Skip to main content

Advertisement

Log in

Hybrid FES–robotic gait rehabilitation technologies: a review on mechanical design, actuation, and control strategies

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Gait disorders in neurologically disabled people can be treated by various techniques available today which include passive orthoses, functional electrical stimulation (FES) and robot assisted gait training devices (RAGT). However, each system has its own drawback. For example, gait rehabilitation with orthosis is physically taxing for the patient with no significant functional improvement. FES uses muscle powers as physiological actuators to promote balance and improve gait but leads to fatigue, along with poor control of joint trajectories. RAGT devices including powered exoskeletons, gait rehabilitation systems employing programmable footplates and mobile training platforms, have shown significant advantages but the devices are not yet mature due to numerous drawbacks associated with physical and cognitive interaction, energy-management and portability issues. The combination of FES technology and RAGT devices, often named hybrid FES–robot technologies, has arisen as a promising approach to aid in gait restoration. This work reports a comprehensive review on the hybrid FES–robot technologies over the last decades, focusing on different mechanical structures, actuator designs, sensing technologies, and control approaches. The hybrid robotic structures are classified into two categories: (i) orthotic-based hybrid systems, where (a) FES is used to stimulate the muscles and produce joint torque while the robotic system acts as energy dissipating device, and (b) FES and robotic systems are both torque-generating devices; and (ii) non-orthotic based hybrid systems. The review compiles a variety of sources and illustrates the technology’s most important challenges in the fields of hybrid rehabilitation robotics which may contribute towards further development of hybrid robot systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Retrieved from (Goldfarb et al. 2003)

Fig. 2

Retrieved from (Sharma et al. 2014)

Fig. 3

Retrieved from (Chang et al. 2017)

Fig. 4

Retrieved from (Krishnamoorthy et al. 2008)

Fig. 5

Retrieved from (Kobetic et al. 2009)

Fig. 6

Retrieved from (Schmidt et al. 2007)

Fig. 7

Retrieved from (Vallery et al. 2005)

Fig. 8

Retrieved from (Obinata et al. 2007)

Fig. 9

Retrieved from (Metrailler et al. 2006)

Fig. 10

Retrieved from (Schuck et al. 2012) and (Querry et al. 2008)

Fig. 11

Retrieved from (Stauffer et al. 2009)

Fig. 12

Retrieved from (Poboroniuc et al. 2009)

Fig. 13

Retrieved from (Quintero et al. 2011)

Fig. 14

Retrieved from (To et al. 2011)

Fig. 15

Retrieved from (Kurokawa et al. 2012)

Fig. 16

Retrieved from (Chen et al. 2013)

Fig. 17

Retrieved from (Kirsch et al. 2014)

Fig. 18

Retrieved from (del-Ama et al. 2014)

Fig. 19

Retrieved from (Ren et al. 2014)

Fig. 20

Retrieved from (Tu et al. 2016)

Fig. 21

Retrieved from (Cikajlo et al. 2007)

Fig. 22

Retrieved from (Hacoma 2017)

Fig. 23

Retrieved from (Ye et al. 2014)

Fig. 24

Retrieved from (Bellman et al. 2017)

Similar content being viewed by others

Abbreviations

FES:

Functional electrical stimulation

RAGT:

Robot assisted gait training

CBO:

Controlled-brake orthosis

SBO:

Spring-brake orthosis

GBO:

Gravity balanced orthosis

JCO:

Joint-coupled orthosis

ESO:

Energy storing orthosis

VCHM:

Variable constraint hip mechanism

SEAHO:

Semi-active hybrid orthosis

IMU:

Inertial measurement units

HyPO:

Hybrid powered orthosis

FES-IM:

Intramuscular functional electrical stimulation

BWS:

Body weight support

PID:

Proportional-integral-derivative

VIKM:

Variable impedance knee mechanism

HNP:

Hybrid neuroprosthesis

GT-FES:

Gait trainer with functional electrical stimulation

CT:

Conventional therapy

AFO:

Ankle-foot orthosis

LEE:

Lower-extremity exoskeleton

BLERE:

