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Abstract
The obstacles avoidance of manipulator is a hot issue in the field of robot control. Artificial Potential Field Method (APFM) 
is a widely used obstacles avoidance path planning method, which has prominent advantages. However, APFM also has 
some shortcomings, which include the inefficiency of avoiding obstacles close to target or dynamic obstacles. In view of the 
shortcomings of APFM, Reinforcement Learning (RL) only needs an automatic learning model to continuously improve 
itself in the specified environment, which makes it capable of optimizing APFM theoretically. In this paper, we introduce 
an approach hybridizing RL and APFM to solve those problems. We define the concepts of Distance reinforcement fac-
tors (DRF) and Force reinforcement factors (FRF) to make RL and APFM integrated more effectively. We disassemble 
the reward function of RL into two parts through DRF and FRF, and make them activate in different situations to optimize 
APFM. Our method can obtain better obstacles avoidance performance through finding the optimal strategy by RL, and the 
effectiveness of the proposed algorithm is verified by multiple sets of simulation experiments, comparative experiments and 
physical experiments in different types of obstacles. Our approach is superior to traditional APFM and the other improved 
APFM method in avoiding collisions and approaching obstacles avoidance. At the same time, physical experiments verify 
the practicality of the proposed algorithm.
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1 Introduction

Obstacles avoidance of manipulators is a hot and impor-
tant issue in robot control research. At present, commonly 
used obstacles avoidance path planning methods include 
APFM (Wang et al. 2018), Fuzzy inference (Le et al. 2016), 
Rapidly-exploring random trees (RRT) (Tao et al. 2018), 
Approximate obstacle avoidance algorithm (Zhang et al. 
2017a), etc. Among them, APFM is simple in principle, fast 
in the calculation, and has the ability to obtain environmen-
tal information in real-time. Therefore, it shows great advan-
tages in complex environments and is often used in path 
planning to solve obstacles avoidance problems (Gai et al. 
2019). However, APFM also has limitations, for instance, 

it is easy to fall into a locally optimal solution or produce 
vibrations, and lacks adaptive ability. In addition, it is also 
difficult to avoid dynamic obstacles, and the robotic arm is 
easy to fail avoiding obstacles by using APFM when the 
target is close to obstacles (Zhiyang and Tao 2017).

Considering the existing problems of traditional APFM, 
researchers usually use two species of methods to optimize 
its disadvantages. The first is to modify and optimize the 
internal parameters of the APFM. Guan et al. proposed a 
variable-step APFM in order to get rid of the local minima 
by the improved APFM. The manipulator avoided obstacles 
to reach the target point by modifying the potential energy 
function and the variable step length of the joint space for 
segmented search (Guan et al. 2015); Zhang et al. used a 
potential energy function containing joint angle informa-
tion, which was on the basis of traditional APFM function, 
to guide the path planning of manipulator. At the same time, 
the manipulator could avoid the local minima by adding vir-
tual obstacles (Zhang et al. 2017b). Li et al. (2019) selected a 
series of control points affected by the total potential field on 
the manipulator, and proposed a strategy that only attracted 
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the last point but all selected points were repelled by obsta-
cles, then the points in the workspace were converted into 
the torque in the configuration space to make the manipula-
tor move. Chen and Li (2017) modified the APFM func-
tion by increasing the gravitational field while reducing the 
repulsion field when approaching the obstacles, and applied 
it to the collision avoidance problem of unmanned ships; Lin 
et al. proposed the concept of rotating repulsive force field 
to avoid obstacles in three-dimensional space by modifying 
the function parameters. The target factor was introduced 
into the repulsive force field to link APFM function and the 
target, which provided a feasible direction for the robotic 
arm (Lin and Hsieh 2018). Song et al. (2020) proposed a 
Predicted-APFM that used time information and predicted 
potential to plan a smoother path with correct angle lim-
its, speed adjustments, and correctly predicted potentials to 
improve the feasibility of generating paths. However, the 
above adjustments of traditional APFM’s parameters do not 
touch the fundamentals of APFM in terms of algorithms. 
Thus, there are still some problems with those improved 
methods, such as their slow convergence speed and a large 
amount of calculation. Meanwhile, they are also weak in 
dealing with dynamic obstacles and collisions, and have 
failed to solve the local optimal solution drastically. There-
fore, in order to solve the problems of APFM fundamentally, 
researchers often use the second type of improved method 
to obtain better results.

