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Abstract

The study of knots and links from a probabilistic viewpoint provides insight into the behav-
ior of “typical” knots, and opens avenues for new constructions of knots and other topological
objects with interesting properties. The knotting of random curves arises also in applications
to the natural sciences, such as in the context of the structure of polymers.

We present here several known and new randomized models of knots and links. We review
the main known results on the knot distribution in each model. We discuss the nature of these
models and the properties of the knots they produce.

Of particular interest to us are finite type invariants of random knots, and the recently
studied Petaluma model. We report on rigorous results and numerical experiments concern-
ing the asymptotic distribution of such knot invariants. Our approach raises questions of
universality and classification of the various random knot models.

MSC 57M25, 60B05

1 Knots

There is an increasing interest in random knots by both topologists and probabilists, as well as
researchers from other disciplines. Our aim in this survey article is to provide an accessible overview
of the many different approaches to this topic.

We start with a very brief introduction to knot theory, and in Section 2 we describe the moti-
vation to introduce randomness into this field. The various models are surveyed in Section 3, and
some specific aspects are further discussed in Section 4. Some thoughts and open problems are
presented in Section 5.

Intuitively, a knot is a simple closed curve in the three dimensional space, considered up to
continuous deformations without self-crossing. More formally, a knot is a smoothly embedded
oriented circle S1 ↪→ R3, with the equivalence relation of ambient isotopies of R3. A link is a
disjoint union of several such embedded circles, called components, with the same equivalence. An
alternative definition uses polygonal paths without the smoothness condition. There are several
good general introductions to knot theory such as [Ada94] or [Lic97].

Knots and links can also be described via planar diagrams, which are their generic projections
to R2. The projection is injective except for a finite number of traverse double points. Each such
crossing point is decorated to indicate which preimage is over and which is under, with respect to
the direction of the projection. See Figure 1 for diagrams of some well-known knots and links.

The set of nonequivalent knots is infinite, without much structure and organization. Some order
arise from the operation of connected sum of knots, # = for example. A theorem
by Schubert [Lic97, Chapter 2] states that every knot can be uniquely decomposed as a connected
sum of prime knots, which are knot that cannot be decomposed further. However, there are
infinitely many nonequivalent prime knots as well.

A problem that motivated much of the developments in knot theory since its early days was
finding and tabulating all prime knots that can be represented by diagrams with a small number
of crossings. As of today, knot tables with up to 16 crossings have been compiled [HTW98]. This
classification mission called for tools for telling whether or not two given knots are equivalent, even
though represented differently.

By the classical Reidemeister theorem [Lic97, Chapter 1], two diagrams define equivalent knots
if and only if one can be transformed into the other by a sequence of local moves of three types:
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Figure 1: Selected knot and link diagrams.

(I) twisting the curve at some point ↔ , (II) sliding one part of the curve under an adjacent
part ↔ , or (III) sliding under an adjacent crossing ↔ .

As for the complementary purpose of distinguishing one knot from another, a wide variety of
knot invariants were defined. Here one constructs a well-defined function from the set of all knots
to any other set, that attains different values for the two knots in question. Either representation,
by diagrams or by curves in R3, may be used to define invariants, as long as one shows that it
respects equivalence. In a broader perspective, knot invariants may be viewed as tools to classify
knots and understand their properties.

We mention some important knot invariants. The crossing number c(K) is the least number
of crossing points in a diagram of a knot K. The genus g(K) is the least genus of an embedded
oriented compact surface with boundary K. Several other invariants, such as the bridge number,
unknotting number, and stick number [Ada94], are similarly defined by taking the minimum value
of some complexity measure over certain descriptions of the knot.

It is conjectured that knots can be fully classified by Vassiliev’s finite type invariants [Vas90,
BN95a, CDM12]. See Section 4.1 for a definition. This infinite collection of numerical invariants
includes Gauss’s linking number and the Casson invariant, coefficients of the Alexander–Conway
polynomial, the modified Jones polynomial, and the Kontsevich integral.

Other invariants are defined via properties of the knot complement, such as its fundamental
group π1(R3 \K), the knot group of K. A knot is called hyperbolic if its complement can be given
a metric of constant negative curvature. In this case Vol(S3 \K), the hyperbolic volume of K, is a
well-defined and useful knot invariant [Thu78].

