Skip to main content
Log in

Review of anatomy-based ankle–foot robotics for mind, motor and motion recovery following stroke: design considerations and needs

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

This review paper has been motivated by recent studies revealing that early rehabilitation of stroke patients is effective for the recovery of their motor functions. Specifically, this paper reviews the design considerations and needs of anatomy-based ankle–foot robotic devices for mind, motor and motion recovery (M3R) based on neuroplasticity, brain reorganization and functional recovery, which make it possible to alleviate muscle atrophy and promote nerve recovery through exercise to ensure the best chance of regaining skills damaged by stroke. Specifically, the optimal roles of anatomy-based ankle–foot orthoses (AFOs) for M3R are analyzed. The needs of specific AFO featuring in each stroke rehabilitation stage, the corresponding ankle–foot joints, ligaments and muscles, and the kinematic models of the ankle–foot complex are investigated to provide a rational means to account for the bio-joint features when developing the mechanical design/sensing/control of a practical M3R-AFO. Existing ankle–foot rehabilitation devices are reviewed from the perspectives of mechanism designs, control strategies and clinical trials. The findings provide physically intuitive insights into the effects of different AFO design functions on the M3R throughout the rehabilitation process following stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal, A., Banala, S.K., Agrawal, S.K., Binder-Macleod, S.A.: Design of a two degree-of-freedom ankle–foot orthosis for robotic rehabilitation. In: IEEE International Conference on Rehabilitation Robotics, 2005. IEEE, pp. 41–44 (2005)

  • Ayas, M.S., Altas, I.H.: Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot. Control Eng. Pract. 59, 44–54 (2017)

    Article  Google Scholar 

  • Balasubramanian, K., Rattan, K.S.: Fuzzy logic control of a pneumatic muscle system using a linearing control scheme. In: IEEE 22nd International Conference North American Fuzzy Information Processing Society (NAFIPS), 2003. IEEE, pp. 432–436 (2003)

  • Banala, S.K., Agrawal, S.K., Kim, S.H., Scholz, J.P.: novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans. Mechatron. 15(2), 216–225 (2010)

    Article  Google Scholar 

  • Belda-Lois, J.M., Mena-del, Horno S., Bermejo-Bosch, I., Bermejo-Bosch, I., Moreno, J.C., Pons, J.L., Farina, D., Losa, M., Molinari, M., Tamburella, F., Ramos, A., Caria, A., Solis-Escalante-Solis, T., Brunner, C., Rea, M.: Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroeng. Rehabil. 8(1), 66 (2011)

    Article  Google Scholar 

  • Bharadwaj, K., Sugar, T.G., Koeneman, J.B., Koeneman, E.J.: Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. J. Biomech. Eng. 127(6), 1009–1013 (2005)

    Article  Google Scholar 

  • Blaya, J.A., Herr, H.: Adaptive control of a variable-impedance ankle–foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12(1), 24–31 (2004)

    Article  Google Scholar 

  • Bobath, K., Bobath, B.: Control of motor function in the treatment of cerebral palsy. Physiotherapy 43(10), 295 (1957)

    Google Scholar 

  • Boian R.F., Lee C.S., Deutsch J.E., Burdea G., Lewis J.A.: Virtual reality-based system for ankle rehabilitation post stroke. In: 1st International Workshop Virtual Reality Rehabil. vol. 77, p. 86 (2002)

  • Bonita, R., Beaglehole, R.: Recovery of motor function after stroke. Stroke 19, 1497–1500 (1988)

    Article  Google Scholar 

  • Bowers, R.J., Ross, K.: A review of the effectiveness of lower limb orthoses used in cerebral palsy. Int. Soc. Prosthet. Orthot. 4(4), 277–290 (2009)

    Google Scholar 

  • Brunnstrom, S.: Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys. Ther. 46(4), 357–375 (1966)

    Article  Google Scholar 

  • Cakar, E., Durmus, O., Tekin, L., Dincer, U., Kiralp, M.Z.: The ankle–foot orthosis improves balance and reduces fall risk of chronic spastic hemiparetic patients. Eur. J. Phys. Rehabil. Med. 46(3), 363–368 (2010)

    Google Scholar 

  • Chen, C., Yeung, K., Wang, C., Chu, H., Yeh, C.: Anterior ankle–foot orthosis effects on postural stability in hemiplegic patients. Arch. Phys. Med. Rehabil. 80(12), 1587–1592 (1999)