The second is to use complementary hybrid strategies to 
promote APFM. Qian et al. proposed an upgraded APFM 
based on connectivity analysis in order to solve the dynamic 
target path planning problem of the Location-Based Ser-
vice system. By analyzing the connectivity of obstacles, this 
algorithm obtained the feasible solution domain, and planed 
the path in the feasible solution domain in advance, which 
prevented the agent from falling into the local optimal solu-
tion. Meanwhile, they set the speed factor and the maximum 
steering angle to obtain a relatively smooth path (Qian et al. 
2018). Chen et al. (2019) avoided the local minima problem 
by setting virtual obstacles and targets, and used a simulated 
annealing algorithm to search for the optimal parameters 
of APFM. Shen et al. (2019) aimed at the dual-arm robot’s 
control, carried out obstacles avoidance motion planning 
for the master arm against static obstacles firstly, then used 
the master arm as a dynamic obstacle when the slave arm 
moved, so that modified the traditional APFM and planed 
the complete path of the dual-arm robot. In recent years, 
the rapid development of RL has brought more new possi-
bilities to the traditional APFM. RL has strong adaptability 
and self-learning capabilities in complicated environments. 
It can train the model through interactive or offline testing in 
the environment, and use the reward or punishment function 
to motivate the agent to learn new strategies. The agent inter-
acts with the environment in real time, obtains the optimal 

behavior for completing the task through trial and error, and 
establishes a value function by observing the current state 
to predict the rewards of different behavior (Christen et al. 
2019). Hence, many researchers have tried to combine RL 
with APFM. Zheng et al. (2015) proposed a multi-agent path 
planning algorithm based on hierarchical RL and APFM, 
and used the partial updating capability of hierarchical RL 
to ameliorate the problems of slow convergence and low 
efficiency of path planning algorithms. Yao et  al. com-
bined the improved Black Hole Potential Field with RL to 
make the agent automatically adapted to the environment 
and learned how to use basic environmental information to 
find the target. At the same time, the trained agent could 
adapt Curriculum Learning method to generate obstacles 
avoidance path in complex variable environments (Yao et al. 
2020). Noguchi and Maki (2019) proposed an APFM based 
on binary Bayesian filtering and used RL to create a path 
in a simulated environment. The second type of improved 
APFM generally have stronger advantages compared to the 
first type, especially the strategies of mixing RL and APFM 
have better performance, which provides support for us to 
combine these two algorithms.

In this paper, we propose a new Reinforcement learning-
Artificial Potential Field Method (RL-APFM) for avoiding 
obstacles to solve the problems that traditional APFM is 
not easy to avoid dynamic obstacles, and obstacles closing 
to target. We define the concept of reinforcement factors 
and find the optimal obstacles avoidance trajectory through 
iterative learning of RL, and RL-APFM can make up for 
deficiencies of traditional APFM by introducing RL. Firstly, 
traditional APFM detects the environment and creates obsta-
cles avoidance trajectory. Secondly, when the robotic arm 
is too close to obstacles, DRF is activated, and the FRF is 
activated when a collision occurs. Finally, RL-APFM itera-
tively searches for the value of the optimal enhancement 
factor through RL to get rid of obstacles and reach the tar-
get. Meanwhile, we conduct multiple sets of experiments 
to verify the effectiveness and practicability of RL-APFM.

2  Traditional APFM

2.1  Obstacles avoidance problem

To simplify the analysis, obstacles are usually transformed 
into cylinders or spheres, and the center of each obstacle is 
their origin, the occupied volume is their range of influence. 
Hence, with the aid of the geometric topology principle, 
this paper approximates obstacles avoidance problem to be 
simplified and specific.