2 Randomness

There are several motivations to study randomized knot models. They emerge from different
perspectives. Below we mention several aspects and applications of knot theory where it is natural
to adopt a probabilistic point of view.

2.1 Study Typical Knots As metioned, the space of knots is infinite and poorly structured.
Usually, the particular examples of knots one considers are either very simple with only a few
crossings, or they are explicit constructions of knots of quite specific forms. These can be members
of well-known families such as torus knots, pretzel knots, and rational knots, or ad hoc constructions
tailored for the problem under investigation.
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Similarly, often one considers knots of some particular type, such as alternating or hyperbolic.
Do these classes represent the general case, and if so in what sense?

It is natural and desirable to understand what typical knots are like and what properties they
tend to have.

We specify a probability distribution over knots in search of a framework to investigate such
questions. Often we consider a sequence of such distributions, supported on increasingly larger
sets of knots. These distributions may be defined via random planar diagrams or random curves
in R3, but ultimately only the resulting knot type is considered.

Rather than focus on particular constructions and classes, we ask what knot properties hold
with high probability. Knot invariants become random variables on the probability space, and we
study their distribution and interrelations.

It is not apriori clear which distributions, or models of random knots, are worth studying. It is
reasonable to require that every knot have positive probability. We also do not want the measure
to be highly concentrated on some overly specific class of knots. At present it remains debatable
how good any concrete distribution that one suggests is.

2.2 Probabilistic Existence Proofs A more definite goal of studying random knot models is
the application of the probabilistic method in knot theory. The basic idea is to prove the existence
of certain objects by showing that in some random model they occur with positive probability.
This influential methodology has yielded many unexpected results in combinatorics and other
fields [AS00]. In many cases, the existence of objects with some given properties can be established
using probabilistic methods, while finding matching explicit constructions remains elusive.

To illustrate this idea, consider the Jones polynomial VK(t) ∈ Z
[
t, t−1

]
. The discovery of this

important knot invariant in 1984 was hailed as a breakthrough in the field [Lic97, Chapter 3]. By
definition Vunknot(t) = 1, and it is unknown whether there exists a non-trivial knot K for which
VK(t) = 1 [Jon00]. It is believed though, that if such knots exist, then they are plentiful. If so, it
is reasonable to expect that in some random model it should be possible to prove the probability
of this trivial Jones polynomial is strictly larger than that of the unknot.

For this approach to work we clearly need a random model that allows us to estimate the
probability of the relevant events and the distributions of the invariants at hand.

Random knot models come handy also in computer experiments, where one non-exhaustively
searches for a specific exemplar to demonstrate some properties, thus providing explicit examples
and counterexamples in a more direct way.

2.3 Knots in Nature The occurrence of knots and links in the natural sciences has been a
fruitful source for several studies of randomized knot models.

Most prominently, biologists are interested in the three-dimensional shape of proteins, DNA
and RNA molecules. Their geometric and topological features affect their functionality in a variety
of biological processes, such as protein folding and DNA replication and transcription. Physicists
and chemists look into the formation of entanglements in polymeric materials. The topological
structure of such substances is reflected macroscopically in its features, such as elasticity, viscosity,
diffusion rate, and purity of crystallization. There is plenty of literature on the modeling of knots
in thread-like molecules. Find some expositions and surveys in [WC86, Vol92, Sum92, Sum95,
GKJ97, BM05, OW07, McL08, Fen08, Buc09, SBK+09, MMO11, LJ15].

Numerous numerical simulations and experiments have been preformed to investigate the topo-
logical properties of such filamentary molecules. These involved the invention of several mathe-
matical models that produce random paths in R3 to simulate the conformation of molecules in
natural environments. In particular, such a model defines a distribution over knot types, often
parametrized by the length of the path.

Naturally, these models are designated to emulate natural features and processes, with differ-
ent degrees of simplification. Most often they incorporate physical constraints such as non-zero
thickness, self interaction, restricted bending, and spatial confinement. Additionally, this line of
research calls for random models that can be easily sampled in numerical studies.
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Figure 2: Knotted DNA. Figure is courtesy of Wasserman et al. [WDC85]

The study of knotted structures in three-dimensional fields dates back to early fluid dynamics
and Kelvin’s vortex atom hypothesis [Hel67, Kel67]. Knots and links are formed in a three-
dimensional flow ~u : R3 → R3 by the vortex lines that follow ∇× ~u, or similarly by the nodal set
ψ = 0 of a wavefunction ψ : R3 → C.