    Article  Google Scholar 

  • Corcoran, P.J., Jebsen, R.H., Brengelmann, G.L., Simons, B.C.: Effects of plastic and metal leg braces on speed and energy cost of hemiparetic ambulation. Arch. Phys. Med. Rehabil. 51(2), 69–77 (1970)

    Google Scholar 

  • Del-Ama, A.J., Gil-Agudo, A., Pons, J.L., Moreno, J.C.: Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroeng. Rehabil. 11, 27–29 (2014)

    Article  Google Scholar 

  • Dettwyler, M., Stacoff, A., Kramers-de Quervain, I.A., Stüssi, E.: Modelling of the ankle joint complex. Reflections with regards to ankle prostheses. Foot Ankle Surg. 10(3), 109–119 (2004)

    Article  Google Scholar 

  • Deutsch, J.E., Latonio, J., Burdea, G.C., Boian, R.: Post-stroke rehabilitation with the Rutgers Ankle System: a case study. Presence 10(4), 416–430 (2001)

    Article  Google Scholar 

  • Deutsch, J.E., Lewis, J.A., Burdea, G.: Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 30–35 (2007)

    Article  Google Scholar 

  • Dickstein, R., Hocherman, S., Pillar, T., Shaham, R.: Stroke rehabilitation: three exercise therapy approaches. Phys. Ther. 66(8), 1233–1238 (1986)

    Article  Google Scholar 

  • Dimyan, M.A., Cohen, L.G.: Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7(2), 76–85 (2011)

    Article  Google Scholar 

  • Dipietro, L., Krebs, H.I., Volpe, B.T., Stein, J., Bever, C., Mernoff, S.T., Fasoli, S.E., Hogan, N.: Learning, not adaptation, characterizes stroke motor recovery: evidence from kinematic changes induced by robot-assisted therapy in trained and untrained task in the same workspace. IEEE Trans. Neural. Rehabil. Eng. 20(1), 48–57 (2012)

    Article  Google Scholar 

  • Dul, J., Shiavi, R., Green, N.E.: Simulation of tendon transfer surgery. Eng. Med. 14(1), 31–38 (1985)

    Article  Google Scholar 

  • Fasoli, S.E., Krebs, H.I., Stein, J., Frontera, W.R., Hogan, N.: Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch. Phys. Med. Rehabil. 84(4), 477–482 (2003)

    Article  Google Scholar 

  • Fasoli, S.E., Krebs, H.I., Stein, J., Frontera, W.R., Hughes, R., Hogan, N.: Robotic therapy for chronic motor impairments after stroke: follow-up results. Arch. Phys. Med. Rehabil. 85(7), 1106–1111 (2004)

    Article  Google Scholar 

  • Ferris, D.P., Czerniecki, J.M., Hannaford, B.: An ankle–foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 21(2), 189 (2005)

    Article  Google Scholar 

  • Forrester, L.W., Roy, A., Krebs, H.I., Macko, R.F.: Ankle training with a robotic device improves hemiparetic gait after a stroke. Neurorehabil. Neural Repair 25(4), 369–377 (2011)

    Article  Google Scholar 

  • Forrester, L.W., Roy, A., Goodman, R.N., Rietschel, J., Barton, J.E., Krebs, H.I., Macko, R.F.: Clinical application of a modular ankle robot for stroke rehabilitation. NeuroRehabilitation 33(1), 85–97 (2013)

    Google Scholar 

  • Girone, M., Burdea, G., Bouzit, M., Popescu, V., Deutsch, J.E.: A Stewart platform-based system for ankle telerehabilitation. Auton. Rob. 10(2), 203–212 (2001)

    Article  MATH  Google Scholar 

  • Goodman, R.N., Rietschel, J.C., Roy, A., Jung, B.C., Diaz, J., Macko, R.F., Forrester, L.W.: Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke. J. Rehabil Res. Dev. 51(2), 213–227 (2014)

    Article  Google Scholar 

  • Gregorio, R.D., Parenti-Castelli, V., O’Connor, J.J., Leardini, A.: Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med. Biol. Eng. Comput. 45(3), 305–313 (2007)

    Article  Google Scholar 

  • Gui, K., Liu, H., Zhang, D.: Toward multimodal human-robot interaction to enhance active participation of users in gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 25(11), 2054–2066 (2017)

    Article  Google Scholar 

  • Hsu, J.D., Michael, J., Fisk, J.: AAOS Atlas of Orthoses and Assistive Devices E-Book. Elsevier Health Sci., Philadelphia (2008)

