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Abstract
Since the development of capsule endoscopy technology, medical device companies and research groups have made signifi-
cant progress to turn passive capsule endoscopes into robotic active capsule endoscopes. However, the use of robotic capsules 
in endoscopy still has some challenges. One such challenge is the precise localization of the actively controlled robot in 
real-time. In this paper, we propose a non-rigid map fusion based direct simultaneous localization and mapping method for 
endoscopic capsule robots. The proposed method achieves high accuracy for extensive evaluations of pose estimation and 
map reconstruction performed on a non-rigid, realistic surgical EsophagoGastroDuodenoscopy Simulator and outperforms 
state-of-the art methods.
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1  Introduction

In the past decade, advances in microsensors and microelec-
tronics have enabled small, low cost devices in a variety of 
high impact applications. Following these advances, unteth-
ered pill-size, swallowable capsule endoscopes with an on-
board camera and wireless image transmission device have 
been developed and used in hospitals for screening the gas-
trointestinal (GI) tract and diagnosing diseases such as the 
inflammatory bowel disease, the ulcerative colitis, and the 

colorectal cancer. Unlike standard endoscopy, endoscopic 
capsule robots are non-invasive, painless, and more appro-
priate to be employed for long-duration screening purposes. 
Moreover, they can access difficult body parts that were not 
possible to reach before with standard endoscopy (e.g., 
small intestines). Such advantages make pill-size capsule 
endoscopes a significant alternative screening method over 
standard endoscopy (Liao et al. 2010; Nakamura et al. 2008; 
Pan and Wang 2012; Than et al. 2012). However, current 
capsule endoscopes used in hospitals are passive devices 
controlled by peristaltic motions of the inner organs. The 
control over capsule’s position, orientation, and functions 
would give the doctor a more precise reachability of targeted 
body parts and more intuitive and correct diagnosis opportu-
nity. Several groups have recently proposed active, remotely 
controllable robotic capsule endoscope prototypes equipped 
with additional functionalities, such as local drug delivery, 
biopsy, and other medical functions (Sitti et al. 2015; Yim 
et al. 2013; Carpi et al. 2011; Keller et al. 2012; Mahoney 
et al. 2013; Yim et al. 2014). An active motion control is, on 
the other hand, heavily dependent on a precise and reliable 
real-time pose estimation capability, which makes the robot 
localization and mapping the key capability for a successful 
endoscopic capsule robot operation. Localization methods 
such as (Fluckiger and Nelson 2007; Rubin et al. 2006; Kim 
et al. 2008; Son et al. 2016) have the common drawback that 
they require extra sensors and hardware to be integrated to 

 *	 Mehmet Turan 
	 mturan@student.ethz.ch

	 Yasin Almalioglu 
	 yasin.almalioglu@boun.edu.tr

	 Helder Araujo 
	 helder@isr.uc.pt

	 Ender Konukoglu 
	 ender.konukoglu@vision.ee.ethz.ch

	 Metin Sitti 
	 sitti@is.mpg.de

1	 Max Planck Institute for Intelligent Systems, Stuttgart, 
Germany

2	 Computer Vision Laboratory, ETH Zurich, Zurich, 
Switzerland

3	 Robotics Laboratory, University of Coimbra, Coimbra, 
Portugal

http://orcid.org/0000-0002-0913-2531
http://crossmark.crossref.org/dialog/?doi=10.1007/s41315-017-0036-4&domain=pdf


400	 M. Turan et al.

1 3

the robotic capsule system. Such extra sensors have their 
own drawbacks and limitations if it comes to their applica-
tion in small-scale medical devices, e.g. space limitations, 
cost aspects, design incompatibilities, biocompatibility 
issues, and most importantly the interference of the sensors 
with the activation system of the capsule robot.