Bionic lower extremity rehabilitation exoskeleton

References

  • Agrawal, S.K., Banala, S.K., Fattah, A., Sangwan, V., Krishnamoorthy, V., Scholz, J.P., Hsu, W.-L.: Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 410–420 (2007)

    Article  Google Scholar 

  • Asbeck, A.T., De Rossi, S.M., Holt, K.G., Walsh, C.J.: A biologically inspired soft exosuit for walking assistance. Int. J. Robot. Res. 34(6), 744–762 (2015)

    Article  Google Scholar 

  • Audu, M.L., To, C.S., Kobetic, R., Triolo, R.J.: Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 610–618 (2010)

    Article  Google Scholar 

  • Banala, S.K., Agrawal, S.K., Fattah, A., Krishnamoorthy, V., Hsu, W.-L., Scholz, J., Rudolph, K.: Gravity-balancing leg orthosis and its performance evaluation. IEEE Trans. Rob. 22(6), 1228–1239 (2006)

    Article  Google Scholar 

  • Bellman, M.J., Downey, R.J., Parikh, A., Dixon, W.E.: Automatic control of cycling induced by functional electrical stimulation with electric motor assistance. IEEE Trans. Autom. Sci. Eng. 14(2), 1225–1234 (2017)

    Article  Google Scholar 

  • Bulea, T. C., Kobetic, R., Triolo, R. J.: Restoration of stance phase knee flexion during walking after spinal cord injury using a variable impedance orthosis. In: 33rd Annual international conference of the IEEE EMBS, Boston, Massachusetts USA (2011)

  • Bulea, T.C., Kobetic, R., To, C.S., Audu, M.L., Schnellenberger, J.R., Triolo, R.J.: A variable impedance knee mechanism for controlled stance flexion during pathological gait. IEEE/ASME Trans. Mechatron. 17(5), 822–832 (2012)

    Article  Google Scholar 

  • Bulea, T.C., Kobetic, R., Audu, M.L., Triolo, R.J.: Stance controlled knee flexion improves stimulation driven walking after spinal cord injury. J. Neuroeng. Rehabil. 10(1), 68 (2013a)

    Article  Google Scholar 

  • Bulea, T.C., Kobetic, R., Audu, M.L., Schnellenberger, J.R., Triolo, R.J.: Finite state control of a variable impedance hybrid neuroprosthesis for locomotion after paralysis. IEEE Trans. Neural Syst. Rehabil. Eng. 21(1), 141–151 (2013b)

    Article  Google Scholar 

  • Bulea, T.C., et al.: Forward stair descent with hybrid neuroprosthesis after paralysis: single case study demonstrating feasibility. J. Rehabil. Res. Dev. 51(7), 1077 (2014)

    Article  Google Scholar 

  • Cai, L. L., Fong, A. J., Liang, Y., Burdick, J. Edgerton,V. R.: Assist-as-needed training paradigms for robotic rehabilitation of spinal cord injuries. In: Proceedings 2006 IEEE international conference on robotics and automation, Orlando, Florida (2006)

  • Celebi, B., Yalcin, M., Patoglu, V.: AssistOn-Knee: a self-aligning knee exoskeleton. In: Proceedings of the 26th IEEE/RSJ international conference on intelligent robots and systems (IROS ‘13), Tokyo, Japan (2013)

  • Cenciarini, M., Dollar, A. M.: Biomechanical considerations in the design of lower limb exoskeletons. In: Proceedings of the IEEE international conference on rehabilitation robotics (ICORR ‘11), Zurich, Switzerland (2011)

  • Chang, S. R., Nandor, M. J., Li, L., Foglyano, K. M., Schnellenberger, J. R., Kobetic, R., Quinn, R. D. Triolo, R. J.: A stimulation-driven exoskeleton for walking after paraplegia. In: 2016 IEEE 38th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016)

  • Chang, S.R., Nandor, M.J., Li, L., Kobetic, R., Foglyano, K.M., Schnellenberger, J.R., Audu, M.L., Pinault, G., Quinn, R.D., Triolo, R.J.: A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. J. Neuroeng. Rehabil. 14(1), 48 (2017)