    Google Scholar 

  • Jamwal, P.K., Xie, S.Q., Hussain, S., Parsons, J.G.: An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Trans. Mechatron. 19(1), 64–75 (2014)

    Article  Google Scholar 

  • Jette, D.U., Warren, R.L., Wirtalla, C.: The relation between therapy intensity and outcomes of rehabilitation in skilled nursing facilities. Arch. Phys. Med. Rehabil. 86(3), 373–379 (2005)

    Article  Google Scholar 

  • Jiang, J.Y., Lee, K.-M., Ji, J.J.: Design criteria for developing an anatomy-based ankle–foot-orthosis: a state-of-the art review and needs of mind, motor and motion recovery following stroke. In: IEEE/ASME International Conference Advanced Intelligent Mechatronics (AIM) 2018. (2018)

  • Jimenez-Fabian, R., Verlinden, O.: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med. Eng. Phys. 34(4), 397–408 (2012)

    Article  Google Scholar 

  • Katherine Salter B., Mark Hartley B., Norine Foley B.: Impact of early vs delayed admission to rehabilitation on functional outcomes in persons with stroke. J. Rehabil. Med. 38(113Á/117) (2006)

  • Katušić, A.: Early brain injury and plasticity: reorganization and functional recovery. Transl. Neurosci. 2(1), 33–42 (2011)

    Google Scholar 

  • Kim, J., Hwang, S., Sohn, R., Kim, Y., Lee, Y.: Development of an active ankle foot orthosis to prevent foot drop and toe drag in hemiplegic patients: a preliminary study. Appl. Bionics Biomech. 8(3–4), 377–384 (2011)

    Article  Google Scholar 

  • Krebs, H.I., Hogan, N., Aisen, M.L., et al.: Robot-aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 6(1), 75–87 (1998)

    Article  Google Scholar 

  • Krebs, H.I., Volpe, B.T., Aisen, M.L., Hogan, N.: Increasing productivity and quality of care: robot-aided neuro-rehabilitation. J. Rehabil. Res. Dev. 37(6), 639 (2000)

    Google Scholar 

  • Kwakkel, G., Kollen, B.J., Wagenaar, R.C.: Therapy impact on functional recovery in stroke rehabilitation: a critical review of the literature. Physiotherapy 85(7), 377–391 (1999)

    Article  Google Scholar 

  • Langhammer, B., Stanghelle, J.K.: Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomized controlled study. Clin. Rehabil. 14(4), 361–369 (2000)

    Article  Google Scholar 

  • Langhorne, P., Coupar, F., Pollock, A.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009)

    Article  Google Scholar 

  • Langhorne, P., Bernhardt, J., Kwakkel, G.: Stroke rehabilitation. Lancet 377(9778), 1693–1702 (2011)

    Article  Google Scholar 

  • Leardini, A., O’Connor, J.J., Giannini, S.: A geometric model of the human ankle joint. J. Biomech. 32(6), 585–591 (1999)

    Article  Google Scholar 

  • Li, J.: Rehabilitation Medicine. People’s Medical Publishing House, Beijing (2014)

    Google Scholar 

  • Lin, C.C.K., Ju, M.S., Chen, S.M., Pan, B.W.: A specialized robot for ankle rehabilitation and evaluation. J. Med. Biol. Eng. 28(2), 79–86 (2008)

    Google Scholar 

  • Low, K.H., Liu, X., Goh, C.H., Yu, H.: Locomotive control of a wearable lower exoskeleton for walking enhancement. J. Vib. Control 12(12), 1311–1336 (2006)

    Article  MATH  Google Scholar 

  • Marinkovich, D.C.: Modeling and simulation of the foot and ankle to predict ankle and subtalar joint motion. Diss. Abstr. Int. 67(03), 1663–1718 (2006)

    Google Scholar 

  • Martelli, D., Vannetti, F., Cortese, M., Tropea, P., Giovacchini, F., Micera, S., Monaco, V., Vitiello, N.: The effects on biomechanics of walking and balance recovery in a novel pelvis exoskeleton during zero-torque control. Robotica. 32(8), 1317–1330 (2014)

    Article  Google Scholar 

  • Mattacola, C.G., Dwyer, M.K.: Rehabilitation of the ankle after acute sprain or chronic instability. J. Athl. Train. 37(4), 413 (2002)

    Google Scholar 

  • Maulden, S.A., Gassaway, J., Horn, S.D., Smout, R.J., DeJong, G.: Timing of initiation of rehabilitation after stroke. Arch. Phys. Med. Rehabil. 86(12), 34–40 (2005)

