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Evidential data association based on Dezert–Smarandache Theory

Mohammed Boumediene1,2 · Hossni Zebiri1 · Jean Dezert3

Abstract
Data association has become pertinent task to interpret the perceived environment for mobile robots such as 
autonomous vehicles. It consists in assigning the sensor detections to the known objects in order to update the obstacles 
map surround-ing the vehicle. Dezert–Smarandache Theory (DSmT) provides a mathematical framework for reasoning 
with imperfect data like sensor’s detections. In DSmT, data are quantified by belief functions and combined by the 
Proportional Conflict Redistribution rule in order to obtain the fusion of evidences to make a decision. However, this 
combination rule has an exponential complexity and that is why DSmT is rarely used for real-time applications. This paper 
proposes a new evidential data association based on DSmT techniques. The proposed approach focuses on the significant 
pieces of information when combining and removes unreliable and useless information. Consequently, the complexity 
is reduced without degrading substantially the decision-making. The paper proposes also a new simple decision-
making algorithm based on a global optimization procedure. Experimental results obtained on a well-known KITTI 
dataset show that this new approach reduces significantly the computation time while preserving the association 
accuracy. Consequently, the new proposed approach makes DSmT framework applicable for real-time applications for 
autonomous vehicle perception.

Keywords Data association · Belief functions · Dezert–Smarandache theory · Proportional conflict redistribution 6 · 
Dezert–Smarandache probability

1 Introduction

Multi-Target Tracking (MTT) is a fundamental system to 
interpret the perceived environment of mobile robots such 
as autonomous vehicles (Armingol et al. 2018; Brummelen 
et al. 2018). These cars require precise knowledge of their 
surrounding environment in order to ensure safe and com-
fortable driving (Boumediene et al. 2014, 2014; Steyer et al. 
2018). The MTT system estimates the status of detected 
objects surrounding the vehicle at different times by single 
or multiple sensors. Data Association is a central problem in 

MTT which assigns targets to the predicted tracks in order 
to update their status. Targets refer to the detected objects at 
the current time and tracks refer to the known objects in the 
scene. A dynamic environment, like the road environment, 
makes the object association more difficult because of the 
appearance/disappearance of objects in the perceived scene.

Usually, the assignment problem is resolved by the prob-
ability theory. Several methods have been proposed as the 
well-known Global Nearest Neighbour (GNN) method 
and the Joint Probability Data Association Filter (JPDAF) 
(Blackman 1986; Fortmann et al. 1983; Bar-Shalom et al. 
2011). GNN provides the optimal pairing by minimizing 
the global distance between detections and known objects. 
JPDAF is based on a weighted linear combination of all 
detections to estimate status of known objects. More details 
about these methods can be found in (Bar-Shalom and Li 
1995; Blackman and Popoli 1999; Bar-Shalom et al. 2011).

Recently, the belief function theory has also been used to 
cope with the association problem (Boumediene et al. 2014; 
Mercier et al. 2011). This theory, also called Dempster-
Shafer Theory (DST) (Dempster 1968; Shafer 1976) allows 
to reason about uncertainty thanks to the belief functions 
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that are often interpreted as lower and upper bound of 
unknown probability measures. In fact, sensor’s detections 
can be inaccurate and incomplete. However, the DST models 
these imperfect information through a distribution of belief 
masses which quantify the confidence granted. Thereafter, 
these masses are combined by Dempster’s rule to make deci-
sions. Because Dempster’s rule has been used and promoted 
by Shafer in his mathematical theory of evidence, it is also 
often denoted as DS rule in the literature.

Rombaut Rombaut (1998) formalizes the association 
problem by DST to reconstruct the environment of intel-
ligent vehicles. This approach measures the confidence of 
the association hypotheses between perceived and known 
obstacles by combining belief masses using DS rule. This 
approach is extended in Gruyer et al. (2016); Mercier et al. 
(2011) to track vehicles where the association process is 
based on the Transferable Belief Model (TBM) (Smets and 
Kennes 1994). This latter is a subjective and non-probabilis-
tic interpretation of the Belief theory. In TBM, the decision-
making is based on the pignistic probabilities derived from 
the belief quantities. Several alternative probabilistic trans-
formations have been proposed in the literature. Our previ-
ous work (Boumediene and Dezert 2020) evaluates some of 
them on real-data in the context of the DST framework. In 
Mercier et al. (2011), the decision is performed by maximiz-
ing the joint pignistic probability. However, this probability 
is computed for all possible associations which grows the 
computation time exponentially with the objects number. To 
tackle this problem, the decision is made by selecting asso-
ciations corresponding to local maxima of pignistic prob-
abilities (Boumediene et al. 2014; Daniel and Lauffenburger 
2012). More recently, Denœux et al. Denœux et al. (2014) 
express DS rule in terms of contour functions and plausibil-
ity functions which reduces the complexity and makes this 
approach applicable for real-time applications.