As a solution of these issues, vision-based localization 
and mapping methods (vSLAM) have attracted the atten-
tion for small-scale medical devices. With their low cost 
and small size, cameras are frequently used in localization 
applications where weight and power consumption are limit-
ing factors, such as in the case of small-scale robots. How-
ever, many challenges posed by the GI tract and low quality 
cameras of the endoscopic capsule robots cause further dif-
ficulties in front of a vSLAM technique to be applied in a 
medical operation. Self-repetitiveness of the GI tract texture, 
non-rigid organ deformations, heavy reflections caused by 
the organ fluids, and lack of distinctive feature points on the 
GI tract tissue are further challenges in front of a reliable 
robotic operation. Moreover, the low frame rate and limited 
resolution of the current capsule camera systems also restrict 
the applicability of computer vision methods inside the GI 
tract. Especially feature tracking based visual localization 
methods have poor performance in the abdomen region com-
pared to outdoor or indoor large scale environments where 
unique features can be found easier.

Figure 1 gives an overview of a modern vSLAM approach 
with its key components. A modern vSLAM method is 
expected to be equipped with reliable pose estimation and 
map reconstruction modules that is not affected by non-
rigid deformations, sudden frame-to-frame movements, 
blur, noise, illumination changes, occlusions and large 
depth variations. Moreover, dynamic structure of the GI 
tract organs with heavy peristaltic motions require more 
than a static map; reconstructed parts of the map must be 
updated continuously as the organ structure changes during 
endoscopic operation. Besides, a failure recovery procedure 
relocalizing the robot after unexpected drifts is a further 
demand on a modern vSLAM system. The intra-operative 
3D reconstruction of the explored inner organ simultane-
ous to tracking capsule robot position in real-time provides 
key information for the next generation actively controllable 
endoscopic robots which will be equipped with function-
alities such as disease detection, local drug delivery and 
biopsy. Feature- based SLAM methods have been applied 
on endoscopic type of videos in the past decades (Mountney 
and Yang 2009; Casado et al. 2014; Stoyanov et al. 2010; 
Mountney and Yang 2010; Mountney et al. 2006; Qian et al. 
2013; Mahmoud et al. 2016). However, besides sparse unre-
alistic map reconstruction, all of these methods suffer from 
heavy drifts and inaccurate pose estimations once low tex-
ture areas are entered. With that motivation, we developed a 
direct medical vSLAM method which shows high accuracy 

in terms of map reconstruction and pose estimation inside 
GI tract.

2 � Method

In that section, we first summarize the contributions of our 
paper and give details of the proposed method.

2.1 � Contributions of the method

Inspired from large-scale RGB Depth SLAM approaches 
(Whelan et al. 2015; Newcombe et al. 2011), the proposed 
method is to the best of our knowledge the first fully dense, 
direct medical SLAM approach using GPU accelerated non-
rigid frame-to-model fusion, joint volumetric-photometric 
pose estimation and dense model-to-model loop closure 
techniques. Figure 2 depicts the system architecture dia-
gram and below the key steps of the proposed framework 
are summarized:

•	 Create depth image from RGB image based on shading;
•	 Divide visited organ parts into active and inactive areas. 

Only active areas are used for pose tracking and map 
fusion. Areas that do not appear in the scene for a certain 
period of time are assigned as inactive and not used in the 
estimation.

•	 For every new frame, search for its intersection with the 
active model and fuse them;

Fig. 1   Components of a modern vSLAM
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•	 In case there exists an intersection of the active model 
with inactive model within the current frame, fuse the 
intersecting parts using loop closure and reactivate cor-
responding inactive parts.

The contributions of the approach described in this paper 
include:

•	 A vSLAM approach able to deal with specularities typi-
cally occurring in images of inner organs tissues;

•	 A direct vSLAM method able to handle non-rigid struc-
tures, including performing their non-sparse 3D recon-
struction;

•	 A direct vSLAM approach jointly minimizing photomet-
ric-geometric constraints, including depth;

2.2 � Preprocessing and depth image creation

The framework starts with a preprocessing module that sup-
presses specularities caused by inner organ fluids. Reflection 
detection is done by combining the gradient map of the input 
image with the peak values detected by an adaptive thresh-
old. Once specularities detected, suppression is performed 
by inpainting. Next, GPU accelerated version of Tsai-Shah 
shading method is applied to create depth images. This 
method uses linear approximations to extract depth image 
from RGB input iteratively estimating slant, tilt and albedo 
values. For further details, the reader is referred to the origi-
nal paper (Ping-Sing and Shah 1994). Figure 3 demonstrates 
examples of input RGB images, images after reflection sup-
pression and depth images acquired by Tsai-Shah shading 
method.