    Article  Google Scholar 

  • McGehrin, K., Roy, A., Goodman, R., Rietschel, J., Forrester, L., Bever, C.: Ankle robotics training in sub-acute stroke survivors: concurrent within-session changes in ankle motor control and brain electrical activity. Neurology 78(1), 1–175 (2012)

    Article  Google Scholar 

  • Mirelman, A., Bonato, P., Deutsch, J.E.: Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke 40(1), 169–174 (2009)

    Article  Google Scholar 

  • Mojica, J.A.P., Manakmur, R., Kobayashi, T., Handa, T., Morohashi, I., Watanabe, S.: Effect of ankle–foot orthosis (AFO) on body sway and walking capacity of hemiparetic stroke patients. Tohoku J. Exp. Med. 156(4), 395–401 (1988)

    Article  Google Scholar 

  • Musicco, M., Emberti, L., Nappi, G., Caltagirone, C.: Early and long-term outcome of rehabilitation in stroke patients: the role of patient characteristics, time of initiation, and duration of interventions. Arch. Phys. Med. Rehabil. 84(4), 551–558 (2003)

    Article  Google Scholar 

  • Neumann, D.A.: Kinesiology of the Musculoskeletal System: Foundations for Physical Rehabilitation. Mosby/Elsevier, Chicago (2010)

    Google Scholar 

  • Noël, M., Cantin, B., Lambert, S., Gosselin, C.M., Bouyer, L.J.: An electrohydraulic actuated ankle foot orthosis to generate force fields and to test proprioceptive reflexes during human walking. IEEE Trans. Neural Syst. Rehabil. Eng. 16(4), 390–399 (2008)

    Article  Google Scholar 

  • Park, Y.L., Chen, B.-R., Perez-Arancibia, N.O., Young, D., Stirling, L., Wood, R.J., Goldfield, E.C.: Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation. Bioinspir. Biom. 9(1), 016007 (2014)

    Article  Google Scholar 

  • Reinkensmeyer, D.J., Aoyagi, D., Emken, J.L., Galvez, J.A., Ichinose, W., Kerdanyan, G., Maneekobkunwong, S., Minakata, K., Nessler, J.A., Weber, R., Roy, R.R., Leon, R., Bobrow, J.E., Harkema, S.J., Edgerton, V.R.: Tools for understanding and optimizing robotic gait training. J. Rehabil. Res. Dev. 43(5), 657–670 (2006)

    Article  Google Scholar 

  • Ren, Y., Wu, Y.N., Yang, C.Y., Xu, T., Harvey, R.L., Zhang, L.Q.: Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 589–596 (2016)

    Article  Google Scholar 

  • Robinson, W., Smith, R., Aung, O., Ada, L.: No difference between wearing a night splint and standing on a tilt table in preventing ankle contracture early after stroke: a randomised trial. Aust. J. Physiother. 54(1), 33–38 (2008)

    Article  Google Scholar 

  • Rood, M.S.: Neurophysiological reactions as a basis for physical therapy. Phys. Ther. 34(9), 444–449 (1954)

    Article  Google Scholar 

  • Roy, A., Krebs, H.I., Williams, D.J., Bever, C.T., Forrester, L.W., Macko, R.M., Hogan, N.: Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans. Robot. 25(3), 569–582 (2009)

    Article  Google Scholar 

  • Roy, A., Forrester, L.W., Macko, R.F.: Short-term ankle motor performance with ankle robotics training in chronic hemiparetic stroke. J. Rehabil. Res. Dev. 48, 417–430 (2011)

    Article  Google Scholar 

  • Saglia, J.A., Tsagarakis, N.G., Dai, J.S., Caldwell, D.G.: A high performance 2-dof over-actuated parallel mechanism for ankle rehabilitation. In: IEEE International Conference Robotics and Automation (ICRA), 2009. IEEE, pp. 2180–2186 (2009)

  • Saglia, J.A., Tsagarakis, N.G., Dai, J.S., Caldwell, D.G.: Control strategies for patient-assisted training using the ankle rehabilitation robot (ARBOT). IEEE/ASME Trans. Mechatronics 18(6), 1799–1808 (2013)

    Article  Google Scholar 

  • Sale, P., Franceschini, M., Waldner, A., Hesse, S.: Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur. J. Phys. Rehabil Med. 48(1), 111–121 (2012)