In current research, such knotting phenomena are theoretically analyzed, numerically simulated,
and experimentally created or identified in various physical systems. To mention some examples:
knotted vortices in classical fluid flow [KI13] and in superfluids [HRT+16, KKI16], optical vortices
in laser beams [DKJ+10], magnetic fields in plasma [Ber99], superposition of states in quantum
mechanics [Ber01], and also nonlinear waves in biological and chemical excitable media [WS84].

It seems that the generation of such knotted fields is often dominated by random factors, and it
would be interesting to investigate what knots and links are likely to occur in such circumstances.
Indeed, a recent work [TD16] simulates random quantum wavefunctions in different potentials, and
study the complexity of the vortex knots that show up.

Finally, knots form at random in many objects of everyday practice, from extension cords,
ropes, and garden hoses [RS07] to umbilical cords [Gor05, HSS+01] and eels [ZRA+11].

2.4 Computational Aspects The study of random knot models is also motivated by the
important role of randomness in the design and analysis of algorithms and in computational com-
plexity theory [MU05].

It is a central computational challenge in knot theory to determine how hard it is to detect
unknots, and more generally to decide the equivalence of two given knots [Hak61, HLP99, Kup14,
Lac16]. Specifically it is interesting to bound the number of Reidemeister moves that yield the
equivalence of two representations [HN10, Lac15, CL14]. It is generally believed that some of
these problems are hard, and consequently cryptosystems were proposed that are based on such
problems [FGH+12]. To this end it is necessary to know the complexity of typical instances of
problems. Random knot models are clearly needed in such pursuits.

The computation of various invariants also leads to interesting complexity problems. Hardness
results are known for the knot genus [AHT06, Lac16] and for the Jones polynomial [JVW90, AJL09,
Kup09]. Other invariants such as the Alexander–Conway polynomial and finite type invariants are
computable in polynomial time [Ale28, BN95b, CDM12]. Many such algorithms are implemented
in software packages, such as SnapPy [CDW], KnotTheory [BM+b] and KnotScape [HT]. These
are used in practice for the compilation of knot databases and are important tools in research and
applications [BM+a, CL, HTW98]. Random knot models could serve as the basis for average-case
analysis of such algorithms.
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2.5 Random 3-Manifolds The probabilistic method has had a great success in many areas.
The study of random knots can be viewed as part of a broader research effort to apply this
approach to the study of geometric and topological objects. In recent years, there have been
interesting developments in the study of random simplicial complexes [LM06, ABB+10, Kah16],
random groups [Gro03, Oll05], random manifolds [BM+04, DT06, PS06, FK08], and more.

In particular, several models for random 3-manifolds have been presented and studied in the past
decade [DT06, Lut08, Mah10, Kow10, DW11, M+11, Mah12, LMW16, Riv14]. Since every closed
orientable 3-manifold can be generated by performing Dehn surgeries on links in S3 [Lic97, Chapter
12], models for random links give rise to random 3-manifolds whose properties are interesting to
study [EHLN].

In another direction, random knot models may extend to knotted 2-spheres or other surfaces in
a 4-sphere, and further to randomly embedded manifolds in higher dimensions [SSW12, ASSW15].

3 Models

Before listing some specific models, a few words on the general framework. A random knot model
is a distribution over the set of all knots, which we represent by a random variable K. We usually
consider a sequence Kn of such distributions, where n ∈ N naturally appears in the construction.
This parameter n can often be viewed as a complexity measure of the typical resulting knots. All
unspecified asymptotic statements that we make here are w.r.t. n→∞.

Variations abound: We also encounter some multi-parameter constructions and some models
that yield random links of any number of components, or focus on some subclass such as prime or
alternating knots.

3.1 Self-Avoiding Grid Walk As usual, a walk on the three-dimensional lattice Z3 is a
sequence {X0, . . . , Xn} such that X0 = (0, 0, 0) and (Xi+1−Xi) ∈ {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.
Consider n-step walks that are closed, with Xn = X0, and self-avoiding, so that Xi 6= Xj for any
other pair of points. Connecting the points of such a walk yields an n-segment polygonal path,
that represents a knot. See Figure 3 for two examples.