Fig. 2   Overview of the pro-
posed medical SLAM method

Fig. 3   Reflection suppression 
and shading-based depth image 
creation
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2.3 � Joint photometric and geometric pose 
estimation from a splattered surfel prediction

The input for pose estimation is the RGB image  and the 
depth image  . We combine photometric and geometric 
pose estimation techniques. The camera pose of the endo-
scopic capsule robot is described by a transformation matrix 
�t:

Given the depth image  , the 3D back-projection of a point 
� is defined as �(�,) = K−1 ud(u), where K is the cam-
era intrinsics matrix and u is the homogeneous form of u. 
Geometric pose estimation is performed by minimizing the 
energy cost function Eicp between the current depth image 
l

t
 and the active depth model ̂a

t−1
:

where �k
t
 is the back-projection of the k-th vertex in l

t
 , �k 

and �k are the corresponding vertex and normal from the 
previous frame. Thus, � is the estimated transformation from 
the previous to current robot pose and exp (𝜉) is the exponen-
tial mapping function from Lie algebra ��3 to Lie group ��3 . 
Analogously, the photometric pose � between the current 
RGB image  l

t
 and active RGB model ̂a

t−1
 is estimated by 

minimizing photometric energy cost function:

The energy minimization function for joint photometric-
geometric pose estimation is defined by:

which is minimized using Gauss–Newton non-linear least-
squares optimization.

2.4 � Scene representation, deformation graph 
and loop closure

Due to strict real-time concerns of the approach, we use 
surfel-based scene reconstruction. Each surfel has a position, 
normal, color, weight, radius, initialization timestamp and 
last updated timestamp. We also define a deformation graph 
consisting of a set of nodes and edges to detect non-rigid 
deformations throughout the frame sequence. Each node n 
has a timestamp n

t0
 , a position n

g
∈ ℝ

3 and a set of neigh-

boring nodes  (n). The directed edges of the graph are 
neighbors of each node. A graph is connected up to a neigh-
bor count k such that ∀n, | (n)| = k . Each node also stores 

(1)�t =

[

�t �t
0 0 0 1

]

∈ ��3.

(2)Eicp =
∑

k

((�k − exp (𝜉)��t
k
) ⋅ �k)2

(3)Ergb =
∑

�∈�

(

I(�, l
t
) − I(𝜋(� exp(𝜉)��(�,l

t
)), ̂a

t−1
)
)2

(4)Etrack = Eicp + wrgbErgb,

an affine transformation in the form of a 3 × 3 matrix n
�

 and 
a 3 × 1 vector n

�
 . When deforming a surface, the n

�
 and n

�
 

parameters of each node are optimized according to surface 
constraints. In order to apply a deformation graph to the 
surface, each surfel s identifies a set of influencing nodes 
in the graph (s,) . The deformed position of a surfel is 
given by:

while the deformed normal of a surfel is given by:

where wn(s) is a scalar representing the influence of n on 
surfel s , summing to a total of 1 when n = k:

Here, dmax is the Euclidean distance to the k + 1-nearest node 
of Ms.

To ensure a globally consistent surface reconstruction, 
the framework closes loops with the existing map as those 
areas are revisited. This loop closure is performed by fus-
ing reactivated parts of the inactive model into the active 
model and simultaneously deactivating surfels which have 
not appeared for a period of time.

3 � Experiments and results

We evaluate the performance of our system both quanti-
tatively and qualitatively in terms of trajectory estimation, 
surface reconstruction and computational performance.