All those aforementioned approaches use Dempster’s rule 
which provides a counter-intuitive behavior specially in high 
and low conflicting situations (Zadeh 1979; Smarandache 
and Dezert 2015). In fact, DS rule redistributes the con-
flicting mass on all elements which can cause the lost of 
the information specificity and then generates unacceptable 
results. In addition, serious mistakes have been shown in 
logical fundamentals of the DST framework (Dezert et al. 
2012; Tchamova and Dezert 2012; Smarandache et al. 2013). 
To overcome those drawbacks, a more sophisticate rule has 
been proposed and defined in the framework of Dezert–Sma-
randache Theory (DSmT) (Smarandache and Dezert 2015). 
Based on the Proportional Conflict Redistribution (PCR) 
process, PCR6 rule preserves the information specificity 
by transferring the conflicting mass only to the elements 
involved in the conflict and proportionally to their individual 
masses. However, PCR6 has an exponential complexity and 
that is why it is rarely used for real-time applications.

In this paper, we propose a new evidential data associa-
tion based on the DSmT framework. The first contribu-
tion is to reduce the complexity of the combination step 
based on PCR6 rule developed originally in the framework 
of Dezert–Smarandache Theory. The proposed approach 
focuses on the significant pieces of information when 
combining and removes unreliable and useless informa-
tion. Consequently, the complexity is reduced without 
degrading substantially the decision-making. The second 
contribution is to propose a new simple decision-making 
algorithm based on a global optimization. Experimental 
results obtained on a well-known intelligent transportation 
systems dataset show the benefits of this new approach 
in terms of computation time reduction and association 
accuracy.

The rest of this paper is organized as follows. In Sect. 2, 
few basics of the DSmT are presented. Section 3 details 
the new proposed evidential data association approach and 
its experimental validation is presented in Sect. 4. Finally, 
Sect. 5 concludes this paper.

2  Fundamentals of DSmT

In the Belief theory context, a problem is modelled by a 
finite set of hypotheses Hi likely to be the solutions, called 
Frame of Discernment (FoD). In the general DSmT frame-
work, the elements of the FoD do not need to be mutually 
exhaustive as in the DST framework, but in the particular 
context of our application presented in this paper, we work 
with Shafer’s model of the FoD where all elements of the 
FoD are mutually exclusive and exhaustive, that is:

where Hi are denoted as singletons, the lowest piece of dis-
cernible knowledge in the FoD.

2.1  Basic belief assignment

A basic belief assignment (bba) or mass function 
associated to a given source is defined as a function 
m ∶ 2Θ → [0, 1] satisfying:

where m(A) is the mass of belief that supports A. The source 
is totally ignorant if m(Θ) = 1 and so the bba is considered 
as vacuous function. Whether m(A) > 0 , A is called a focal 
element of the bba m(.). Thus F(m) = {A ∈ 2Θ∕m(A) > 0} 
defines the set of focal elements.

(1)Θ =
⋃k

i=1

�
Hi

�
with Hi ∩ Hj = �

(2)
∑

A∈2Θ
m(A) = 1



2.2  Vacuous extension

Some sources of information can express on different FoDs 
but related. However, in order to combine them, it is neces-
sary to work with the same common frame. For that, it can 
be defined a finer FoD (Shafer 1976). Let Ω a finer frame of 
Θ where every element of Θ is mapped into one or more ele-
ments of Ω (Cf. Fig. 1). Therefore, the refinement function � 
matches proposition A from 2Θ to 2Ω according to:

The vacuous extension mΘ↑Ω defines the bba on Ω from 
the bba mΘ defined on Θ and the refinement �:

2.3  Belief combination

The belief combination consists in merging the measures of 
evidence mΘ

i
 of M distinct sources Si , defined on the same 

frame Θ , to a new distribution of evidence. For that, the Pro-
portional Conflict Redistribution rule 6 (PCR6) have been 
proposed in Martin and Osswald (2006) and theoretically 
justified in Smarandache and Dezert (2015). In fact, PCR6 
rule overcomes the drawbacks of the Dempster rule (Shafer 
1976) by redistributing proportionally the partial conflict 
only on elements involved in this conflict. The formula of 
PCR6 is defined by mPCR6(�) = 0 and ∀A ∈ 2Θ�{�} by Dez-
ert and Dezert (2021); Dezert et al. (2021):

(3)
�

{𝜌({𝜃}), 𝜃 ∈ Θ} is a partition of Ω

∀A ⊆ Θ, 𝜌(A) =
⋃

𝜃∈A 𝜌({𝜃}).

(4)mΘ↑Ω(𝜌(A)) =

{
mΘ(A), ∀A ⊆ Θ

0, otherwise.