Figure 3: The trefoil and figure-eight knots as 30-step walks on Z3.

Random self-avoiding walks (SAW) on Z3 were suggested as a model for polymeric molecules,
and their knotting properties have been studied over the past decades in varying degrees of rigor.
In the grid walk model a random knot Kn is obtained by sampling from the uniform distribution
of all closed self-avoiding n-step walks. Every knot appears in this model for n large enough.

It was conjectured by Delbruck [Del61] that Kn is knotted with high probability. This was ob-
served in numerical simulations [Cri74, FKLV75], and proved by Sumners and Whittington [SW88]
and by Pippenger [Pip89]. Using Kesten’s pattern theorem [Kes63], they showed that the unknot
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appears with exponentially small probability in n. Moreover, every prime knot appears in the de-
composition of Kn with multiplicity Θ(n), except for an exponentially small probability [SSW92].

Let K ′n be a uniformly random connected component of Kn, conditioned on Kn being knotted.
Note that K ′n is a natural model for random prime knots, and it is suggestive that K ′n converges
in distribution, and yields a random model for all prime knots.

It is of interest to study self-avoiding walks and the resulting knots on other lattices [JVRW90].
Also extensions to random 2-component links, and the effect of confinement within a box or a tube,
are considered and analyzed [OJVRTW94, SSW99, ASEW10]. Madras and Slade’s book [MS13]
offers a rigorous analysis of Monte Carlo sampling methods for self avoiding walks.

3.2 Polygonal Walks In the study of polymers, random polygonal paths in R3 also play a
prominent role. Again we create a closed self-avoiding path by joining n straight segments, but these
are now distributed according to some continuous law. Two common choices for the distribution
of the segments are the equilateral with uniform distribution on the 2-sphere, and the Gaussian
with standard 3-normal distribution.

Figure 4: A closed polygon that realizes the trefoil in R3.

That the walk is self-avoiding is usually satisfied with probability one, but more care is needed
to make sure that the walk is closed. Details of this vary with the specific model and sampling
method. We remain brief and only mention that it is possible to guarantee this in the Gaussian
model by adding a constant drift.

It was conjectured by Frisch and Wasserman [FW61] that polygonal walks are also unknotted
with vanishing probability. Numerical simulations suggested exponential decay in n for various
different polygonal models [DCM79, LB80, MW82, MW86, KM91]. Diao, Pippenger, and Sumn-
ers [DPS94] proved exp(−nε) for some ε > 0 for Gaussian-steps polygons. This was extended to
equilateral polygons [Dia95] and other models [JVROTW07].

General polygonal walks have an advantage over grid walks, in being space-isotropic. This is
more realistic for polymers, and more robust to variations. Here to simulate effects of excluded
volume constraints, one often replaces segments with rods and points with beads of positive radius.
It is also interesting to consider polygons packed in a confined space such as a cube or a tube.
Other variations of the model allow simulating bending rigidity, tension, pressure, thermodynamic
entropy, and interaction between particles. See [MMO11] for a thorough review.

For numerical experiments, such models are often approximately sampled via Markov chains
in the configuration space, with a variety of local and global moves based on re-ordering, rota-
tion, reflection, and more [ACM11]. There is currently much activity in search of faster rigorous
sampling algorithms, with new techniques from symplectic geometry [CS16, CDSU16] and convex-
ity [Cha16c].

The resulting knots were classified for large samples in the various experiments. It turns
out that, in several polygonal and grid models, the frequency at which a knot K occurs is well
approximated by P [Kn=K] = CK (n/N)

αK e−(n/N). The constant N depends only on the model,
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while for every knot K the exponents αK seem to be universal among different models [DT94,
DT97, OTJVRW98, MR05, JVRR11]. Further experiments indicated that the mth most frequent
knot appears with probability of order m−1.75 [CDSU16].

3.3 Smoothed Brownian Motion A substantially less studied subject is knotting from non-
piecewise-linear three-dimensional random walks. A random polygon in the Gaussian model can
be viewed as a linear interpolation between a finite number of points from a continuous Brownian
bridge taken at constant time intervals. However, Brownian motion cannot model a knot as it is
self-intersecting with probability one. Moreover, Kendall [Ken79] showed that it would contains
infinitely many knots of all types, in the sense of being contained in such knotted tubes. Is there
a smooth model that avoids these problems but captures the behavior of Brownian motion other
than in small scale?