We assume that the range of obstacles is a sphere, and 
the robotic arm is simplified to multiple cylindrical link-
ages. The simplified obstacles avoidance situation is shown 
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in Fig. 1. Assuming that the coordinate of the sphere’s center 
is O(xo, yo, zo) , and the radius is ro . The radius of one of the 
robotic arms’ links is rl , then the radius after merging the 
radius of cylinder and sphere is r = ro + rl . Assuming that 
the perpendicular from the center of sphere to connecting 
rob intersects the link at F(xf , yf , zf ) , which represents the 
position of the nearest point from the robotic arm to the 
obstacle.

Therefore, the distance between robotic arm and the 
o b s t a c l e  c a n  b e  e x p r e s s e d  a s 
dof =

√
(xo − xf )

2 + (yo − yf )
2 + (zo − zf )

2  . In order to 
ensure the safety of robotic arm, we set a safety distance � , 
and the obstacles avoidance process can be roughly divided 
into three situations:

1. dof − r > 𝛿 means the robotic arm is far away from the 
obstacle and it is safe.

2. 0 < dof − r ≤ 𝛿 means the robotic arm is close to the 
obstacle, and the robotic arm needs to take appropriate 
actions to avoid collisions.

3. dof − r = 0 means the robotic arm is in contact with or 
colliding with the obstacle, and the robotic arm needs to 
react immediately to get rid of the obstacle.

Therefore, the purpose of obstacles avoidance is to make 
the end effector reach the target position without colliding 
with obstacles. Even if sudden or unavoidable collisions 
occur, the manipulator can be quickly avoided to prevent 
further damage.

2.2  Process of APFM

The concept of artificial potential field was proposed by 
O. Khatib in 1985, which belonged to the local path plan-
ning algorithm. The basic idea of traditional APFM is to 
fill an artificial potential field in the working space of the 
robot. The target point generates a virtual “attractional 
field" in the workspace (defined as Uatt in Eq. 1), and then 
generates an “attractional force” to attract the agent to 
approach it. Obstacles generate a virtual “repulsive field” 

in the workspace (defined as Urep in Eq. 2), thereby gen-
erating a “repulsive force”. Under the “attractional field” 
and “repulsive field”, agents will be in a combined field 
(defined as U in Eq. 3), which can make the agent avoided 
obstacles and reached the target point (Wang et al. 2018).

where, � is the positive scale factor of attraction, � is the 
positive scale factor of repulsion, q, qtar, qobs are the posi-
tions of the end effector, the target, and the obstacle in the 
working space respectively, �(x, y) is the Euclidean distance 
between x and y , so �(q, qtar) is the distance between the end 
effector and the target, �(q, qobs) is the distance between the 
end effector and the obstacle, and �0 is the effective radius of 
each obstacle. Attraction Fatt and repulsion Frep are defined 
as the negative gradient values of the attractional field and 
the repulsive field respectively, which showed in Eqs. 4 
and 5. The resultant force on the end-effector F is shown 
in Eq. 6.

2.3  Problems of traditional APFM

APFM usually can avoid obstacles, but in some special 
circumstances, it happens to appear violent fluctuations 
or even fail to reach the target (as shown in Figs. 2 and 3).

In Fig. 2, the robotic arm collides with an obstacle in 
the first second, and begins to fluctuate periodically, which 
indicates that the robotic arm has fallen into a local mini-
mum and cannot get rid of the obstacle. Figure 3 shows the 
posture of the robotic arm when it fails to avoid obstacles 
more intuitively.

These above phenomena show that APFM has certain 
limitations when avoiding obstacles, and the main reasons 
can be roughly summarized as follow:

(1)Uatt(q) =
1

2
��2(q, qtar)

(2)Urep=

{
1

2
𝜂

(
1

𝜌(q,qobs)
−

1

𝜌0

)2

𝜌(q, qobs) ≤ 𝜌0

0 𝜌(q, qobs) > 𝜌0

(3)U(q) = Uatt(q) + Urep(q)

(4)Fatt(q) = −∇Uatt(q) = ��(qtar − q)

(5)

Frep(q) = −∇Urep(q)