(5)

mPCR6(A) = mConj(A) +
�

j∈{1,…,F}�A∈�j∧�j(�)

⎡⎢⎢⎢⎢⎢⎣

� �
i∈{1,…,M}�Aji

=A

mΘ
i
(Aji

)

�
⋅

�j(�)

∑
A∈�j

� ∑
i∈{1,…,M}�Aji

=A

mΘ
i
(Aji

)
�

⎤⎥⎥⎥⎥⎥⎦

,

where ∧ is the logical conjunction1 and �j is a pos-
sible M-uple of focal elements with Aji

∈ F(mΘ
i
) , 

that is �j ≜
(
Aj1

,Aj2
,… ,AjM

)
 . F  is the cardinality of

F(mΘ
1
,mΘ

2
,… ,mΘ

M
) which is the set of all possible M-uple. 

And where �j(Aj1
∩ Aj2

∩⋯ ∩ AjM
) ≜

∏M

i=1
mΘ

i
(Aji

) , and 
�j(�) = �j(Aj1

∩ Aj2
∩⋯ ∩ AjM

) defines the conflicting mass 

product of �j if Aj1
∩ Aj2

∩⋯ ∩ AjM
= � and the conjunctive 

rule mConj is given by:

2.4  Probabilistic transformation

Decision-making consists of selecting a solution among all 
possible hypotheses. Usually, the decision must be made 
among elements of the frame. However, the belief combination 
also generates masses for disjunctive propositions. Therefore, 
it is necessary to redistribute the masses of these unions on ele-
ments of Θ in order to make a decision. For that, Dezert–Sma-
randache Probability (DSmP) transformation is defined (Dez-
ert et al 2012) where DSmP(�) = 0 and ∀A ∈ 2Θ�{�}:

Where � ≥ 0 is used to adjust the effect of element’s cardi-
nality ( C(.) ) in the proportional redistribution. In addition, � 
permits to compute DSmP when encountering zero masses. 
Typically, � = 0.001 because with a smaller � the Probabilis-
tic Information Content (PIC) (Sudano 2002) is higher. The 
PIC indicates the level of the available knowledge to make a 
correct decision. PIC = 0 indicates that no knowledge exists 
to make a correct decision.

3  Data association using DSmT

Four steps are needed to solve the data association problem: 
modeling, estimation, combining, and decision-making. How-
ever, PCR6 rule combination has an exponential complexity 
which makes it not appealing for real-time applications. This 
is why in this paper, only k-significant sources are combined 
(with k lesser than the original number or sources available). 
Thereafter, a simple global optimization is used to make asso-
ciation decisions.

(6)mConj(A) =
∑

Aj1
∩…∩AjM

=A

M∏
i=1

mΘ
i
(Aji

).

(7)DSmP𝜀(A) =
�
Y∈2Θ

∑
Z ⊆ A ∩ Y

C(Z) = 1

m(Z) + 𝜀 ⋅ C(A ∩ Y)

∑
Z ⊆ Y

C(Z) = 1

m(Z) + 𝜀 ⋅ C(Y)

Fig. 1  Illustration of the refinement function � (Mercier et al. 2011)

1 i.e. x ∧ y means that conditions x and y are both true.



3.1  Data modelling

Let us consider n detected objects at time t and m known 
objects at previous time t − 1 . In this context, data association 
aims at matching the n detected objects Xi to the m known ones 
Yj under certain conditions:

• multiple associations are not accepted, a detected object
is associated with only one known object at most and vice
versa,

• multiple new objects can appear,
• multiple known objects can disappear.

The distances between the attributes of objects (position, 
velocity, etc.) are considered as pieces of evidence. For a 
given distance, its belief will be expressed on the elementary 
FoD �i,j = {yes(i,j), no(i,j)} which models the relevance of the 
association between Xi and Yj . Therefore, three bba masses are 
constructed for each pairwise objects ( Xi , Yj):

• m�i,j (yes(i,j)) : degree of belief that Xi is associated with Yj,
• m�i,j (no(i,j)) : degree of belief that Xi is not associated with

Yj,
• m�i,j (�i,j) : represents the ignorance.

3.2  Belief estimation

The estimation of belief masses is related to the considered 
application. The most suitable model for data association 
applications (Boumediene 2019) is the non-antagonist model 
(Gruyer et al. 2016; Rombaut 1998) defined by:

where Ii,j ∈ [0, 1] is an index of similarity between Xi and Yj . 
Φ1(.) and Φ2(.) are two cosine functions defined as follows:

(8)m
Θi,.

j
(Y(i,j)) =

{
0 , Ii,j ∈ [0, �]

Φ1(Ii,j) , Ii,j ∈ [�, 1]

(9)m
Θi,.

j
(Ȳ(i,j)) =

{
Φ2(Ii,j) , Ii,j ∈ [0, 𝜏]

0 , Ii,j ∈ [𝜏, 1]

(10)m
Θi,.

j
(Θi,.) =

{
1 − m

Θi,.

j
(Ȳ(i,j)) , Ii,j ∈ [0, 𝜏]

1 − m
Θi,.

j
(Y(i,j)) , Ii,j ∈ [𝜏, 1],

(11)

⎧⎪⎨⎪⎩

Φ1(Ii,j) =
�

2

�
1 − cos(�

Ii,j−�

�
)
�

Φ2(Ii,j) =
�

2

�
1 + cos(�

Ii,j

�
)
�

where 0 < 𝛼 < 1 is the reliability factor of the data source 
and 0 < 𝜏 < 1 represents the impartiality of the association 
process.

