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Abstract
Active assistive systems for mobility aids are largely restricted to environments mapped a-priori, while passive assistance 
primarily provides collision mitigation and other hand-crafted behaviors in the platform’s immediate space. This paper 
presents a framework providing active short-term assistance, combining the freedom of location independence with the 
intelligence of active assistance. Demonstration data consisting of on-board sensor data and driving inputs is gathered from 
an able-bodied expert maneuvring the mobility aid around a generic interior setting, and used in constructing a probabilistic 
intention model built with Radial Basis Function Networks. This allows for short-term intention prediction relying only upon 
immediately available user input and on-board sensor data, to be coupled with real-time path generation based upon the same 
expert demonstration data via Dynamic Policy Programming, a stochastic optimal control method. Together these two ele-
ments provide a combined assistive mobility system, capable of operating in restrictive environments without the need for 
additional obstacle avoidance protocols. Experimental results in both simulation and on the University of Technology Sydney 
semi-autonomous wheelchair in settings not seen in training data show promise in assisting users of power mobility aids.

Keywords  Demonstration learning · Mobile robot · Wheelchair

1  Introduction

The global population is ageing quickly, with predictions 
that the worldwide proportion of people aged 60 and over 
is expected to double by 2050 (United Nations 2015). As 
mobility aids promote independence and self-esteem in 
elderly and frail users, there is a strong motivation to develop 
intelligent systems capable of providing improved assistance 
to these groups (Tegart 2010). One aim is to thus develop 
an assistive framework that can be incorporated into power 
mobility devices (PMDs) such as the one shown in Fig. 1. 

As devices such as power wheelchairs are large, heavy and 
powerful machines it is common for prospective users to 
meet a strict set of conditions before prescription is approved 
(Queensland Department of Health 2016) even if they are 
otherwise capable of independently performing other routine 
tasks. In this light, the target end users of this work are those 
who are still capable of independence apart from mobility 
rather than those requiring constant oversight from a carer 
due to more complex healthcare and lifestyle needs.

Assistance for sensor-equipped PMDs can be broadly 
divided into two dominant flavors, referred to as reactive 
or active assistance. Most reactively assistive systems keep 
the user significantly in the loop, only intervening the user’s 
input commands when collision is imminent or autonomous 
takeover is momentarily required, for example, in traversing 
a particularly narrow passage. In active assistance, the user 
is mostly removed from the control loop; their command 
signals are used to infer an intended destination, to which 
autonomous navigation algorithms then guide the PMD.

Reactive assistance primarily aims to mitigate collisions, 
as well as possibly accommodating hand-tooled heuristic 
behaviors such as driving parallel to walls. Earlier systems 
such as the Bremen Autonomous Wheelchair (Lankenau 
et al. 1998) or NavChair (Simpson et al. 1998) provided 
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safety mechanisms such as nullifying potentially hazardous 
input signals or incorporating obstacle avoidance behav-
iours adapted from algorithms developed for autonomous 
robots, e.g. the Vector Field Histogram (Borenstein and 
Koren 1991) used recently in Ashley et al. (2017) and Li 
et al. (2017). A more recent approach in reactively assistive 
PMDs is the weighted fusion of robot command signals with 
that from the user, as investigated by Devigne et al. (2016), 
Goil et al. (2013) and Urdiales et al. (2011) among others.

These frameworks utilise a measure of “goodness” from 
the user’s behaviours to allocate authority over the final com-
mand signal, typically a weighted sum between the user’s 
input and command signals inferred from another algorithm. 
This measure typically considers metrics such as obstacle 
proximity, user input fluidity or navigational task relevance. 
The authors believe however that it is inherently safer for 
the user to merely provide suggestions to a system that is in 
total control at all times, as there is little promise of safety 
in the combined command signal even if both may be safe in 
isolation. The primary disadvantage to reactive assistance is 
that the user’s intended destination in most implementations 
is not considered. As a result the system is unable to actively 
assist the user in areas where pure obstacle avoidance would 
become trapped in local minima.

Active assistance tends to rely on a-priori maps of spaces 
that the system operates in. An early instance of this can be 
seen again on the NavChair (Simpson and Levine 1999), 
which seeks to change between modes such as doorway 
navigation and wall-following depending on its location and 
observed surroundings. Given data obtained from end-users 
or demonstrators, later works have approached inference of 
the likeliest intended target as a classification exercise. Such 

long-term “global” destination inference has already been 
previously addressed by several means including Hierarchi-
cal Hidden Markov Models (Patel et al. 2014), Gaussian 
Processes (Matsubara et al. 2015) and various Bayesian 
frameworks (Huntemann et al. 2013; Escobedo et al. 2014) 
among other heuristic approaches (Carlson and Demiris 
2012; Derry and Argall 2013; Narayanan et al. 2016). Once 
an intention is deemed sufficiently probable, semi-auton-
omous navigation typically commences. In other domains 
such as actuated walking canes (Wakita et al. 2013) and 
assistive limb exoskeletons (Huang et al. 2015; Li and Ge 
2014), intentions have also been respectively modelled as 
desired walking directions or limb movements.