3.1 � Dataset and equipment

Figure 4 shows our experimental setup as a visual refer-
ence. We created our own endoscopic capsule robot dataset 
with ground truth. To make sure that our dataset is general 
and does not lead to overfitting, three different endoscopic 
cameras were used to capture the endoscopic videos. We 
mounted endoscopic cameras on our magnetically activated 
soft capsule endoscope (MASCE) systems as seen in Fig. 6. 
The videos were recorded from an oiled non-rigid, surgical 
stomach model Koken LM103—EDG (EsophagoGastroDu-
odenoscopy) Simulator. Some sample frames are shown in 
Fig. 5. To obtain 6-DoF localization ground truth, an Opti-
Track motion tracking system consisting of eight infrared 
cameras and a tracking software was utilized. A total of 15 
minutes of stomach videos was recorded containing over 
10,000 frames. Finally, we scanned the open surgical stom-
ach model using a 3D Artec Space Spider image scanner. 

(5)
̂s

�
= 𝜙(s) =

∑

n∈(s
,)

w
n(s)[n

�
(s

�
− n

�
) + n

�
+ n

�
]

(6)̂s
�
=

∑

n∈(s,)

wn(s)n−1T

�
s

�
,

(7)wn(s) = (1 − ||s
�
− n

�
||2∕dmax)

2.
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This scan served as the ground truth for the quantitative 
evaluations of the 3D map reconstruction module.

3.2 � Trajectory estimation

Table 1 demonstrates the results of the trajectory estimation 
for 7 different trajectories. The characteristics of the trajec-
tories are as follows:

•	 Trajectory 1 is an uncomplicated path with slow incre-
mental translations and rotations.

•	 Trajectory 2 follows a comprehensive scan of the stom-
ach with many local loop closures.

•	 Trajectory 3 contains an extensive scan of the stomach 
with more complicated local loop closures.

•	 Trajectory 4 consists of more challenging motions 
including faster rotational and translational movements.

•	 Trajectory 5 consists of very loopy and complex motions.
•	 Trajectory 6 is the same as trajectory 5 but included 

added synthetic noise to allow checking the robustness 
of the system against noise.

•	 Before capturing trajectory 7, we added more paraffin 
oil into the simulator tissue to have stronger reflections. 
Similarly to trajectory 6, trajectory 7 consists of very 
loopy and complex motions including very fast rotations, 
translations and drifting.

Qualitative tracking results of the proposed direct medical 
SLAM compared to ORB SLAM and to ground truth are 
shown in Fig. 7. It is clearly observable that direct medi-
cal SLAM stays close to the ground truth except for minor 
deviations in loopy sections, whereas ORB SLAM has major 

Fig. 4   Experimental setup

Fig. 5   Sample images from our 
dataset
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deviations in many sections of the trajectories. For the quan-
titative analysis, we measured the root-mean-square of the 
Euclidean distances between the estimated camera poses and 
the ground truth. As seen in Table 1, the system performs 
very robustly and tracking accurately in all of the trajecto-
ries, not being affected by sudden movements, blur, noise or 
strong spectral reflections. Figure 9a, b represent rotational 
and translational RMSE results for different pose estimation 
strategies including frame-to-model alignment, photometric 
alignment, frame-to-frame alignment and ORB SLAM as a 
state-of-the art method. Results indicate that frame-to-model 
alignment clearly outperforms frame-to-frame alignment, 
photometric alignment and ORB SLAM. Besides, joint 
volumetric-photometric alignment outperforms photomet-
ric alignment indicating the significance of depth informa-
tion for pose estimation. Figure 10a, b represent rotational 

and translational RMSE as a function of ICP weight in joint 
photometric-volumetric alignment (see Eq. 4). Both RMSEs 
decrease with higher ICP weights, reaching a minimum at 
� = 87% and � = 85% , respectively.

3.3 � Surface estimation

We scanned the non-rigid EGD (Esophagogastroduodenos-
copy) simulator to obtain the ground truth 3D data. Recon-
structed 3D surface and ground truth 3D data were aligned 
using iterative closest point algorithm (ICP). RMSE for the 
reconstructed surface was calculated using the absolute tra-
jectory (ATE) RMSE measuring the root-mean-square of 
the Euclidean distances between estimated depth values 
and the corresponding ground truth values. RMSE results 
in Table 2 show that even in very challenging trajectories 
with 4–7 sudden movements, strong noise and reflections, 
our system is capable of providing a reliable and accurate 
3D surface reconstruction. A sample 3D reconstruction pro-
cedure is shown in Fig. 8 for visual reference.