3.3  k‑Significant sources combination

Before decision-making, sources should be combined 
which is possible only if they express on the same FoD. 
Hence, to determine who is associated to the detected 
object Xi , a new FoD is defined Θi,. (12). This new frame is 
composed of the m possible Xi-to- Yj associations denoted 
Y(i,j) and the appearance hypothesis of object Xi denoted 
by Y(i,∗):

Therefore, Θi,. is a refinement frame of the previous FoDs �i,j 
in which the belief is initially expressed (Cf. Fig. 2). Based 
on a vacuous extension (3), initial belief functions m�i,j are 
expressed on Θi,. as follows:

where Ȳ(i,j) represents the hypothesis  “Xi is not asso-
ciated to Yj”  which corresponds to the union of 
all association hypotheses expect the Y(i,j) ,  i .e. 
Ȳ(i,j) = {Y(i,1),… , Y(i,j−1), Y(i,j+1),… , Y(i,m), , Y(i,∗)} . It should 
be noted that no information is initially considered on Y(i,∗) . 
This information appears during combination step.

Once the sources are expressed on the same frame, the 
bbas are combined with the PCR6 rule. However, combining 
all sources increases the time-consuming and can be reach 
an exponential complexity when the number of sources is 
important. To overcome this drawback, this paper proposes 
a new method to reduce the combination complexity without 
sacrificing too much the decision quality.

The proposed approach selects only information having 
belief in top k highest masses. Formally, for each Xi object, 
initial masses on association hypotheses are sorted:

(12)Θi,. =
{
Y(i,1), Y(i,2),… , Y(i,m), Y(i,∗)

}
.

(13)

⎧⎪⎨⎪⎩

m
Θi,.

j
(Y(i,j)) = m𝜃i,j (yes(i,j))

m
Θi,.

j
(Ȳ(i,j)) = m𝜃i,j (no(i,j))

m
Θi,.

j
(Θi,.) = m𝜃i,j (𝜃i,j)

Fig. 2  The refinement frames of �i,j : Θi,.



where b1 is highest mass of belief, so the source that gener-
ated it is the most significant for matching Xi . On other hand, 
the least important source is that which generates the lowest 
belief bm.

Now, only k most significant sources are selected for 
their combination. Therefore, for each Xi assignment, Θi,. is 
defined as follows:

with z ∈ {1,… ,m} and k < m . Consequently, Θi,. con-
tains only the most relevant hypotheses and ignores others 
( bz < bk ). By this simple selection procedure one reduces the 
computation complexity of the combination process.

If bk = 0 , bk−1 is used to select significant sources. In 
the case where no bk > 0 , the object Xi is considered as an 
appearance and is associated directly to Y(i,∗) . Thereafter, 
initial mass functions m�i,j (.) is hence transferred to Θi,. by 
the refinement defined in (13) and the PCR6 rule of combi-
nation  (5) is applied.

3.4  Decision‑making

The assignment decision is based on the DSmPi,. matrix 
which is the probabilistic approximation of the combined 
masses. Table 1 presents the DSmPi,. of the detected-to-
known objects association. Each line defines the association 
probabilities of the detected object Xi with all known ones 
Yj . DSmPi,.(Y(i,∗)) defines the appearance probability of Xi . It 
is useful to note that multiple objects can appear/disappear.

Different decision-making strategies have been proposed 
according to the desired objectives (Daniel and Lauffen-
burger 2012; Mercier et al. 2011). There are two approaches 
depending on the type of optimization: global or local. The 
first approach selects the “best” associations optimizing a 
global cost function (Gruyer and Berge-Cherfaoui 1999; 
Royère et al 2000). The Joint Pignistic Probability (JPP) 
BetP∏n

i=1
 is defined as the cost function in Mercier et al. 

(2011):

(14)
{

b1 ≥ b2 ≥ ⋯ ≥ bz ≥ ⋯ ≥ bm
bz = m�i,j (yes(i,j)), and z, j ∈ {1,… ,m}

(15)Θi,. =
{
Y(i,z)∕bz ≥ bk, Y(i,∗)

}

(16)BetP∏n

i=1
= BetP1,.(Y(1,j1)) × … × BetPn,.(Y(n,jn))

with ji ∈ {1, 2,… ,m, ∗} . Among all possible solutions for 
the detected-to-known association, the best is that maximiz-
ing BetP∏n

i=1
 . However, when the number of possible associa-

tions is important, this optimization generates a high com-
putational complexity. To cope with this inconvenience, 
another approach consists of resolving the assignment prob-
lem by a local optimization. The Local Pignistic Probability 
(LPP) (Daniel and Lauffenburger 2012) makes the associa-
tion decisions according to local maxima of the pignistic 
matrix ( BetPi,. ). The LPP method performs a successive 
selection of n local maxima while respecting the association 
constrains (Cf. Sect. 3.1). However, local optimization is 
considered as a sub-optimal solution.