A motivating example for active assistance can be seen in 
Fig. 2. User inputs are projected forward over a brief tem-
poral window, yielding an approximate navigational goal 
for a reactive local controller; in this example, the Dynamic 
Window Approach (Fox et al. 1997). These algorithms con-
sider both the goal and immediately available sensor data to 
yield a safe control point and corresponding twist; however 
as they are limited solely to determining the next platform 
control signal with no consideration of longer-term path 
viability, the platform can become stuck in scenarios where 
comprehensive path planning is necessary for ensuring reli-
able traversal.

A significant limitation of active assistance is its restric-
tion to working in areas having up-to-date occupancy maps. 
Instead it is arguably more desirable for a system to provide 
assistance ‘anywhere’, like reactively assistive frameworks 
are capable of, without the need for map-building by only 
relying upon immediately available on-board sensor data. In 
this “local” space one can infer immediate short-term desti-
nations being points of interest that the user wishes to pass 
through or stop at at a given instant, to which short-term path 
planning can take place. It is these short-term destinations 
which are defined as intentions for the purpose of this work. 
The limited physical range of these short-term destinations 

Fig. 1   University of Technology Sydney (UTS) semi-autonomous 
wheelchair

Fig. 2   An example of a reactive planner causing the platform (gray) 
to be trapped in local minima. Orange crosses represent a forward 
projection of user input, and blue crosses are navigational control 
points from the Dynamic Window Approach (color figure online)
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in comparison to the long-term destinations in the aforemen-
tioned literature is not a significant issue, given user inputs 
and sensor data are readily available over the entire duration 
of travel. Although such an approach does not guarantee 
global long-term optimality, as postulated in Huntemann 
et al. (2007) a destination inference and its corresponding 
path only have to be accurate for a brief portion of travel 
until the next path is available, resulting in an overall route 
that is an overall concatenation of many fragments of these 
short-term paths. While the aforementioned classification 
methodologies can function solely on low-dimensional 
pose information when considered alongside user input 
data, applying such an approach directly to sensor data is 
meaningless as there is little correlation between long-term 
destination and the immediately observable scene. However, 
the high dimensionality of typical mobile robot sensor data 
has, to the best of the authors’ knowledge, made short-term 
active assistance a largely unexplored area.

The contribution of this work in the literature covering 
shared control of PMD devices is in short-term intention 
estimation without depending upon a a-priori map, for ena-
bling subsequent robot path planning and navigation in a 
non-reactive manner. As these intentions can encompass 
difficult locations such as doorways for which heuristics are 
designed to handle in reactively assistive systems, the infer-
ence of intentions allows the merging of collision avoidance 
and selective interaction with artefacts, bypassing the need 
for situational behaviors found in systems based upon obsta-
cle avoidance. Our work was originally published as a con-
ference paper (Poon et al. 2017). This manuscript expands 
upon this preliminary work with the following additions:

1.	 Consideration of additional metrics (Urdiales et al. 2013; 
Yang et al. 2017) for a more thorough framework evalu-
ation.

2.	 A human-centric analysis of the simulator used in both 
works against the real wheelchair.

3.	 Further experimentation in simulation with a larger user 
pool in a more complex test environment, and on the 
UTS wheelchair with a disabled volunteer.

4.	 A quantitative a-posteriori evaluation of the frame-
work’s predictive accuracy on driving data by able users.

The remainder of this paper is arranged as follows. Sec-
tion 2 documents a methodology to capture the local inten-
tion inference and path planning behaviors of able experts. 
Section 3 presents new experiments undertaken to evaluate 
the assistive framework both in simulation and on an instru-
mented mobility aid (Fig. 1), with a discussion of results 
and outcomes following in Sect. 4. Section 5 closes with 
conclusions and future work.

2 � Methodology

This section details the modelling of local intention estima-
tion and path planning, as summarized in Fig. 3. Training 
data comes from an able demonstrator driving the PMD 
around a simulated interior space while position, expert joy-
stick inputs and sensor measurements from a planar laser 
scanner, are logged. A simulated environment is used here 
to allow for flexibility in creating environments suited to the 
capture of expert behaviours. As demonstrated in Sect. 3.1, 
the simulation behaves acceptably closely to the real PMD 
for data collection and user interaction.