=

{
𝜂

(
1

𝜌(q,qobs)
−

1

𝜌0

)
1

𝜌2(q,qobs)
∇𝜌(q, qobs) 𝜌(q, qobs) ≤ 𝜌0

0 𝜌(q, qobs) > 𝜌0

(6)F(q) = −∇U(q) = Fatt(q) + Frep(q)

r
O

F

or
O

lr

F
� �

Fig. 1  Simplified obstacles avoidance situation
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1. The independent variables of Uatt and Urep of the tra-
ditional APFM are only related to the position of 
the target, obstacles, and the end effector, but no 
more other constraints. Therefore, when the position 
information continuously updates, the efficiency of 

APFM will be reduced greatly, which means, agents 
cannot avoid dynamic obstacles and track dynamic 
targets well.

2. Where the combined field is zero, Fatt and Frep cancel 
out each other, which makes it difficult for APFM to 

Fig. 2  Significant vibration during obstacles avoidance

Fig. 3  Obstacles avoidance fail
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judge trajectory, or even causes the local optimal solu-
tion problems (as shown in Fig. 4).

3. When the target and obstacles are relatively close to 
each other, Frep will be far greater than Fatt , resulting 
the robotic arm cannot approaching the target (as shown 
in Fig. 5).

In response to the above problems, we hybrid the RL and 
APFM, and introduce the concept of Reinforcement learn-
ing factors (RLF) including DRF and FRF, which can make 
the combination of RL and APFM much more effectively.

3  RL‑APFM

RL rewards from a specific environment and trains the 
model through interactive or offline testing. The agent 
acquires knowledge from the environment and improves 

their policy to adapt to the environment. In this framework, 
the agent interacts with the environment through perception 
and operation. By observing the current state, a function is 
established to predict different behaviors. At the same time, 
the strategy generated by the value function maps the cur-
rent state to the corresponding behavior. The environment 
reacts to the agent’s behavior, and converts the new state 
information into the agent’s response, then the agent receives 
feedback from the environment and updates the attribute 
value. Through the above process, the agent can adapt to the 
environment and react to different states accordingly.

RL tasks are usually described by the Markov decision 
process: the agent is in the environment � , and the state 
space is S , where each state s ∈ S is the description of the 
environment perceived by the machine; Actions which agent 
can choose constitute the action space A . If a certain action 
a ∈ A acts in the current state s , the potential transfer func-
tion P will make the environment transfer from the current 
state to another state with a certain probability. At the same 
time, the environment will feedback to the agent accord-
ing to the potential reward function R that makes the agent 
obtain a policy � in constant attempts.

In general, the RL task for the robotic arm corresponds 
to a set of tuples M =

{
S,A,P,R, T , S0, �

}
 , where, S repre-

sents the environmental status, A represents the action sta-
tus, P ∶ S × A × S → ℝ represents state transition probabil-
ity, R ∶ S × A × S → ℝ represents the reward, T  represents 
the working time, S0 represents the initial state distribution, 
� ∈ (0, 1) represents the discount rate, st ∈ S and at ∈ A . 
Define Rt as the discounted sum of future penalties:

We define the Q-function Q�(st, at) , which describe the 
expected return under a policy � when taking action at from 
state st (also called as state-action pair) as follows:

For all strategies, if the expected revenue of one strategy 
is greater than or equal to the revenue of other strategies, it 
will be the optimal strategy Q∗(st, at) , i.e.

The optimal strategy conforms to the bellman equation 
and can be expressed by Q value at the next moment as:

In order to solve the above problems of traditional 
APFM, considering the actual situation of obstacles avoid-
ance of the robotic arm, we combine RL with APFM and 

(7)Rt =

T∑

i=t

� i−tr(si, ai)

(8)Q�(st, at) = �M[Rt|st, at]

(9)Q∗(st, at) = max
�

�M[Rt|st, at]

(10)Q∗(st, at) = �M[r + � max
at+1

Q(st+1, at+1)|st, at]

Fig. 4  The situation that combined field is zero

Fig. 5  The situation that obstacles are relatively close to target
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propose RL-APFM. Considering that the obstacles avoid-
ance process mainly needs to be focused on distances and 
forces, we split the reward function value R = r(st, at) into 
two parts, which are DRF and FRF. Their corresponding 
Q function values are Q�

d
(st, at) and Q�

f
(st, at) respectively, 

which shown as below:

where, the reward functions RDRF and RFRF are determined 
by the distance �(q, qobs) and the collision force F between 
the robotic arm and obstacles.