In this paper, a new simple global optimization is 
applied/proposed. Firstly, the last column ( Y(i,∗) ) of the 
DSmP matrix is removed in order to select ”best” associa-
tions by using the well-known Munkres algorithm (Munk-
res 1957). The complexity of this algorithm is only O(n3) 
(Munkres 1957). Secondly, for each selected association 
Y(i,j) , if DSmPi,.(Y(i,j)) < DSmPi,.(Y(i,∗)) the association Y(i,j) 
is removed and the object Xi is considered to be a new 
object ( Y(i,∗)).

4  Illustrative example

Let us consider the simulated example presented in Fig. 3. 
The scenario shows 5 detected objects and 4 known objects. 
By observing the corresponding initial bba presented in 
Table 2, one can already assume some associations. For 
instance, with mΘ3,.(yes(3,1)) = 0.85 and mΘ2,.(yes(2,4)) = 0.75 , 
X3 and X2 are most likely to be associated respectively to Y1 
and Y4 . As for the detected object X5 , no source supports its 
association with a known objects, so it can be an appearance.

Therefore, it is possible to make decisions by com-
bining only some information? To answer, the proposed 

Table 1  DSmP probabilities of detected-to-known object associations

Θ
i,.

Y(i,1)
… Y(i,m) Y(i,∗)

DSmP
1,.
(.) DSmP

1,.
(Y(1,1)) … DSmP

1,.
(Y(1,m)) DSmP

1,.
(Y(1,∗))

DSmP
2,.
(.) DSmP

2,.
(Y(2,1)) … DSmP

2,.
(Y(2,m)) DSmP

2,.
(Y(2,∗))

⋮ ⋮ ⋮ ⋮

DSmP
n,.
(.) DSmP

n,.
(Y(n,1)) … DSmP

n,.
(Y(n,m)) DSmP

n,.
(Y(n,∗))

Fig. 3  Scenario showing 5 detected objects (triangle) and 4 known 
objects (circle)



method is applied with k = 2 . The selected information for 
the detected-to-known association are represented by (17):

Regarding the association of X1 , the two highest belief 
masses (0.48 and 0.45) are respectively related to the 
Y(1,2) and Y(1,1) hypotheses which makes them relevant 
for decision-making. Thus, we work with the frame 
Θ1,. = {Y(1,1), Y(1,2), Y(1,∗)} instead the set of all hypoth-
eses {Y(1,1), Y(1,2), Y(1,3), Y(1,4), Y(1,∗)} which decreases 
the complexity of combination. In the same way, 
Θ2,. = {Y(2,3), Y(2,4), Y(2,∗)} because the highest beliefs 
(0.75 and 0.47) are related to the Y(2,4) and Y(2,3) hypothe-
ses. In this case, Y(2,1) and Y(2,2) are ignored because their 
beliefs are less significant than those of Y(2,3) and Y(2,4) 
( 0.75 > 0.47 > 0.32 > 0.00 ). For X3 and X4 , there is only one 
piece of information with a non-null belief for their associa-
tion. Therefore, Θ3,. = {Y(3,1), Y(3,∗)} and Θ4,. = {Y(4,3), Y(4,∗)} . 
Concerning X5 , no source believes on its association, so X5 is 
a new detected object which means an appearance Y(5,∗) . In 
this case, the decision is directly made without combination. 
Consequently, the cardinality of each Θi,. (17) is reduced 
which means less computation time when combining.

To make decision, the selected information are combined 
by (5) and transformed to DSmP probabilities by (7). Table 3 
represents DSmPi,.(.) based on the two most significant mass 

(17)

⎧⎪⎪⎨⎪⎪⎩

Θ1,. =
�
Y(1,1), Y(1,2), Y(1,∗)

�
Θ2,. =

�
Y(2,3), Y(2,4), Y(2,∗)

�
Θ3,. =

�
Y(3,1), Y(3,∗)

�
Θ4,. =

�
Y(4,3), Y(4,∗)

�
direct decision: X5 appears.

functions. The dimension of each DSmPi,. vector is smaller 
than usual (Cf. Table 4) and corresponds to the number of rel-
evant associations. In this context, the complexity of decision-
making can be reduced too. In addition, it can be observed that 
the proposed approach preserves the relevant association prob-
abilities. Therefore, the same decisions (18) are made through 
Tables 3 and 4.

(18)

⎧⎪⎪⎨⎪⎪⎩

X1 → Y2
X2 → Y4
X3 → Y1
X4 → Y3
X5 appears.