For intention estimation a behavioural model is built 
yielding a likelihood distribution across discrete points in a 
moving window centralised around the PMD, trained only 
upon sensor data and user input. Fitting with the proposed 
definition of a destination as a point which the user intends 
to traverse to or through, this distribution then allows the 
likeliest destination point to be inferred. This is covered in 
Sect. 2.2.

From the same training data, a methodology for the learn-
ing of short-term path planning behaviors and user compli-
ance is also proposed and detailed in Sects. 2.3 and 2.4. 
Short local paths are combined with sensor data as a reward 
surface, which is then refined online via Dynamic Policy 
Programming (DPP) (Azar et al. 2012), a stochastic optimal 
control method. The final output of this planner is taken as 

Fig. 3   Overview schematic of 
assistive framework
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the local path to be followed to its terminus, or user compli-
ance indicates a loss of alignment with their true intention.

2.1 � Defining local paths

In order to break down a continuous sequence of driving 
data, several criteria to terminate paths are proposed in 
Fig. 4.

•	 Loss of visibility from starting position or exiting local 
window of starting position

•	 PMD turns ≥ 90◦ relative to starting orientation
•	 Inflection in forward/reverse joystick axis

The first criteria ensures paths are terminated once immedi-
ately available sensor data can no longer provide information 
on the PMD’s future surroundings, whereas the latter two 
indicate the user either intends to pursue a significantly dif-
ferent objective or they have reached their final destination.

In determining a suitable local window size for both the 
latter half of the first termination criterion and the subse-
quent path planning, the spatial requirements of typical 
PMDs are first considered. In Australia where this research 
was undertaken, an open circulation space of approximately 
2 m2 is a requirement for building planners (Standards Aus-
tralia 2009) for spaces such as landing areas near doors for 
disabled access bathrooms, so this is taken as a lower bound. 
On the basis that the framework is concerned with only an 
immediate path to track, it follows that the usefulness of path 
points diminishes as the path length increases; when the sys-
tem is able to constantly replan paths at a reasonable speed, 
there is no need to plan beyond challenges in the immediate 
vicinity. Hence the requisite quantity of local space can be 
thought of as a softly defined region, bounded between the 
requisite minimum of planning space as implicated by the 
PMD’s physical characteristics and an upper limit beyond 
which a path planning cycle becomes needlessly complex. 

In this work the front half of a 5m square moving window 
centred at the PMD is taken, allowing for an acceptable 
path planning time while also exceeding the lower bound 
for maneuvrability. With additional sensor coverage of the 
wheelchair’s rear, the framework would also be readily 
applicable to reversing maneuvres.

2.2 � Local intention estimation

Here, an intention within the local window around the 
PMD is defined as the discrete cell with the highest likeli-
hood of being a local path termination point. A cell size 
of 0.05 m2 is taken to allow for an acceptable path plan-
ning time (Sect. 2.3). Demonstration training data contains 
Cartesian pose information X1∶N , expert actions Y1∶N of 2D 
Cartesian joystick positions, and sensor data Z1∶N contain-
ing polar co-ordinates (r, �)1∶|z|n  of obstacle points across an 
on-board laser scanner’s 180◦ horizontal field of view. For 
all instances of training data a local path is obtained as per 
the criteria above.

Rather than attempting to match instances of z1,…,N in 
their entirety to the new z∗ as this would be easily over-
fitted, individual laser scan beams are instead considered 
in conjunction with user input. This is done with the aim 
of both mitigating effects from the curse of dimension-
ality, and to allow for improved tolerance to large varia-
tion in environmental structure while retaining some 
information on the relationship between Z and the sense 
of space the expert afforded the PMD. For each path 
indexed n = 1, 2,… ,N  a training data tuple for the cell 
corresponding to goal Gn = [xg, yg] , the Cartesian point 
at which the path terminated (Fig. 5), is recorded. A tuple 

Fig. 4   Examples of local path termination along a path (black dashed 
line) taken by the PMD (red rectangle with circle at origin). Grey pol-
ygons represent obstacles. Termination condition from pose 1 → 2 : 
Visibility loss due to obstacle. 2 → 3 : PMD rotates ≥ 90°. 3 → 4 : 
Inflection in forward joystick axis due to stop (color figure online)

Fig. 5   Training data for the cell at the termination point (red circle 
in dashed PMD footprint) along the path taken by the PMD (black 
dash) is recorded, consisting of the expert joystick input at the origin 
(red circle in solid PMD footprint), and the range of the laser scan-
ner beam (blue line capped with blue circle) covering the termina-
tion point. The grey line represents the edge of an obstacle perceived 
by the laser scanner, and the local planning window is bounded in 
magenta (color figure online)
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consists of {Yn, r
i
n
} where i is the beam index determined 

by argmin i=1,2,…,|z|||�in − arctan2 (yg, xg)|| . A summary of 
nomenclature can be found in Table 5.