    Article  Google Scholar 

  • Chen, Y., Hu, J., Wang, W., Peng, L., Peng, L., Hou, Z.-G.: An FES-assisted training strategy combined with impedance control for a lower limb rehabilitation robot. In: IEEE international conference on robotics and biomimetics (ROBIO), Shenzhen, China (2013)

  • Cikajlo, I., Obreza, P., Savrin, R., Matjacic, Z.: Passive therapeutic arm for pelvis support during FES supported gait treadmill training—a case study. In: IEEE 10th International conference on rehabilitation robotics, Noordwijk, The Netherlands (2007)

  • del-Alma, A.J., Koutsou, A.D., Moreno, J.C., de-los-Reyes, A., Gil-Agudo, A., Pons, J.L.: Review of hybrid exoskeletons to restore gait following spinal cord injury. J. Rehabil. Res. Dev. 49(4), 497–514 (2012)

    Article  Google Scholar 

  • del-Ama, A. J., Agudo, Á. G., Pons, J. L., Moreno, J. C.: Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study. Front. Human Neurosci. 8 (2014)

  • del-Ama, A.J., Gil-Agudo, A., Pons, J.L., Moreno, J.C.: Hybrid FES–robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroeng. Rehabil. 11(1), 27 (2014)

    Article  Google Scholar 

  • del-Ama, A.J., Agudo, Á.G., Bravo-Esteban, E., Perez-Nombela, S., Pons, J.L., Moreno, J.C.: Hybrid therapy of walking with Kinesis overground robot for persons with incomplete spinal cord injury: a feasibility study. Robot. Auton. Syst. 73, 44–58 (2015)

    Article  Google Scholar 

  • del-Ama, A. J., Gil-Agudo, Á., Pérez-Nombela, S., Piñuela-Martín, E., Pons, J. L., Moreno, J. C.: Recent advances on lower limb hybrid wearable robots. In: IFESS 2016, La Grande Motte, France (2016)

  • Dohring, M.E., Daly, J.J.: Automatic synchronization of functional electrical stimulation and robotic assisted treadmill training. IEEE Trans. Neural Syst. Rehabil. Eng. 16(3), 310–314 (2008)

    Article  Google Scholar 

  • Durfee, W.K., Hausdorff, J.M.: Regulating knee joint position by combining electrical stimulation with a controllable friction brake. Ann. Biomed. Eng. 18(6), 575–596 (1990)

    Article  Google Scholar 

  • Durfee, W.K., Rivard, A.: Design and simulation of a pneumatic, stored-energy, hybrid orthosis for gait restoration. J. Biomech. Eng. 127(6), 1014–1019 (2005)

    Article  Google Scholar 

  • Durfee, W. K., Goldfarb, M.: Design of a controlled-brake orthosis for regulating FES-aided gait. In: 14th Annual international conference of the IEEE Engineering in Medicine and Biology Society, Paris, France (1992)

  • Esquenazi, A., Talaty, M., Jayaraman, A.: Powered exoskeletons for walking assistance in persons with central nervous system injuries: a narrative review. PM&R 9(1), 46–62 (2017)

    Article  Google Scholar 

  • Farris, R. J., Quintero, H. A., Withrow, T. J., Goldfarb, M.: Design of a joint-coupled orthosis for FES-aided gait. In: IEEE 11th International conference on rehabilitation robotics, Kyoto International Conference Center, Japan (2009)

  • Farris, R. J., Quintero, H. A., Withrow, T. J., Goldfarb, M.: Design and simulation of a joint-coupled orthosis for regulating FES-aided gait. In: IEEE international conference on robotics and automation, Kobe, Japan (2009)

  • Farris, R.J., Quintero, H.A., Goldfarb, M.: Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 19(6), 652–659 (2011)

    Article  Google Scholar 

  • Ferris, D.P., Sawicki, G.S., Daley, M.A.: A physiologist’s perspective on robotic exoskeletons for human locomotion. Int. J. Humanoid Rob. 4(3), 507–528 (2007)

