z., Shatara, S., Tan, X.: Modeling of biomimetic robotic fish propelled by an ionic polymermetal composite caudal fin. IEEE/ASME Trans. Mechatronics. 15, 448–459 (2010)

    Article  Google Scholar 

  • Chen, Z., Um, T.I., Bart-Smith, H.: Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles. Int. J. Smart Nano Mater. 3, 296–308 (2012)

    Article  Google Scholar 

  • Chu, W.S., Lee, K.T., Song, S.H., Han, M.W., Lee, J.Y., Kim, H.S., Kim, M.S., Park, Y.J., Cho, K.J., Ahn, S.H.: Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Man. 13(7), 1281–1292 (2012)

    Article  Google Scholar 

  • Davenport, J.: How and why do flying fish fly? Rev. Fish Biol. Fish. 4, 184–214 (1994)

    Article  Google Scholar 

  • De Gennes, P.G., Okumura, K., Shahinpoor, M., Kim, K.J.: Mechanoelectric effects in ionic gels. Europhys. Lett. 50(4), 513 (2000)

    Article  Google Scholar 

  • Facci, A.L., Porfiri, M.: Analysis of three-dimensional effects in oscillating cantilevers immersed in viscous fluids. J. Fluid Struct. 38, 205–222 (2013)

    Article  Google Scholar 

  • Fish, F.E.: Wing design and scaling of flying with regard to flight performance. J. Zool. 221, 391–403 (1990)

    Article  Google Scholar 

  • Guo, S., Shi, L., Ye, X., Li, L.: A new jellyfish type of underwater microrobot. Proc. 2007 IEEE Int. Conf. Mechatronics Autom. ICMA 2007. 509–514 (2007)

  • Guo, S., Fukuda, T., Asaka, K.: A new type of fish-like underwater microrobot. IEEE/ASME Trans. Mechatron. 8(1), 136–141 (2003)

    Article  Google Scholar 

  • Hedrick, T.L.: Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir. Biomim. 3, 034001 (2008)

    Article  Google Scholar 

  • Jafferis, N.T., Stone, H.A., Sturm, J.C.: Traveling wave-induced aerodynamic propulsive forces using piezoelectrically deformed substrates. Appl. Phys. Lett. 99, 114102 (2011)

    Article  Google Scholar 

  • Kim, K.J., Shahinpoor, M.: Ionic polymer metal composites: II. Manufacturing techniques. Smart Mater. Struct. 12, 65–79 (2003)

    Article  Google Scholar 

  • Kim, K.J., Pugal, D., Leang, K.K.: A twistable ionic polymer-metal composite artificial muscle for marine applications. Mar. Technol. Soc. J. 45(4), 83–98 (2011)

    Article  Google Scholar 

  • Li, J.Y., Nemat-Nasser, S.: Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane. Mech. Mater. 32(5), 303–314 (2000)

    Article  Google Scholar 

  • Mojarrad, M., Shahinpoor, M.: Noiseless propulsion for swimming robotic structures using polyelectrolyte ion-exchange membrane. Proceedings SPIE 2716, smart structures and materials 1996: Smart Materials Technologies and Biomimetics. 183 (1996)

  • Najem, J., Sarles, S.A., Akle, B., Leo, D.J.: Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Mater. Struct. 21, 1–12 (2012)

    Article  Google Scholar 

  • Nemat-Nasser, S., Li, J.Y.: Electromechanical response of ionic polymer-metal composites. J. Appl. Phys. 87(7), 3321–3331 (2000)

    Article  Google Scholar 

  • Palmre, V., Hubbard, J.J., Fleming, M., Pugal, D., Kim, S., Kim, K.J., Leang, K.K.: An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater. Struct. 22, 14003 (2013)

    Article  Google Scholar 

  • Park, H., Choi, H.: Aerodynamic characteristics of flying fish in gliding flight. J. Exp. Biol. 213, 3269–3279 (2010)

    Article  Google Scholar 

  • Park, I.S., Kim, S.M., Kim, K.J.: Mechanical and thermal behavior of ionic polymer-metal composites: effects of electroded metals. Smart Mater. Struct. 16(4), 1090 (2007)

    Article  Google Scholar 

  • Pugal, D., Stalbaum, T., Palmre, V., Kim, K.J.: Chapter 5 Modeling ionic polymer metal composites with COMSOL: step-by-step guide. In: Ionic polymer metal composites (IPMCs): smart multi-functional materials and artificial muscles, vol. 1, 185–213 (2015)

  • Pugal, D., Kim, K.J., Aabloo, A.: An explicit physics-based model of ionic polymer-metal composite actuators. J. Appl. Phys. 110, 84904 (2011)

    Article  Google Scholar 

  • Shahinpoor, M., Kim, K.J.: Ionic polymer metal composites: I. Fundamtentals. Smart Mater. Struct. 819, 819–833 (2001)

    Article  Google Scholar 

  • Shahinpoor, M., Kim, K.J.: Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13, 1362–1388 (2004)

    Article  Google Scholar 

  • Shahinpoor, M., Kim, K.J.: Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Mater. Struct. 14, 197–214 (2005)

    Article  Google Scholar 

  • Shen, Q., Wang, T., Liang, J., Wen, L.: Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer–metal composite. Smart Mater. Struct. 22(7), 075035 (2013)

    Article  Google Scholar 

  • Shoulejkin, W.: Airdynamics of the flying fish. Int. Rev. Gesamten Hydrobiol. Hydrogr. 22, 102–110 (1929)

    Article  Google Scholar 

  • Ul Haq, M., Gang, Z., Ahad, F.E., Hussain, M., Aftab, S.: Dynamic analysis of IPMC actuated fin of a micro fish like device. J. Biomim Biomater. Biomed. Eng. 24, 82–96 (2015)

    Article  Google Scholar 

  • Wallmersperger, T., Leo, D.J., Kothera, C.S.: Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J. Appl. Phys. 101, 024912 (2007)

    Article  Google Scholar 

  • Wallmersperger, T., Akle, B.J., Leo, D.J., Kröplin, B.: Electrochemical response in ionic polymer transducers: an experimental and theoretical study. Compos. Sci. Technol. 68(5), 1173–1180 (2008)

    Article  Google Scholar 

  • Yeom, S.-W., Oh, I.-K.: A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 18, 85002 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research (N00014-16-1-2356). Also, special thanks go to Dr. Promode R. Bandyopadhyay of US Navy NUWC NWPT for providing us with useful information about flying-fish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang J. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stalbaum, T., Hwang, T., Trabia, S. et al. Bioinspired travelling wave generation in soft-robotics using ionic polymer-metal composites. Int J Intell Robot Appl 1, 167–179 (2017). https://doi.org/10.1007/s41315-017-0015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-017-0015-9

Keywords

Navigation