It can be seen that when the distance between the 
robotic arm and obstacles becomes shorter and the colli-
sion force between the robotic arm and obstacles becomes 
greater, the obtained reward function value should also 
be larger; otherwise, the reward function value should 
be smaller. Therefore, take the minimum reward func-
tion’s value and find the corresponding Q function’s value 
Q�(st, at) and define it as Q∗(st, at) , then the resultant force 
generated by APFM in each RL iteration process can be 
defined as:

(11)RDRF =

T∑

i=t

� i−t
1

�(q, qobs) + random(0, 10−3)

(12)RFRF =

T∑

i=t

� i−tF

(13)Q�

d
= �M[RDRF|st, at]

(14)Q�

f
= �M[RFRF|st, at]

(15)Q�(st, at) = Q�

d
(st, at) + Q�

f
(st, at)

Fig. 6  Flow diagram of RL-APFM

Fig. 7  Static obstacles environment
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Through analysis, it can be seen that when the robotic arm 
gets closer and closer to the obstacle, the value of Q∗(st, at) 
becomes larger and larger, and the repulsive force is also 
increasing, helping the robotic arm to escape from obstacles. 
Conversely, when Q∗(st, at) keeps decreasing, it indicates 

(16)

F(q) = −∇U(q) =
Q∗(st, at)

1 + Q∗(st, at)
Frep(q) +

1

1 + Q∗(st, at)
Fatt(q)

that the robotic arm has gradually escaped from the control 
range of obstacles, and the attractional field begins to restore 
its dominant position, guiding the object to continue moving 
towards the target. Therefore, the ultimate goal of the RL-
APFM is to make the Q∗(st, at) function value infinitely close 
to zero through iterative learning, which means the reward 
function value continues to decrease, to get rid of obstacles 
and reach the target.

Fig. 8  Result of static obstacles avoidance without collision

Fig. 9  Result of static obstacles avoidance with collision



193An obstacles avoidance method for serial manipulator based on reinforcement learning and…

1 3

Fig. 10  Function value of Q∗ under static obstacles avoidance with collision. a Before RL training, b After RL training

Fig. 11  Dynamic obstacles environment
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RL-APFM can show its unique advantages in dealing 
with the typical APFM’s problems:

1. In addition to position information, RL-APFM intro-
duces DRF and FRF, which makes the independent 
variables more abundant and more time-sensitive, and 
can have better performance during avoiding dynamic 
obstacles;

2. In the areas where the combined field is zero, RL can 
help RL-APFM to try out the best path direction and 

clarify the movement trajectory, at the same time, itera-
tive trial-and-error of DRF and FRF can help RL-APFM 
get rid of locally optimal solutions and achieve the ulti-
mate goal;

3. When the target and obstacles are relatively close, the 
activation of the DRF can modify the RL-APFM poten-
tial energy function to make the end effector continue 
to approach the target, and the FRF can ensure that the 
robotic arm can get rid of obstacles after collisions.

Fig. 12  Result of dynamic obstacles avoidance without collision

Fig. 13  Result of dynamic obstacles avoidance with collision
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Therefore, for general obstacles avoidance problems, 
RL-APFM adopts traditional APFM for path planning, and 
when the robotic arm enters the effective radius of the 
obstacles, DRF is activated to stay away from obstacles 
and avoid collisions. When the robotic arm collides obsta-
cles, FRF is also activated at the same time to escape from 
obstacles quickly. The flow of the RL-APFM is shown in 
Fig. 6.