    Article  Google Scholar 

  • Fukada, S., Obinata, G., Hase, K., Nakayama, A., Shimada, Y., Matsunaga, T., Iwami, T., Miyawaki, K., Tsunetou, M.: Development of a hybrid power assist orthosis with FES. In: 11th Annual conference of the International FES Society, Zao, Japan (2006)

  • Gálvez-Zúñiga, M.A., Aceves-López, A.: A review on compliant joint mechanisms for lower limb exoskeletons. J. Robot. 2016, 9 (2016)

    Google Scholar 

  • Gharooni, S., Tokhi, M. O., Heller, B.: The use of elastic element in a hybrid orthosis for swing phase generation in orthotic gait. In: Proceedings of the 5th annual conference of the International Functional Electrical Stimulation Society, Aalborg, (2000)

  • Gharooni, S., Heller, B., Tokhi, M.O.: A new hybrid spring brake orthosis for controlling hip and knee flexion in the swing phase. IEEE Trans. Neural Syst. Rehabil. Eng. 9(1), 106–107 (2001)

    Article  Google Scholar 

  • Goldfarb, M., Durfee, W.: Design of a controlled-brake orthosis for FES-aided gait. IEEE Trans. Rehabil. Eng. 4(1), 13–24 (1996)

    Article  Google Scholar 

  • Goldfarb, M., Korkowski, K., Harrold, B., Durfee, W.: Preliminary evaluation of a controlled-brake orthosis for FES-aided gait. IEEE Trans. Neural Syst. Rehabil. Eng. 11(3), 241–248 (2003)

    Article  Google Scholar 

  • Ha, K. H., Quintero, H. A., Farris, R. J., Goldfarb, M.: Enhancing stance phase propulsion during level walking by combining FES with a powered exoskeleton for persons with paraplegia. In: 34th Annual international conference of the IEEE EMBS, San Diego, California USA (2012)

  • Ha, K.H., Murray, S.A., Goldfarb, M.: An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 24(4), 455–466 (2016)

    Article  Google Scholar 

  • Hacoma: Erigo Hacoma (online). https://www.hocoma.com/us/solutions/erigo/. Accessed 18 Sep 2017

  • Hamill, J., Knutzen, M.: Biomechanical Basis of Human Movement, 3rd edn. Lippincott Williams & Wilkins, Philadelphia (2009)

    Google Scholar 

  • Hara, Y.: Rehabilitation with functional electrical stimulation in stroke patients. Int. J. Phys. Med. Rehabil. 1(147), 2 (2013)

    Google Scholar 

  • Hesse, S.: Recovery of gait and other motor functions after stroke: novel physical and pharmacological treatment strategies. Restor. Neurol. Neurosci. 22(3–5), 359–369 (2004)

    Google Scholar 

  • Hesse, S., Uhlenbrock, D., Werner, C., Bardeleben, A.: A mechanized gait trainer for restoring gait in nonambulatory subjects. Arch. Phys. Med. Rehabil. 81(9), 1158–1161 (2000)

    Article  Google Scholar 

  • Hidler, J., Nichols, D., Pelliccio, M., Brady, K., Campbell, D.D., Kah, J.H., Hornby, T.G.: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil. Neural Repair 23(1), 5–13 (2009)

    Article  Google Scholar 

  • Huang, V., Krakauer, J.: Robotic neurorehabilitation: a computational motor learning perspective. J. Neuroeng. Rehabil. 6(1), 5 (2009)

    Article  Google Scholar 

  • Jailani,R., Tokhi, M., Gharooni, S., Jogtaei, M.: Finite state control of FES-assisted walking with spring brake orthosis. In: UKSim 13th International conference on modelling and simulation (2011)

  • Kangude, A., Burgstahler, B., Durfee, W.: Engineering evaluation of the energy-storing orthosis FES gait system. In: 32nd Annual international conference of the IEEE EMBS, Buenos Aires, Argentina (2010)