Only the edges of obstacles within the local window per-
ceived by z are considered, to remove reliance upon obstacle 
points from future measurements. Each grid cell then has its 
own one-class classifier built in the form of a Radial Basis 
Function Network (Orr 1996) utilising a strong 0 prior, as 
the data only contains positive examples. Each classifier is 
designed to take a training tuple as input, and is trained to 
yield an intention likelihood between 0 and 1 following the 
additive approach in Hagan et al. (2014). Taking all classi-
fiers into consideration and normalizing across the grid cells 
thus yields an intention likelihood estimate P(g∗|y∗, z∗) given 
new joystick input y∗ and laser range information z∗ . To 
reduce computational cost in experiments, only classifiers 
for cells which recieved training data were queried. The final 
output of the intention estimator is the position g∗ of the cell 
with the highest likelihood, which serves as an objective in 
the subsequent path planning step.

An illustrative example of the intention estimator is 
shown in Fig. 6.

2.3 � Local path planning

Due to our significantly truncated operating window and 
rapid rate of re-planning, here path primitives are utilized for 
planning due to their simplicity and speed. This is in contrast 
to the more exhaustively complete longer-term path planning 
algorithms detailed in Yang et al. (2016) and other literature.

Local paths from training data with similar endpoint ori-
entations are gathered and a primitive is obtained as a least-
squares solution. As opposed to the velocity domain-based 
arcs in Yang et al. (2017), the primitives in this paper are 

in real space and are formulated similarly to the approach 
in Ballesteros et al. (2017). However the environment is not 
immediately considered, as the framework operates solely 
within visible space and considers the local occupancy map 
later. In this work 17 discretized endpoint orientions are 
taken for creating expert-styled path primitives; this number 
was determined as the limit beyond which no training data 
would be available for a given orientation. Then for a goal 
point g∗ , a path primitive is selected based on the nearest 
average end point and spatially scaled (Fig. 7) to reach it for 
a natural baseline. As this inferred path is not guaranteed 
to be safe, it instead serves as the basis for real-time path 
generation with consideration to the local occupancy map.

2.3.1 � Dynamic policy programming

Stochastic optimal control learns a Markov Decision Process 
(MDP) defined by a 5-tuple (S,A, T,R, �) . S is a finite set of 
states, A is a finite set of actions, T a

ss′
 is the transition proba-

bility from state s to state s′ under the action a, 
r a
ss�

= R(s, s�, a) is the reward from state s to state s′ under the 

(a) Simulated wheelchair (birds-eye view). (b) Resultant intention heatmap from forward joy-
stick input.

Fig. 6   Example of intention estimation. a Shows a simulated PMD 
(red) with a laser scan (green) observing nearby obstacles (black). b 
Shows the resultant intention probability distribution given a forward 

joystick input (purple arrow) on the PMD, with perceived obstacles in 
white. Path planning continues in Fig. 9 (color figure online)

Fig. 7   Paths from training data sharing a similar endpoint orienta-
tion are gathered (left); their resulting primitive can then be spatially 
scaled to arbitrary positions (right, gray circles) (color figure online)
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action a. S is defined as the local window around the PMD 
discretized into a grid-world for path planning, and A as a list 
of 9 actions that can be taken at each grid cell: moving to any 
of its 8 immediate neighbors or remaining in place (Fig. 8). 
� ∈ (0, 1) is the discount factor. The policy �(a|s) denotes the 
probability of taking the action a under the state s. The value 

function V�(s) = lim
k→∞

��

[∑K

k = 1
�k−1rst+k |st = s

]
 is the 

expected return when the process starts in s and the decision 
maker follows the policy � . The solution of MDP is an opti-
mal policy �∗ that attains the maximum expected reward:

DPP builds a new value function by adding the Kull-
back–Leibler divergence to the reward function R as a pen-
alty. The Kullback-Leibler divergence between the policy � 
and the baseline policy 𝜋̄ , and the new value function V are 
defined as:

where �� denotes the expectation over transition model T  
and the current policy � . � ∈ (0, 1) is a constant that controls 
the Kullback–Leibler divergence term.

According to Azar et al. (2012), the action preferences 
function (Sutton and Barto 1998) for all state action pairs 

(1)

�∗ = argmax
�

∑

a ∈ A

s� ∈ S

�(a|s)Ta
ss�

(
ra
ss�

+ �V∗(s�)
)
,∀s ∈ S.