Table 2  Initial mass functions for the scenario in Fig. 3

S
1,1

⎧⎪⎨⎪⎩

m
�
1,1 (yes(1,1))) = 0.45

m
�
1,1 (no(1,1)) = 0.35

m
�
1,1 (�

1,1
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⎧⎪⎨⎪⎩
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�
1,2 (yes(1,2)) = 0.48

m
�
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m
�
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1,2
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S
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⎧⎪⎨⎪⎩

m
�
1,3 (yes(1,3)) = 0.00

m
�
1,3 (no(1,3)) = 0.95

m
�
1,3 (�

1,3
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S
1,4
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m
�
1,4 (yes(1,4)) = 0.00

m
�
1,4 (no(1,4)) = 0.99

m
�
1,4 (�

1,4
) = 0.01
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2,1

⎧⎪⎨⎪⎩

m
�
2,1 (yes(2,1)) = 0.00

m
�
2,1 (no(2,1)) = 0.99

m
�
2,1 (�

2,1
) = 0.01

S
2,2

⎧⎪⎨⎪⎩

m
�
2,2 (yes(2,2)) = 0.32

m
�
2,2 (no(2,2)) = 0.58

m
�
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2,2
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�
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m
�
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�
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m
�
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m
�
2,4 (�

2,4
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m
�
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m
�
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m
�
3,1 (�

3,1
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S
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m
�
3,2 (yes(3,2)) = 0.00

m
�
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m
�
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3,2
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m
�
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m
�
3,3 (no(3,3)) = 0.90

m
�
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3,3
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S
3,4

⎧⎪⎨⎪⎩

m
�
3,4 (yes(3,4)) = 0.00

m
�
3,4 (no(3,4)) = 0.99

m
�
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3,4
) = 0.01

S
4,1

⎧⎪⎨⎪⎩

m
�
4,1 (yes(4,1)) = 0.00

m
�
4,1 (no(4,1)) = 0.99

m
�
4,1 (�

4,1
) = 0.01

S
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⎧⎪⎨⎪⎩

m
�
4,2 (yes(4,2)) = 0.00

m
�
4,2 (no(4,2)) = 0.90

m
�
4,2 (�

4,2
) = 0.10

S
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⎧⎪⎨⎪⎩

m
�
4,3 (yes(4,3)) = 0.50

m
�
4,3 (no(4,3)) = 0.40

m
�
4,3 (�

4,3
) = 0.10

S
4,4

⎧⎪⎨⎪⎩

m
�
4,4 (yes(4,4)) = 0.00

m
�
4,4 (no(4,4)) = 0.99

m
�
4,4 (�

4,4
) = 0.01

S
5,1

⎧⎪⎨⎪⎩

m
�
5,1 (yes(5,1)) = 0.00

m
�
5,1 (no(5,1)) = 0.90

m
�
5,1 (�

5,1
) = 0.10

S
5,2
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m
�
5,2 (yes(5,2)) = 0.00

m
�
5,2 (no(5,2)) = 0.85

m
�
5,2 (�
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) = 0.15

S
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m
�
5,3 (yes(5,3)) = 0.00

m
�
5,3 (no(5,3)) = 0.90

m
�
5,3 (�

5,3
) = 0.10
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m
�
5,4 (yes(5,4)) = 0.00

m
�
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m
�
5,4 (�
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Table 3  BetP
i,.
 based on 2-significant mass functions.

Θ
i,.

Y(i,1) Y(i,2) Y(i,3) Y(i,4) Y(i,∗)

DSmP
1,.

0.40 0.45 – – 0.15
DSmP

2,.
– – 0.27 0.66 0.07

DSmP
3,.

0.94 – – – 0.06
DSmP

4,.
– – 0.56 – 0.44

Table 4  BetP
i,.
 based on all mass functions

Θ
i,.

Y(i,1) Y(i,2) Y(i,3) Y(i,4) Y(i,∗)

DSmP
1,.

0.39 0.43 0.00 0.00 0.18
DSmP

2,.
0.00 0.11 0.22 0.61 0.06

DSmP
3,.

0.95 0.00 0.00 0.00 0.05
DSmP

4,.
0.00 0.00 0.56 0.00 0.44

DSmP
5,.

0.00 0.00 0.00 0.00 1.00



5  Experimental results

This section evaluates the proposed approach on real data 
coming from the well-known KITTI dataset (Geiger et al. 
2012). First, the dataset description is presented, followed 
by the experimental setting. Secondly, the obtained results 
are analyzed and commented. It is noted that this evaluation 
focuses only on data association, so no tracking is done.