  • Kangude, A., Burgstahler, B., Kakastys, J., Durfee, W.: Single channel hybrid FES gait system using an energy storing orthosis: preliminary design. In: 31st Annual international conference of the IEEE EMBS, Minneapolis, Minnesota, USA (2009)

  • Kirsch, N., Alibeji, N., Fisher, L., Gregory, C., Sharma, N.: A semi-active hybrid neuroprosthesis for restoring lower limb function in paraplegics. In: Engineering in medicine and biology society (EMBC), 2014 36th Annual international conference of the IEEE, pp. 2557–2560 (2014)

  • Kobetic, R., To, C.S., Schnellenberger, J.R., Audu, M., Bulea, T.C., Gaudio, R., Pinault, G., Tashman, S., Triolo, R.J.: Development of hybrid orthosis for standing, walking and stair climbing after spinal cord injury. J. Rehabil. Res. Dev. 46(3), 447–462 (2009)

    Article  Google Scholar 

  • Krishnamoorthy, V., Hsu, W.-L., Benoit, D.L., Banala, S.K., Perumal, R., Sangwan, V., Binder-Macleod, S.A., Agrawal, S.K., Scholz, J.P.: Gait training after stroke: a pilot study combining a gravity-balanced orthosis, functional electrical stimulation and visual feedback. J. Neurol. Phys. Ther. 32(4), 192–202 (2008)

    Article  Google Scholar 

  • Kurokawa, N., Yamamoto, N. Tagawa, Y., Yamamoto, T., Kuno, H.: Development of hybrid FES walking assistive system—feasibility study. In: International conference on advanced mechatronic systems, Tokyo, Japan (2012)

  • Kuznetsov, A.N., Rybalko, N.V., Daminov, V.D., Luft, A.R.: Early poststroke rehabilitation using a robotic tilt-table stepper and functional electrical stimulation. Stroke Res. Treat. 2013, 9 (2013)

    Google Scholar 

  • Lee, K.-M., Guo, J.: Kinematic and dynamic analysis of an anatomically based knee joint. J. Biomech. 43(7), 1231–1236 (2010)

    Article  Google Scholar 

  • Lee, K.-M., Wang, D.: Design analysis of a passive weight-support lower-extremity-exoskeleton with compliant knee-joint. In: 2015 IEEE international conference on robotics and automation (ICRA), Seattle, Washington (2015)

  • Lum, P., Reinkensmeyer, D., Mahoney, R., Rymer, W., Burgar, C.: Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance. Top. Stroke Rehabil. 8(4), 40–53 (2002)

    Article  Google Scholar 

  • Lynch, C., Popovic, M.: Functional electrical stimulation. IEEE Control Syst. 28(2), 40–50 (2008)

    Article  MathSciNet  Google Scholar 

  • Mackay, J., Mensah, G., Mendis, S., Greenlund, K.: The Atlas of Heart Disease and Stroke. World Health Organization, Geneva (2004)

    Google Scholar 

  • Maffiuletti, N., Minetto, M., Farina, D., Bottinelli, R.: Electrical stimulation for neuromuscular testing and training: state-of-the art and unresolved issues. Eur. J. Appl. Physiol. 111, 2391–2397 (2011)

    Article  Google Scholar 

  • McCabe, J.P., Dohring, M.E., Marsolais, E.B., Rogers, J., Burdsall, R., Roenigk, K., Pundik, S., Daly, J.J.: Feasibility of combining gait robot and multichannel functional electrical stimulation with intramuscular electrodes. J. Rehabil. Res. Dev. 45(7), 997–1006 (2008)

    Article  Google Scholar 

  • Metrailler, P., Blanchard, V., Perrin, I., Brodard, R., Frischknecht, R., Schmitt, C., Fournier, J., Bouri, M., Clavel, R.: Improvement of rehabilitation possibilities with the MotionMaker TM. In: The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics (2006)

  • Ng, M., Tong, R., Li, L.: A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation. Stroke 39(1), 154–160 (2009)