(2)g𝜋
𝜋̄
(s) = KL(𝜋‖𝜋̄) = �

a ∈ A

𝜋(a�s) log
�
𝜋(a�s)
𝜋̄(a�s)

�
,

(3)

V
𝜋̄
(s) ≜ lim

k→∞
�𝜋

⎡
⎢⎢⎢⎣

K�

k = 1

𝛾k−1
�
rst+k −

1

𝜂
g𝜋
𝜋̄
(st+k−1)

�����st = s

⎤⎥⎥⎥⎦

(s, a) ∈ S ×A in the k-th iteration are defined as 
𝛹k(s, a) =

1

𝜂
log 𝜋̄k−1(a�s) +∑

s
�
∈S T

a

ss
�

�
r a

ss
� + 𝛾Vk−1

𝜋̄
(s

�

)

�
 . It 

represents the closed form of the optimal policy �∗ 
following:

The optimal action preferences function determines DPP’s 
optimal policy according to Eq. (5). The update recursion 
of �  follows:

where M��k(s) is the the Boltzmann soft-max operator:

Following Eq. (6), DPP updates the action preferences func-
tion � to iteratively improve its value function to the optimal 
one while considering the smoothness in the policy update 
(controlled by � ). A summary of nomenclature can be found 
in Table 6.

2.3.2 � Path planning via DPP

In order to use the inferred local path within DPP, it is 
taken to serve as the baseline reward (Eq. 5). Cells along 
the path receive increasingly positive reward, whereas cells 
near obstacles perceived by the laser scanner receive an 
increasingly negative reward. DPP then optimizes its policy 
grid-world with smooth updates giving consideration to the 
baseline policy, and the resultant path drawn from the final 
policy is then followed. An example of path planning can 
be seen in Fig. 9.

Given initial action preferences �0(⋅, ⋅) , DPP parameters 
� , � and the number of iterations K, the process of the path 
generator is summarised in Algorithm 1.

(4)Vk+1
𝜋̄

(s) =
1

𝜂
log

∑
a∈A

exp(𝜂𝛹k(s, a)),

(5)𝜋̄k+1(a) =
exp

�
𝜂𝛹k(s, a)

�
∑

a
�
∈A exp

�
𝜂𝛹k(s, a

�
)
� .

(6)
�k+1(s, a) = �k(s, a) −M��k(s)

+
∑
s
�
∈S

T
a

ss
�

(
ra
ss

� + �M��k(s
�

)

)

(7)M��(s) =
�
a∈A

exp
�
��(s, a)

�
�(s, a)

∑
a
�
∈A exp

�
��(s, a

�
)
� .

Fig. 8   Actions in a grid-world. 
From cell 5, a reinforcement 
learning agent can move to any 
of its 8 neighbors or remain in 
cell 5

1 2 3

4 5 6

7 8 9
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(a) Base path (light yellow, upwards along cen-
ter of figure).

(b) Final path from DPP (red, upwards along center
of figure).

(c) Resultant PMD movement from path tracking.

Fig. 9   Example of path planning with DPP, from the intention result-
ant from Fig. 6. A path primitive (a) is set as the baseline policy with 
a high reward (light yellow) while perceived obstacles (white) from 
the PMD’s point of view are inflated and given a low reward (dark 

blue cells). Gradient ascent across the reward landscape after DPP 
optimization yields the final DPP path (red) in b, with resultant PMD 
movement shown in c (color figure online)
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2.4 � User path compliance

Path tracking via Pure Pursuit (Coulter 1990) commences 
once a local path has been transformed into global co-ordi-
nates. This controller was chosen primarily for its simplic-
ity and speed, although it can be readily substituted by 
others such as DWA (Fox et al. 1997). The magnitude of 
joystick displacement scales the output linear and angu-
lar velocities, allowing the user to always control the rate 
of PMD motion. Pure Pursuit derives linear and angular 
velocities from a control point located a fixed lookahead 
distance (0.8 m for the UTS wheelchair) further ahead 
along the path. Given this point is always within the PMD’s 
reference frame, it serves as a suitable objective to gauge 
the relevance of the remainder of the current tracking path 
against.

In a similar manner to the construction of the intention 
estimation model, a compliance model is built for potential 
control points within the lookahead distance while only con-
sidering joystick input, resulting in a compliance estimate 
in range (0, 1) given a control point and a∗ . Either reaching 
the end of the path or insufficient compliance results in a 
new path request.

3 � Experiments

This section details the experiments undertaken in further 
evaluating the assistive framework in both simulation and 
on the UTS wheelchair. Ethical approval1 was granted prior 
to experimentation, as was consent from all participants.

Training data was provided by an able expert in a Stage 
(wiki.ros.org/stage​) simulation of the UTS wheelchair driv-
ing inside the home environment depicted in Fig 10. The 

driver was tasked with navigating throughout the entirety of 
the environment’s accessible space while maintaining safe 
distances to obstacles and walls. PMD odometry, user input 
and simulated laser scanner data were logged at 10 Hz.