5.1  Datasets

The KITTI vision dataset provides data recorded from differ-
ent sensors mounted on a moving vehicle on urban roads (Gei-
ger et al. 2012). It contains camera images, laser scans, and 
GPS/IMU data. The dataset also includes object labels classi-
fied in 8 categories. For this evaluation, only image data have 
been used where detections are defined by 2D bounding box 
tracklets. Four object classes have been considered: pedestrian, 

cyclist, car, and van. Table 5 presents a part of these sequences 
according to their different road context and the number of 
detections. On some sequences, the vehicle mainly moving at 
a speed less than 30 km/h which is common in urban areas, e.g. 
sequences 6, 13, 14, and 19. Sequence 16 was recorded when 
the vehicle stopped at a crosswalk, i.e. speed = 0 km∕h . On 
other sequences, the vehicle was moving at a speed sometimes 
exceeding 50 km/h, e.g. sequences 4 and 8. Figure 4 illustrates 
the number of objects per image and their proportion on each 
of the sequences where more than 30000 associations have 
been evaluated. To the best of our knowledge, no study has 
been evaluated on so many real data. These latter cover differ-
ent road scenarii containing various objects as shown in Fig. 5.

5.2  Experimental setting

The matching process is based on the distance between objects 
attributes. In this work, only 2D position in the image plane 

Fig. 4  The number of objects per frame vs. percentage of frames

Table 5  KITTI image sequence characteristics

Seq. 2 Seq. 4 Seq. 6 Seq. 7 Seq. 8 Seq. 13 Seq. 14 Seq. 16 Seq. 18 Seq. 19 Seq. 20

Number of frames 233 314 270 800 390 340 106 209 339 1059 837
Number of associations 668 545 474 2083 492 617 744 1872 1130 4968 4673
Max vehicle speed (km/h) 43 56 33 34 62 26 35 0 55 21 54
Min vehicle speed (km/h) 0 20 0 1 38 8 1 0 0 0 0
Speed < 30 km/h ( %) 66 15 93 75 0 100 87 100 66 100 51
Speed > 30 km/h ( %) 34 85 7 25 100 0 13 0 34 0 49



is considered as pieces of evidence. Thus, the distance di,j is 
defined as follows:

where d left

i,j
 ( d right

i,j
 ) is the Euclidean distance between top-left 

(bottom-right) points of the bounding boxes of objects Xi 
and Yj as illustrated in Fig. 6.

The critical parameters to estimate belief masses are: 
� = 0.9 , � = 0.5 and � = 0.001 for DSmP transformation.
The proposed approach is written in C++ and runs on Intel
core i7 2.20 GHz with 8 GB RAM.

5.3  Results and analysis

The performance of the k-significant sources combination 
refers to its capacity to reduce complexity while maintaining 
a high decision quality. Therefore, the evaluation focuses on 

(19)di,j = 0.5 × (d
left

i,j
+ d

right

i,j
)

the Computation Time (CT) and the recall which are defined 
as follows:

where ETt is the execution time of the frame t, TAt and GTt 
are the numbers of true associations and ground truth asso-
ciations respectively.

Table 6 compares the running time of the combination 
step using two approaches according to the number of 
objects. The first is to combine all the sources and the second 
combines the k-significant sources where k ∈ [2, 4] . To show 
the real-time aspect of the proposed approach, the associa-
tion process is applied for 24 frames. The results confirm 
that the proposed approach needs low computation time than 
combining all sources. The smaller the number of combined 
sources, the shorter the computation time. With n = m = 13 , 
the proposed approach (k = 2) needs 1.33ms on 24 frames 
while combining all sources takes ≃ 4  minutes which is not 
acceptable for real-time applications. In addition, combining 
all sources grows exponentially the computation cost with 
(n, m) while the time complexity of the proposed approach is 
polynomial which makes it well-suited for real-time applica-
tions (Cf. Fig. 7).

Table 7 compares the complexity of the proposed deci-
sion-making algorithm with the JPP method according to 

(20)

�
CT =

∑
t ETt

recall =
∑

t TAt∑
t GTt

Fig. 5  Examples of images provided by KITTI (Boumediene 2019)

Fig. 6  The illustration of the distance between a detected and a 
known object (Boumediene 2019)



the number of objects. Both of these methods are based on 
a global optimization. The results show that the proposed 
algorithm needs low computation time than JPP to make 
association decisions. With more than 4 perceived/detected 
objects, the complexity is reduced by more than 97% . For 
instance, with n = m = 7 , our proposed algorithm needs less 
than 1ms to assign perceived objects on 24 frames while 
JPP takes too large time, more than ≃ 46  minutes. Figure 8 
confirms that our algorithm is characterized by a polyno-
mial complexity while JPP has a high exponential complex-
ity which makes impossible its application on the KITTI 

sequences. For this reason, the rest of the results presented 
in this section are obtained by our simple decision-making 
algorithm.

To measure the gain on complexity, the variation in the 
computation time of a system without ( CTi

w
 ) and with the 

k-significant sources combination ( CTi
k
 ) is computed for

each sequence (i) (21). The higher gain, the better complex-
ity reduction we get. In the same manner, the recall gain
is computed (22) . The higher Gaini

recall
 , the better deci-

sion-quality we get. A higher Gaini
recall

 preserves well the
decision-quality.