4  Simulations and experiments

4.1  Simulations and analysis

In order to verify the performance of the proposed algo-
rithm, we use Matlab and CoppeliaSim as platforms to 
conduct an associated simulation of a 7-DOF redundant 
robotic arm. We place proximity infrared sensors on the 
front of the forearm and both sides of the elbow joint to 
detect the real-time distance between the robotic arm and 
obstacles. Similarly, place force sensors and protect planes 
on the front of the forearm and both sides of the shoulder 

joint to detect collisions and protect the robotic arm. Set 
the effective radius of obstacles �0 = 0.1m.

To verify the obstacles avoidance performance of RL-
APFM aiming at static obstacles, we set up a group of 
static obstacles avoidance simulations. The goal is to 
move the end effector to a specified position while try-
ing to avoid collisions between the robotic arm and static 
obstacles. Even in the appearance of an inevitable colli-
sion, the robotic arm can react quickly to escape obstacles. 
Figure 7 shows the static obstacles environment of simula-
tions. Four cylindrical static obstacles are set in the range 
of 1  m*1  m area, and RL-APFM is used for obstacles 
avoidance of the robotic arm.

1. When no collision occurs during the obstacles avoidance 
of the robotic arm, the obstacles avoidance situation is 
shown in Fig. 8. A proximity infrared sensor detects an 
obstacle at the 12 s, and starts to get rid of the obstacle 
at the 14 s, and then completely escapes from the obsta-
cle at the 16 s. While the robotic arm enters the dotted 
area, its speed slows down significantly and finally can 
realize obstacles avoidance, which proves that the DRF 

Fig. 14  Function value of Q∗ under dynamic obstacles avoidance with collision. a Before RL training, b After RL training
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is effective in static obstacles avoidance process, and 
RL-APFM can realize non-collision obstacles avoidance 
under static obstacles environment.

2. When a collision occurs during the obstacles avoid-
ance of the robotic arm, the obstacles avoidance result 
is shown in Fig. 9. A proximity infrared sensor detects 
an obstacle at 24.2 s, and a force sensor detects collision 
at 25.7 s. The robotic arm ends the collision at 31.3 s 
and completely gets rid of the obstacle at 33.7 s. When 
the robotic arm collides at 25.7 s, FRF is also activated 
under the premise that DRF remains activated. After a 
period of RL training, the robotic arm can finally achieve 
obstacles avoidance. Figure 10 shows that, after a period 
of iterative training, Q∗ ’s real-time value has shown an 
obvious downward trend relatively, which means that 
through multiple generations of training, RL-APFM has 
found the optimal obstacles avoidance solution.

  In order to verify the performance of RL-APFM 
aiming at dynamic obstacles, we also set up a group of 
dynamic obstacles avoidance simulations. The dynamic 
obstacles environment is shown in Fig. 11. Two dynamic 
human-shaped obstacles are set at the widthwise and 
longitudinal positions of robotic arm and walk through 
the widthwise and longitudinal sides of robotic arm to 
simulate the avoidance with dynamic obstacles. Mean-
while, we adopt RL-APFM for obstacles avoidance 
under dynamic conditions. The target is to move the 
end effector to a specified position while trying to avoid 
collisions from dynamic obstacles. Even in the appear-
ance of an inevitable collision or continuous collisions, 
the robotic arm can still escape obstacles as quickly as 
possible.

3. When no collision occurs during the obstacles avoidance 
of robotic arm, obstacles avoidance situation is shown in 

Fig. 15  Obstacles avoidance 
of static obstacle in traditional 
APFM
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Fig. 12. Two dynamic human-shaped obstacles approach 
the robotic arm at about the 10 s and the 15 s, respec-
tively. However, the robotic arm does not collide with 
them, and begins to escape from obstacles at about the 
20 s. When a dynamic obstacle is detected approaching, 
RL-APFM can achieve avoidance more favorably, and 
avoid collision within dotted areas, which can realize 
non-collision obstacles avoidance under dynamic obsta-
cles as much as possible.