Experimentation was conducted on an Intel i7 Ubuntu 
laptop with 16 GB RAM and Nvidia 980M GPU. An aver-
age intention inference and path generation cycle took 
0.46 ± 0.06 seconds, excluding minor latencies arising from 
MATLAB/ROS (www.ros.org) communications. For path 
planning a reward of -100 was allocated to obstacle cells. 
Cells near obstacles received a negative reward from Gauss-
ian blurring of the obstacle reward map with a sd of 2 cells 
when all other cells were set to 0. Cells along the path were 
then allocated a linearly increasing reward from 10 to 100 
from beginning to end. DPP learning parameters � , � and K 
were set to 0.99, 0.001 and 100 respectively. The compliance 
threshold was set to 0.9.

3.1 � Comparison of simulation to real PMD

Five able users drove around a 4m by 2m Figure-8 in both a 
computer simulation and on the real PMD within the UTS 

Fig. 10   Training data (red) from an able demonstrator in a 20 × 10m 
simulated home environment (color figure online)

Fig. 11   Real experiment in the UTS Data Arena, overlaid with a 
close-up of a 6-DOF tracking marker on top of the wheelchair’s laser 
scanner

Fig. 12   High level schematic of the UTS instrumented wheelchair

1  UTS HREC 2012000400: “Applying Assistive Robotic Technology 
to Disabled Care Practice at Greystanes Disability Services.”

http://wiki.ros.org/stage
http://www.ros.org
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Data Arena (Fig. 11), an augmented reality/motion capture 
facility capable of real-time millimeter accuracy 6-DOF 
marker tracking which serves as a localization ground 
truth. The UTS wheelchair (schematic in Fig. 12) is an 
Invacare Roller M1 fitted with a Hokuyo UTM-30LX laser 
scanner, shaft-mounted wheel encoders, and an Arduino to 
both read and write joystick signals. For additional infor-
mation about modelling of the PMD’s control, see Poon 
and Miro (2015). The resultant paths are shown in Fig. 13. 
The simulation GUI measured 26 × 13 cm , and the users 
were free to adjust the computer’s position before attempt-
ing the task. Driving metrics from these experiments are 
presented in Table 1. The closenesses in task completion 
time and input magnitude, and the low path deviation, indi-
cate a strong similarity in both user performance and task 
relevance. A similar level of steering entropy and angular 
jerk was also observed, representing a similar level of task 
effectiveness between both experiments. Given the simi-
larities in the results from both experiments the authors put 
forward that the simulation is a viable evaluation setting 
for the wheelchair in terms of human factors. With other 
phenomena such as wheel slippage across varying ground 
surfaces beyond the scope of such evaluations, it can be 
seen that users perform similarly in terms of task comple-
tion and efficiency.

3.2 � Simulation experiment

The assistive framework is first assessed in simulation with 
10 able-bodied test users, utilizing a course (Fig. 14) seen in 
Vanhooydonck et al. (2010). This course significantly differs 

(a) Paths taken by users in simulation. (b) Paths taken by users in the UTS Data Arena.

Fig. 13   Resultant Figure-8 paths from simulation and in the UTS Data Arena. The gray circles have a thickness of 0.5m (color figure online)

Table 1   Driving metrics from the Figure-8 experiments

Metric Simulated Real

Distance travelled (m) 13 ± 0.4 12.7 ± 0.8

Avg. path deviation (m) 0.05 ± 0.01 0.07 ± 0.006

Steering entropy 0.56 ± 0.03 0.61 ± 0.04

Avg. angular jerk ( rad∕s3) 0.01 ± 0.01 0.02 ± 0.01

Avg. forward joystick signal 0.46 ± 0.1 0.41 ± 0.1

Time taken (s) 42 ± 8 46 ± 6

(a) Unassisted path.

(b) Assisted path.

Fig. 14   Comparison between unassisted and assisted paths (gray) of 
an able volunteer with simulated input disability, driving counter-
clockwise in a 21 × 37m simulated environment starting from the 
top-right corner. Additional details for each figure are available in the 
captions of Fig. 15 (color figure online)
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to the home environment from which training data was gath-
ered for model building purposes.

PMD users suffering from limb paresis or other motor 
skill losses may only be able to provide rough indications 
(Vanhooydonck et al. 2010) of desired direction. To imitate 
this coarseness in able users, their joystick input signals were 
discretized amongst 5 evenly spaced joystick orientations. 
Each test user drove around the test course twice with such 
hampered input signals; without assistance, then with the 
assistive framework in operation.