3.4 � Computational performance

To analyze the computational performance of the system, 
we observed the average frame processing time across tra-
jectories 1–4. The test platform was a desktop PC with an 
Intel Xeon E5-1660v3- CPU at 3.00, 8 cores, 32 GB of RAM 
and an NVIDIA Quadro K1200 GPU with 4 GB of memory. 
The execution time of the system depended on the number 
of surfels in the map, with an overall average of 48 ms per 
frame scaling to a peak average of 53 ms implying a worst 
case processing frequency of 18 Hz.

3.5 � Comparison with ORB SLAM

We compared the proposed method with ORB SLAM using 
our endoscopic capsule dataset. We chose ORB SLAM due 
to its state-of-the-art performance in various tasks, publicly 
available code and its recent use in endoscopic applications. 
We make the following observations after a detailed theo-
retical and practical evaluation of the differences between 
the proposed medical SLAM and ORB SLAM:

•	 ORB SLAM is based on feature matching while direct 
medical SLAM uses joint photometric- geometric pose 
estimation. In our evaluation, we observed that for endo-
scopic images, direct pose estimation is advantageous as 
compared to feature-based methods because specularity, 
noise and presence of fewer robustly identifiable features 
reduce the matching accuracy across frames.

Fig. 6   Photo of the endoscopic capsule robot prototype used in the 
experiments

Table 1   Trajectory lengths and RMSE results in meters for different 
endoscopic cameras

Trajectory 
ID

POTENSIC MISUMI AWAIBA LENGTH

1 0.015 0.019 0.020 0.414
2 0.018 0.020 0.023 0.513
3 0.017 0.021 0.025 0.432
4 0.032 0.037 0.042 0.478
5 0.035 0.039 0.045 0.462
6 0.038 0.043 0.048 0.481
7 0.041 0.044 0.049 0.468
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•	 Direct medical SLAM needs a good initialization for 
pose estimation to avoid local minima while ORB SLAM 
does not require initialization.

•	 Direct medical SLAM employs a frame-to-model align-
ment strategy, which is robust to unexpected severe drifts 
inside GI tract. ORB SLAM on the other hand, performs 
frame-to-frame alignment and may have difficulties 
recovering from such drifts.

•	 Direct medical SLAM is computationally heavy while 
ORB SLAM can run on standard CPU in real-time. 
However, modern GPUs can be used to accelerate direct 
medical SLAM to near real-time as well.

•	 Direct medical SLAM tolerates larger motions between 
successive frames, while ORB SLAM expects smaller 
motions. However, we observed that both methods fail 
for very large inter-frame motion that leads to small over-
lap between successive frames.

•	 ORB SLAM’s reconstruction is in the form of a sparse 
point cloud of the scanned inner organ, whereas direct 

medical SLAM creates a dense and high quality 3D map 
of the organ.

•	 Qualitative and quantitative comparisons depicted in 
Figs. 7, 9a, b indicate large deviations of ORB SLAM 
from ground truth, whereas our method is able to stay 
close to the ground truth even in loopy parts of the tra-
jectories.

4 � Conclusion

In this paper, we presented a direct and dense visual 
SLAM method for endoscopic capsule robots. Our system 
makes use of surfel-based dense data fusion in combina-
tion with frame-to-model tracking and non-rigid deforma-
tion. Experimental results suggest the effectiveness of the 
proposed system, both quantitatively and qualitatively, in 
occasionally looping endoscopic capsule robot trajectories 
and comprehensive inner organ scanning tasks. In future, 

Fig. 7   Sample trajectories estimated by the proposed method, ORB SLAM and ground truth
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Fig. 8   Frame-by-frame 3D reconstruction of the soft stomach simulator surface by the proposed medical SLAM method

Fig. 9   RMSE results for frame-to-model alignment (frame2model), photometric alignment (rgb-only) and frame-to-frame alignment (frame-
2frame)
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we aim to extend our work into stereo capsule endoscopy 
applications to achieve even more accurate localization and 
mapping.
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