    Article  Google Scholar 

  • Obinata, G., Fukada, S., Matsunaga, T., Iwami, T., Shimada, Y.: Hybrid control of powered orthosis and functional neuromuscular stimulation for restoring gait. In: Cité Internationale, Lyon, France, 2007, 29th Annual international conference of the IEEE EMBS (2007)

  • Poboroniuc, M.S., Stefan, C.M., Livint, G., Irimia, D.C.: Issues on mechatronic devices aiming to test neuroprothesis. In: Advanced Technologies for Enhanced Quality of Life, AT-EQUAL '09, pp. 23–27 (2009)

  • Pons, J. L., Moreno, J. C., Rocon, E.: Exoskeletal robotics for functional substitution. Introduction to Neural Engineering for Motor Rehabilitation, pp. 327–348. Wiley (2013)

  • Popovic, M.: Control of neural prostheses for grasping and reaching. Med. Eng. Phys. 25(1), 41–50 (2003)

    Article  Google Scholar 

  • Popović, D.: Advances in functional electrical stimulation (FES). J. Electromyogr. Kinesiol. 24(6), 795–802 (2014)

    Article  Google Scholar 

  • Querry, R.G., Pacheco, F., Annaswamy, T., Goetz, L., Winchester, P.K., Tansey, K.E.: Synchronous stimulation and monitoring of soleus H reflex during robotic body weight-supported ambulation in subjects with spinal cord injury. J. Rehabil. Res. Dev. 45(1), 175–186 (2008)

    Article  Google Scholar 

  • Quintero, H. A., Farris, R. J., Goldfarb, M.: Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals. In: 2011 IEEE international conference on rehabilitation robotics, Switzerland (2011)

  • Quintero, H. A., Farris, R. J., Ha, K., Goldfarb, M.: Preliminary assessment of the efficacy of supplementing knee extension capability in a lower limb exoskeleton with FES. In: 34th Annual international conference of the IEEE EMBS, San Diego, California, USA (2012)

  • Regnaux, J.-P., Kaveh, S., Marehbian, J., Bussel, B., Dobkin, B.H.: An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait. Neurorehabil. Neural Repair 22(4), 348–354 (2008)

    Article  Google Scholar 

  • Ren, Y., Zhang, D.: FEXO Knee: a rehabilitation device for knee joint combining functional electrical stimulation with a compliant exoskeleton. In: São Paulo, Brazil, 2014, 5th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp. 683–688 (2014)

  • Schaechter, J.: Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog. Neurobiol. 73(1), 61–72 (2004)

    Article  Google Scholar 

  • Schmidt, H., Werner, C., Bernhar, R., Hesse, S., Krüger, J.: Gait rehabilitation machines based on programmable footplates. J. Neuroeng. Rehabil. 4(1), 2 (2007)

    Article  Google Scholar 

  • Schuck, A., Labruyere, R., Vallery, H., Riener, R., Duschau-Wicke, A.: Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial. J. Neuroeng. Rehabil. 9(1), 31 (2012)

    Article  Google Scholar 

  • Scott, S.H., Winter, D.A.: Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking. J. Biomech. 26(9), 1091–1104 (1993)

    Article  Google Scholar 

  • Sharma, N., Mushahwar, V., Stein, R.: Dynamic optimization of FES and orthosis-based walking using simple models. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 114–126 (2014)

    Article  Google Scholar 

  • Stauffer, Y., Allemand, Y., Bouri, M., Fournier, J., Clavel, R., Metrailler, P., Brodard, R., Reyna, F.: The WalkTrainer—a new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 38–45 (2009)

    Article  Google Scholar 

  • To, C.S., Kobetic, R., Schnellenberger, J.R., Audu, M.L., Triolo, R.J.: Design of a variable constraint hip mechanism for a hybrid neuroprosthesis to restore gait after spinal cord injury. IEEE/ASME Trans. Mechatron. 13(2), 197–205 (2008)

    Article  Google Scholar 

  • To, C.S., Kobetic, R., Bulea, T.C., Audu, M.L., Schnellenberger, J.R., Pinault, G., Triolo, R.J.: Stance control knee mechanism for lower-limb support in hybrid neuroprosthesis. J. Rehabil. Res. Dev. 48(7), 839 (2011)