3.3 � Real experiment

A 63 year old female volunteered to evaluate the framework 
on the UTS wheelchair.2 Due to complications from back 

injuries, she is unable to walk without heavy reliance upon 
dual walking canes and has been considering PMD prescrip-
tion. Her disabilities in conjunction with relative inexperi-
ence pose a significant challenge in maneuvring the PMD 
safely.

Experimentation took place on the publicly accessible 
campus of a college neighboring UTS with which the volun-
teer was already familiar, following a 10 minute acclimation 
period after which the test user deemed herself sufficiently 
confident. As shown in Fig. 15, the route featured several 
doorways and narrow corridors, as well as large open areas. 
Foot traffic at the time was sufficiently sparse that no moving 
entities had an effect on the user or PMD behavior; this is 
reasonable given both the tendency of pedestrians to avoid 
PMDs, and the framework’s significantly truncated operat-
ing envelope.

4 � Results

For quantitative comparison, all 20 simulated runs were 
ended upon re-entering the starting ‘diamond’. From 
Urdiales et al. (2013) several task metrics are evaluated 
(Table 2) that do not consider deviation from some optimal 
route, to uphold the belief that users should not be penalized 
for particular driving preferences such as keeping to the right 
of corridors.

The same metrics extracted from the real experiment 
follow in Table 3. From the simulation experiments, the 
angular jerk decreased slightly with the assistive frame-
work; the paths taken by the PMD also appear smoother, 
particularly noticeably in the slalom portions on the left 
sides of Fig. 14a, b. As the real test course largely consisted 

(a) Unassisted path, with collision point(s) highlighted in red.

(b) Assisted path with this paper’s framework.

Fig. 15   Comparison between unassisted and assisted paths (gray) 
taken by the disabled volunteer on the UTS wheelchair, with rectan-
gular frames representing PMD footprint. On the right, compliant 
DPP path points are drawn in green, with noncompliant remainders 
of paths in red. The area shown in these figures measures approx. 
97 × 58m . White regions represent free space, black regions rep-
resent perceived obstacles and grey regions are unknown due to 
occlusions. PMD localization and map building via Hector SLAM 
(Kohlbrecher et al. 2011) (color figure online)

Table 2   Driving metrics from simulation experiment

Metric Unassisted Assisted

Avg. angular jerk ( rad∕s3) 0.07 ± 0.03 0.03 ± 0.02

Time taken (s) 166 ± 25 146 ± 16

Distance travelled (m) 96 ± 1 97 ± 2

Total collisions 5 0
Steering entropy 0.57 ± 0.02 0.55 ± 0.03

Table 3   Driving metrics from real experiment

Metric Unassisted Assisted

Avg. angular jerk ( rad∕s3) 0.03 ± 0.03 0.025 ± 0.03

Time taken (s) 566 252
Distance travelled (m) 238 220
Total collisions 8 0
Steering entropy 0.57 0.6

2  Video available at http://youtu​.be/EPjV2​dCe46​E.

http://youtu.be/EPjV2dCe46E
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of straight corridors, the improvements in platform jerk was 
less noticeable in this experiment compared to the change 
seen in the simulated experiments.

The distances travelled in both experiments are similar 
with or without assistance, however the course comple-
tion times taken by the users in simulation were notice-
ably shorter with a reduction of over 10%. The difference 
in completion times is far larger in the real experiment due 
to several factors. Firstly the user lost speed scraping along 
the walls on several occasions, which also resulted in several 
stops for recovery. By contrast, such contact is not handled 
by the simulator and no hindrance was incurred as a result. 
Secondly when unassisted the user drove at an average linear 
velocity of 0.6 m/s when moving freely compared to 0.85 
m/s while assisted, whereas from the simulation experiments 
less disparate average linear velocities of 0.59 ± 0.07 and 
0.67 ± 0.07 m/s were observed. There were also no colli-
sions in both simulation and real experiments when users 
drove with assistance, whereas without assistance several 
collision events occurred.

4.1 � Steering entropy

Introduced in Nakayama et al. (1999) to assess driver work-
load, steering entropy has also been taken as a measure of 
task effectiveness (Yang et al. 2017). For each input steer-
ing angle ut in a time series, an input prediction error et is 
taken as the difference between ut and a second order Taylor 
approximation ût:

A frequency distribution P of all e is then discretized into 9 
bins (Nakayama et al. 1999), of which the Shannon entropy 
H is taken as the steering entropy of the user over the entire 
time series:

The steering entropy observed between the able users with 
simulated disabilities and the disabled volunteer are very 
similar at approximately 0.57 (Tables 2, 3), indicating that 
the simulated disability provided a level of task impedance 
comparable to the disabled volunteer’s various health issues. 

(8)
ût = ut−1 + (ut−1 − ut−2)

+
1

2

(
(ut−1 − ut−2) − (ut−2 − ut−3)

)
.