4. When collisions occur during the obstacles avoidance of 
robotic arm, considering the elastic collision characteris-
tics of dynamic obstacles, the robotic arm often needs to 
achieve continuous obstacles avoidance under multiple 
collisions to accomplish complete obstacles avoidance. 
The obstacles avoidance result is shown in Fig. 13. The 
robotic arm occurs three consecutive collisions with 
dynamic obstacles in the 5–6th seconds. However, 
the impact force on robotic arm is getting smaller and 
smaller, and the manipulator starts to escape from obsta-
cles at about 6.5 s.

When dynamic obstacles continuously hit the robotic 
arm, FRF is activated while keeping DRF in the active state, 
so that the robotic arm is gradually away from the move-
ment path of obstacles under the guidance of RL-APFM. 
Figure 14 shows that, after a period of iterative training, Q∗ ’s 
real-time value has shown an obvious downward trend rela-
tively, which means through multiple generations of train-
ing, RL-APFM can still find the optimal obstacles avoidance 
solution under dynamic obstacles avoidance with collision.

4.2  Comparative experiments

Aiming at the problems that traditional APFM is prone to 
fail to avoid dynamic obstacles and obstacles closing to the 
target, we set up three sets of comparative experiments:

1. We compare the performance differences between RL-
APFM and traditional APFM by making the end effector 
reach the target position closing to an obstacle to prove 

Fig. 16  Obstacles avoidance of static obstacle in RL-APFM
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the superiority of RL-APFM. Set the initial position of 
the end effector Xini = (0.5, 0, 0.5) , the target position 
is Xtar = (0, 0.5, 0.5) , the unit meters. Set a cylindrical 
obstacle on the planned path of the robotic arm, and 
record the obstacle avoidance of APFM and RL-APFM 
respectively. The results are shown in Figs. 15 and 16.

  Figure 15 shows that traditional APFM makes robotic 
arm collided in Fig. 15c and cannot escape from the 
obstacle, which causing the end-effector to fall into a 
locally optimal solution in Fig. 15d. Thus, the robotic 
arm cannot reach the target. Figure 16 shows that RL-
APFM can avoid collisions in the same environment. 
Even if the target is close to the obstacle, it can realize 
obstacles avoidance successfully.

2. To prove the superiority of RL-APFM by avoiding 
dynamic obstacles, we set another comparative experi-
ment, and the goal task of this experiment is to make 
the robotic arm reach the target position while facing 
dynamic obstacles. Keep the initial and target positions 
unchanged, set the approximate humanoid model with 
a radius of 0.25 m and a height of 1.2 m as a dynamic 
obstacle. We let the humanoid model walk through the 
planned path of the robotic arm during its movement. 
Record obstacles avoidance of traditional APFM and 

RL-APFM respectively, and the results are shown in 
Figs. 17 and 18.

  Figure 17 shows that traditional APFM cannot avoid 
the dynamic obstacle. The robotic arm collides in 
Fig. 17c and stalls in Fig. 17d. When dynamic obstacle 
leaves the acting range of robotic arm in Fig. 17e, the 
end effector can continue to move until it finally reaches 
the target. Figure 18 shows that RL-APFM can avoid 
dynamic obstacle and realize non-collision obstacles 
avoidance in dynamic obstacles environment, which 
proves its superior performance comparing with tradi-
tional APFM.

3. In order to compare the proposed RL-APFM with the 
method in Guan et al. (2015) and traditional APFM, we 
construct the same simulation environment with Guan 
et al. (2015) for comparison. The compare results are 
shown in the following Table 1.

By comparison, we can find that in the experimental envi-
ronment of Guan et al. (2015), traditional APFM falls into 
a local minimum and fails to avoid obstacles. The improved 
APFM can jump out of the local minimum to complete 
obstacles avoidance. Under the same simulation conditions, 
RL-APFM can also achieve obstacles avoidance with shorter 

Fig. 17  Obstacles avoidance of dynamic obstacle in traditional APFM
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Fig. 18  Obstacles avoidance of dynamic obstacle in RL-APFM

Table 1  Comparison of RL-APFM and other methods

APFM Improved APFM in 
Guan et al. (2015)

RL-APFM

Time/s – 80 68
Generations – 100 76

Target

Obstacle

GLUON-6L3

PC

Explorer
development

board

Proximity
sensor

Pressure
sensor

Fig. 19  Physical experiments platform
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time and faster iteration, which proves the superior perfor-
mance of the proposed method.