    Article  Google Scholar 

  • Tomovic, R., Vukobrativic, M., Vodovnik, L.: Hybrid actuators for orthotic systems: hybrid assistive systems. In: Tomovic, R. (ed.) Advances in External Control of Human Extremities, pp. 73–80 (1973)

  • Tu, X., Huang, J., He, J.: Leg hybrid rehabilitation based on hip-knee exoskeleton and ankle motion induced by FES. In: International Conference on Advanced Robotics and Mechatronics (ICARM) (2016)

  • Tu, X., Jiaxin, L., Chen, S., Zhang, S., Li, H., Cao, J., He, J.: Model-based hybrid cooperative control of hip-knee exoskeleton and FES induced ankle muscles for gait rehabilitation. Int. J. Pattern Recognit. Artif. Intell. 31(9), 1759019 (2017)

    Article  Google Scholar 

  • Vallery, H., Stutzle, T., Buss, M., Abel, D.: Control of a hybrid motor prosthesis for the knee joint, in IFAC Proceedings Volumes. Czech Republic, Prague (2005)

    Google Scholar 

  • Vukobratovic, M.K.: When were active exoskeletons actually born? Int. J. Humanoid Rob. 4(3), 459–486 (2007)

    Article  Google Scholar 

  • Wang, D., Lee, K.-M., Guo, J., Yang, C.-J.: Adaptive knee joint exoskeleton based on biological geometries. IEEE/ASME Trans. Mechatron. 19(4), 1268–1278 (2014)

    Article  Google Scholar 

  • Wang, D., Lee, K.-M., Ji, J.: A passive gait-based weight-support lower extremity exoskeleton with compliant joints. IEEE Trans. Rob. 32(4), 933–942 (2016)

    Article  Google Scholar 

  • Watanabe, T., Karasawa, Y.: Comparison of muscle stimulation groups for simplified practical FES cycling control with cycling wheelchair: an experimental test with healthy subjects. IEICE Trans. Inf. Syst. 99(5), 1345–1352 (2016)

    Article  Google Scholar 

  • Watanabe, T., Murakami, T., Handa, Y.: Preliminary tests of a prototype FES control system for cycling wheelchair rehabilitation. In: 2013 IEEE International conference on rehabilitation robotics, Seattle, Washington USA (2013)

  • Yang, W., Yang, C.-J., Wei, Q.-X.: Design of an anthropomorphic lower extremity exoskeleton with compatible joints. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO ‘14), Bali, Indonesia, (2014)

  • Ye, J., Nakashima, Y., Zhang, B., Kobayash, Y., Fujie, M. G.: Functional electrical stimulation based on a pelvis support robot for gait rehabilitation of hemiplegic patients after stroke. In: 36th Annual international conference of the IEEE engineering in medicine and biology society, Chicago, IL, USA (2014)

  • Ye, J., Watanabe, T., Seki, M., Zhang, B., Liu, Q., Yokoo, Y., Kobayashi, Y., Cao, Q., Fujie, M. G.: Development of a novel gait rehabilitation system based on FES and treadmill-walk for convalescent hémiplégie stroke survivors. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Tokyo, Japan (2013)

  • Zhang, D., Guan, T., Widjaja, F., Ang,W.: Functional electrical stimulation in rehabilitation engineering: a survey.In: Proceedings of the 1st international convention on Rehabilitation engineering and assistive technology: in conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting (CREATe’07), pp. 221–226 (2007)

Download references

Funding

The work was funded in part by the FRC Tier 1 Grant R-397-000-218-112, Faculty of Engineering, National University of Singapore, and in part by the NMRC B&B Grant No. NMRC/BnB/0019b/2015, Ministry of Health, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyong Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anaya, F., Thangavel, P. & Yu, H. Hybrid FES–robotic gait rehabilitation technologies: a review on mechanical design, actuation, and control strategies. Int J Intell Robot Appl 2, 1–28 (2018). https://doi.org/10.1007/s41315-017-0042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-017-0042-6

Keywords

Navigation