The weighted average of gain based on all sequences is given 
by:

where the weight wi is wi = ni∕
∑20

i=0
ni and ni being the num-

ber of associations of the i-th sequence.
Figure 9 presents the weighted average of the computation 

time gain versus k. These results are obtained by varying the 
number of significant sources selected, i.e. k. For all dataset, 
more than 30000 associations, the gain exceeds 99.90% which 
is well-suited for real-time applications. This gain is explained 
by the fact that our approach has a polynomial complexity 
while combining all sources is characterized by an exponential 

(21)Gaini
CT

=
(CTi

w
− CTi

k
)

CTi
w

100.

(22)Gaini
recall

=
(recalli

k
− recalli

w
)

recalli
w

100.

(23)

⎧⎪⎨⎪⎩

Gain
avg

CT
=
∑20

i=0
wiGain

i
CT

Gain
avg

recall
=
∑20

i=0
wiGain

i
recall

Table 6  Computation time (ms) of the combination step for 24 
frames containing (n, m) objects

(n, m) All sources 4-Sig. Src. 3-Sig. Src. 2-Sig. Src.

(4, 4) 1.33 1.49 0.60 0.39
(7, 7) > 0.1s 2.27 0.92 0.59
(10, 10) > 5s 3.54 1.35 0.89
(13, 13) ≃ 4 min 5.28 2.20 1.33

Table 7  Computation time (ms) of the decision-making step for 24 
frames containing (n, m) objects

(n, m) JPP Our method Comp. 
time gain 
(%)

(2, 2) 0.21 0.16 23.91
(3, 3) 1.2 0.16 86.66
(4, 4) 9 0.21 97.66
(5, 5) 104 0.27 99.74
(6, 6) > 9s 0.33 99.99
(7, 7) > 46min 0.90 99.99

Fig. 7  Computation time of the combination step as a function of the 
number of objects

Fig. 8  Computation time of the decision-making step as a function of 
the number of objects



complexity (Cf. Fig. 7). In addition, the obtained results show 
that the computation time reduction is inversely proportional 
to the k parameter as shown in Table 6. Indeed, by reducing 
the number of significant sources, the combination complexity 
decreases which allows a more important gain. Although if the 
gain, which is expressed as a percentage, seems small between 
the different values of k ∈ [2, 7] , it remains important for real-
time constrain.

The gain depends also on the number of perceived 
objects. In fact, contrary to our approach, combining all 
sources increases exponentially the computation time with 
perceived/detected objects (n,  m). Therefore, the more 
objects in the scene, the greater the gain will be (Cf. Fig. 10). 
That is why for sequences 3, 6, 8, 10,  and 12 where the num-
ber of detections is mostly less than 4, the gain is less than 
40% while for other sequences is more than 80% . Therefore, 
the obtained results lead to conclude that the more complex 
is the sequence, the larger is the computation time reduction. 

Now, how about the decision quality? Combine just the 
significant sources, affects the decisions or not? Fig. 11 pre-
sents the weighted average of the recall gain versus k. it is clear 
that the gain is insignificant, −0.1% < Gain recall < 0.05% . 
This result proves that focusing only on significant informa-
tion does not necessary affect the decision quality. Further-
more, the obtained results also show that ignoring the useless 
information can improve slightly the quality of decisions. For 
instance, on sequences 11, 17, and 18 the association deci-
sions are improved by more than 4% (Cf. Fig. 12). Therefore, 
the solution proposed provides good performances by reduc-
ing significantly the computation time while preserving the 
association decisions.

The choice of parameter k depends on the application con-
text and on the desired performances. For the object associa-
tion in road environment and based on our tests, k = 3 appears 
to be a good setting threshold parameter.

6  Conclusion

This paper presented a new evidential data association based 
on significant sources combination and a simple decision-
making algorithm. The main objective of the proposed 
approach is to reduce the complexity and time consump-
tion of data fusion based on DSmT techniques (PCR6 and 
DSmP). This approach focuses only on information having 
belief in top k highest masses and removes useless informa-
tion. Therefore, only k-significant sources are combined to 
deal with the association problem.

Applied to intelligent vehicles perception, the experimen-
tal results show the effectiveness of the proposed approach 
in the reduction of the complexity by more than 99% in 
dense scenes. Besides, experimental results show that the 
proposed solution preserves well the decision-quality. It 

Fig. 9  Computation time gain as a function of the parameter k 
Fig. 10  Computation time gain of 3-sig. Sources approach on each 
sequence

Fig. 11  Recall gain as a function of the parameter k new



can be noted that the k-significant sources combination is 
not intended only for road environment perception. It can 
be applied to any data association process based on these 
DSmT techniques.

Future work should combine heterogeneous sensor data 
to enhance the object association. Also, we plan to evaluate 
if an improvement of PCR6 rule of combination would be 
helpful for the data association problems.
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