    Google Scholar 

  • Selles, R.W., Li, X., Lin, F., Chung, S.G., Roth, E.J., Zhang, L.Q.: Feedback-controlled and programmed stretching of the ankle plantarflexors and dorsiflexors in stroke: effects of a 4-week intervention program. Arch. Phys. Med. Rehabil. 86(12), 2330–2336 (2005)

    Article  Google Scholar 

  • Silveira, A.C.P.: Extended Biomechanical Model of the Ankle–Foot Complex: Incorporation of Muscles and Ligaments. University of Coimbra, Coimbra (2015)

    Google Scholar 

  • Thanh, T.U.D.C., Ahn, K.K.: Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network. Mechatronics 16(9), 577–587 (2006)

    Article  Google Scholar 

  • Tsoi, Y.H., Xie, S.Q.: Online estimation algorithm for a biaxial ankle kinematic model with configuration dependent joint axes. J. Biomech. Eng. 133(2), 021005 (2011)

    Article  Google Scholar 

  • Van der Kooij, H., Koopman, B., van Asseldonk, E.H.F.: Body weight support by virtual model control of an impedance controlled exoskeleton (LOPES) for gait training, In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2008, pp. 1969–72 (2008)

  • Varol H.A., Goldfarb M.: Decomposition-based control for a powered knee and ankle transfemoral prosthesis. Rehabilitation robotics. In: IEEE 10th International Conference on Rehabilitation Robotics (ICORR), 2007. IEEE, pp. 783–789 (2007)

  • Volpe, B.T., Krebs, H.I., Hogan, N., Edelsteinn, L., Diels, C.M., Aisen, M.L.: Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology 53(8), 1874 (1999)

    Article  Google Scholar 

  • Volpe, B.T., Krebs, H.I., Hogan, N., Edelstein, L., Diels, C., Aisen, M.: A novel approach to stroke rehabilitation robot-aided sensorimotor stimulation. Neurology 54(10), 1938–1944 (2000)

    Article  Google Scholar 

  • Voss, D.E., Ionta, M.K., Myers, B.J., Knott, M.: Proprioceptive Neuromuscular Facilitation: Patterns and Techniques. Harper & Row, Philadelphia (1985)

    Google Scholar 

  • Wang, Z.Y.: Surgery of the Foot and Ankle. People’s Medical Publishing House, Beijing (2006)

    Google Scholar 

  • Wang, R.Y., Lu, Y., Lee, C.C., Lin, P.Y., Wang, M.F., Yang, Y.R.: Effects of an ankle–foot orthosis on balance performance in patients with hemiparesis of different durations. Clin. Rehabil. 19(1), 37–44 (2005)

    Article  Google Scholar 

  • Wang, R.Y., Lin, P.Y., Lee, C.C., Yang, Y.R.: Gait and balance performance improvements attributable to ankle–foot orthosis in subjects with hemiparesis. Am. J. Phys. Med. Rehabil. 86(7), 556–562 (2007)

    Article  Google Scholar 

  • Ward, J., Sugar, T., Standeven, J., Engsberg, J.R.: Stroke survivor gait adaptation and performance after training on a powered ankle foot orthosis. In: International Conference on Robotics and Automation (ICRA), Anchorage, 2010. pp. 211–216 (2010)

  • Wiggin, M.B., Sawicki, G.S., Collins, S.H.: An exoskeleton using controlled energy storage and release to aid ankle propulsion. In: 2011 IEEE International Conference Rehabilitation Robotics (ICORR), pp. 1–5 (2011)

  • Williams, L.L.: A Finite Element Model of a Realistic Foot and Ankle for Flatfoot Analysis. University of Arizona, Tucson (2017)

    Google Scholar 

  • Yoon, J., Ryu, J., Lim, K.B.: Reconfigurable ankle rehabilitation robot for various exercises. J. Field Rob. 22(S1), 15–33 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of China under Grant U1713204, U.S. National Science Foundation EFRI- M3C-1137172 and “Innovative Leading Talents Programme of Dongguan”. The authors greatly appreciate the valuable discussions and clinical collaboration with Chief Physician Bo Hu and Deputy Chief Physician Jie Gao of Shenzhen Occupational Disease Prevention and Treatment Center, and Doctor Lihua Tang of Dongguan Kanghua Hospital.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kok-Meng Lee or Jingjing Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Lee, KM. & Ji, J. Review of anatomy-based ankle–foot robotics for mind, motor and motion recovery following stroke: design considerations and needs. Int J Intell Robot Appl 2, 267–282 (2018). https://doi.org/10.1007/s41315-018-0065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-018-0065-7

Keywords

Navigation