4.3  Physical experiments

We migrate the proposed algorithm to INNFOS’s GLUON-
6L3 robotic arm, and install an appropriate amount of prox-
imity sensors and pressure sensors on robotic connecting 
links. Use the Explorer development board to connect sen-
sors to the PC to read sensors’ values. In order to save time 
and ensure the safety of the robotic arm, we directly apply 
the RL-APFM whose parameters have been trained on the 
simulation platform. The purpose of experiments is to make 
the end effector reach the target position under the prem-
ise of avoiding static and dynamic obstacles. The physical 
experiments platform is shown in Fig. 19.

1. When the robotic arm faces static obstacle closing to 
the target, the movement process of the robotic arm is 
shown in Fig. 20, and the yellow line shows the trajec-
tory of the end effector. The experimental results show 
that the robotic arm using RL-APFM can avoid closing 
obstacles without collision, which proves the effective-

ness of RL-APFM in facing closing static obstacles sce-
narios.

2. We imitate the collision against the robotic arm in the 
process of facing dynamic obstacles by hitting pressure 
sensors. The movements of the robotic arm are shown 
in Fig. 21. The yellow line shows the trajectory of the 
end effector before the collision, and the blue line shows 
the expected motion trajectory of the end of the robotic 
arm without collision. After hitting the force sensor 
in Fig. 21d, the robotic arm starts to achieve dynamic 
obstacles avoidance and finally makes the end effector 
reach the target, as shown by the red line from Fig. 21e 
to h. The experimental results show that the robotic arm 
using RL-APFM can react, avoid collisions, complete 
obstacles avoidance, and reach the target quickly when 
facing dynamic obstacles and collisions, which proves 
the effectiveness of RL-APFM in facing dynamic obsta-
cles and collision scenarios.

Through the above multiple sets of simulations and experi-
ments, it can be seen that the RL-APFM can realize collision 
and non-collision obstacles avoidance in static and dynamic 
obstacles environments. Meanwhile, RL-APFM shows more 

Fig. 20  Movement of the robotic arm facing static obstacles
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predominant performance when facing the obstacles clos-
ing to the target position. Besides, RL-APFM also has better 
dynamic obstacles avoidance ability than traditional APFM. 
Finally, physical experiments prove that RL-APFM can be 
used on physical robots and has a great obstacles avoidance 
effect.

5  Conclusion

In this paper, we construct the RL-APFM aiming at the 
obstacles avoidance problems proved by the serial redun-
dant manipulator and physical robotic arm. RL is grafted 
into traditional APFM to solve the two main problems of 
APFM that are prone to occur in the obstacles avoidance 
process, which include traditional APFM is not easy to 
avoid dynamic obstacles and obstacles closing to target. In 
order to combine RL and APFM efficiently, we define the 
concepts of DRF and FRF, and apply them in the reward 
function of RL. Then, the optimal strategy determined 
by the reward function is applied to APFM, and through 
iterative or offline learning in a specified environment, 
the robotic arm can achieve obstacles avoidance eventu-
ally. In order to verify the performance of RL-APFM, we 

describe the advantages of RL-APFM over traditional 
APFM theoretically. At the same time, we design four col-
lision and non-collision obstacles avoidance experiments 
in static and dynamic obstacles environments and three 
groups of comparative experiments. The simulation results 
show that the RL-APFM can avoid dynamic obstacles 
and realize obstacles avoidance when the target is close 
to obstacles by virtue of its unique advantages from RL. 
The comparative experiments’ results show RL-APFM’s 
superior performance compared with traditional APFM 
and another mentioned improved APFM when facing 
dynamic obstacles environment and the situation that the 
target and obstacles are approaching. At last, the physical 
experiments prove the effectiveness and practicability of 
RL-APFM.
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Fig. 21  Movement of the robotic arm facing dynamic obstacles (color figure online)
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