(9)H =
∑
i

−Pi × log9Pi.

However this does not imply that the her disabilities were 
accurately replicated; rather that the able users experienced 
a similar difficulty in providing task effective inputs.

4.2 � Assistive framework metrics

For evaluating predicted paths only an initial segment trun-
cated by the path’s first incompliant point is considered: 
given a path point p generated from time-step t, PMD posi-
tions X∗

1∶T
 and user inputs Y∗

1∶T
 , incompliance is defined as 

the compliance estimator falling below the experimental 
threshold for ( p′,Y∗

t∶T
 ), where p′ is p w.r.t. X∗

t∶T
 . Table 4 

documents several metrics directly concerning predictive 
performance from both simulated (14,664 samples) and 
real (2517 samples) experiments. Paths can be evaluated in 
isolation due to the lack of reliance upon past or expected 
future data.

Although the observed percentage-wise path compliance 
and utilisation of each path is arguably equal to or greater 
than in the work by Huntemann et al. (2007), it is worth 
noting that this does not necessarily translate into supe-
rior overall performance given that both works can always 
provide new paths at a given instant. The RMSE between 
compliant path points and PMD positions indicates reliable 
performance of Pure Pursuit.

4.3 � User impressions

When asked about her experience, the disabled volunteer 
stated that she received the impression that the PMD was 
“pulling” towards empty spaces, most noticeably in restric-
tive areas, and felt more confident knowing her inputs were 
buffered. The authors were also informed that the integrated 
joystick was awkwardly positioned, and that she felt it nega-
tively impacted her performance. This has been previously 
documented in Esquenazi et al. (2016), and the authors are 
currently exploring alternatives.

4.4 � Evaluation of generalization in path prediction

In order to evaluate alignment between predicted paths and 
natural human behaviour, the framework was run offline 
(Fig. 16) for all 10, 948 driving samples from Matsub-
ara et al. (2015) without retraining from the environment 
simulated in Fig. 10. These samples were collected from 
several able users freely driving the UTS wheelchair to 
various long-term destinations. For each path point planned 
over the course of a single driving sequence, an error is 
recorded as the minimum distance from the path point to 
the nearest recorded PMD position in the sequence. In total 
132, 917 path points were generated, with a mean error of 
0.068 ± 0.081m.

Table 4   Framework metrics from both experiments

Metric Simulated Real

Path compliance (%) 64 ± 33 56 ± 40

PMD path RMSE (m) 0.04 ± 0.03 0.1 ± 0.07
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With a null hypothesis of an accuracy of 0.1m , p < 0.01 
is obtained. 0.1m , equivalent to the width of two cells in the 
path planning grid-world, is taken here as it is the average 
path tracking error encountered during the real experiment. 
This result indicates that the framework is capable of captur-
ing user intentions, and can also produce natural human-like 
paths under conditions not seen in training data.

5 � Conclusions

Besides their amenability to be modelled upon demonstra-
tion data, a significant advantage of actively assistive mobil-
ity systems is the ability to naturally encompass maneuvres 
which would fail under the strict collision avoidance pro-
tocols that form a core component of passively assistive 
systems. This paper presents a framework allowing for the 
utilisation of expert demonstration data to serve as the basis 
of short-term intention estimation and path planning behav-
iors for users of sensor-equipped powered mobility aids, in 
order to provide active navigational assistance in areas that 
have not been explored and mapped a-priori.

Testing in environments not explored in training data 
by both a disabled volunteer on the UTS semi-autonomous 
wheelchair, and in simulation by able users subject to a 
comparable level of impedance, reveal strong correlations 
between desired wheelchair behavior and predicted paths. 
Although trials with disabled individuals were limited to a 
single user, the comprehensive testing with a typical end-
user suited for PMD prescription demonstrates how intel-
ligent PMD assistance would have significant benefits.

Avenues for further investigation include the applica-
tion of deep learning methodologies towards both intention 
estimation and path planning as these techniques have been 
proven for building complex models given adequate data, as 
well as further experimentation with a greater test user base.
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Appendix: nomenclature

See Tables 5 and 6. 

(a) Paths taken by experienced users on the UTS wheelchair.

(b) Examples of predicted paths along a route to each destination.

Fig. 16   10,948 driving samples (left) were recorded from a range of 
experienced users in Matsubara et al. (2015). The framework is then 
run offline for all samples (examples on right, with additional details 
available in the caption of Fig. 15) to evaluate the ability to accurately 
plan paths close to those taken by experienced users driving freely. 
The area shown in these Figures measures approx 60 × 55m

Table 5   For Sect. 2.2

Symbol Definition

X Cartesian PMD pose data
Y 2D joystick input signal data
Z Polar planar laser scanner data
G Termination points of local paths

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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