The worm-like loop [Gro00] from polymer physics is a conituum model that takes curvature into
account. A smooth closed curve in R3 is given weight proportional to exp

(
−`
∫
‖r̈‖2ds

)
, where

r(s) is its arc-length parametrization and ` is a typical length of persistence to bending. A more
general model of statistical mechanics, designated for ribbons, takes care of the bending direction
and persistence to twisting as well [KR03]. It is known how to approximately sample from this
model for open paths but not for closed ones.

In the search of a more numerically accessible model for worm-like loops, Rappaport, Rabin
and Grosberg [RRG06, RR07] suggested the following mathematical model. One way to construct
a Brownian bridge in R3 is by the following Fourier series, with wk = 1.

r(t) =

∞∑
k=1

wk
k

(Zk cos kt+ Z′k sin kt) Zk,Z
′
k ∼ 3-normal iid.

To obtain a smooth approximation, one can truncate the sum by wk = 1k≤n or by wk = e−k/n.
Computer simulations of the second choice show an exponential decay of the unknotting proba-
bility [RRG06]. It is interesting to observe that the cut-off factor wk = e−(k/n)

2

is equivalent to
smoothing the Brownian motion by convolution with a narrow Gaussian, which seems to be an
appealing choice.

Recent works [Wes16, Riv16] study the case of polynomially decaying coefficients wk = k−α,
where α ∈ R. For α > 0.5 they derive bounds on the expected crossing number of a random knot,
and on the variance of the linking number of a random link.

The parametrization of knots by a finite sum of cosines yields Fourier knots [Buc94, Tra95,
Kau98]. As shown by Lamm [Lam12], every knot can be obtained by taking x(t) = cos(kxt+ φx),
y(t) = cos(kyt + φy), and a finite sum of such cosines for z(t). This was recently improved
by Soret and Ville [SV16], who showed that a sum of two cosines is sufficient. Taking a single
cosine, z(t) = cos(kzt+φz) defines the well-studied Lissajous knots [BHJS94, JP98, Lam97, HZ06].
In [BDHZ09] and [Riv16] experiments on random Fourier and Lissajous knots are reported.

3.4 Random Jump In the above random walk models the typical step length is small com-
pared with the diameter of the whole embedded path. Millet [Mil00] suggests polygonal models
where each point X1, . . . , Xn ∈ R3 is independently sampled from some distribution, such as the
uniform distribution on the cube [0, 1]3, or a spherically symmetric distribution with a uniform ra-
dius in [0, 1]. To this end any rich enough distribution that almost surely avoids self-intersections
will do, such as the 3-normal distribution, or uniform on the unit sphere [O’R11].

By sampling X1, . . . , Xn and Y1, . . . , Ym independently with the same 3-dimensional distri-
bution, the above extends to two-component links [ABD+07a], and similarly for any number of
components.

We still do not know how likely it is to encounter the unknot in the random jump model. Numer-
ical experiments indicate that this probability vanishes faster than exp(−O(n)) [Mil00, ABD+07b].
This provides evidence for a strong form of the above-mentioned Delbruck–Frisch–Wasserman con-
jecture in this model. Similar conclusions seem to apply to any fixed knot. Experiments with the
cube model suggest that the expected knot determinant is ω

(
expn2

)
. It is proposed in [ABD+07b]

that most knots in this model are prime. It was suggested [Thu11] that the expected crossing num-
ber in the spherical case is Θ(n2).

7



A knot in the unit ball A two-component link in the cube

Figure 5: The random jump model.

Consider the linking number Lmn of a random two-component link with n and m segments.
It is known [ABD+07a, FK16] that its variance is Θ(nm), and it is conjectured that Lmn/

√
nm

converges in distribution to a Gaussian [PML10, Kar10]. Based on our analysis of the Petaluma
model [EHLN16] we tend to doubt this conjecture. Rather, we suspect that the tails of the limit
distribution decay exponentially.

A more symmetric variant of the random jump model has been suggested [Wis16], which takes
place in S3 visualized as the unit sphere in R4. A sequence of uniformly random points can be
connected along the geodesics, which are the great circles.

These random jump or uniform random polygon (URP) models, were originally proposed to
illustrate the effect of spatial constraints on knotted molecules [Mil00]. In some bacteriophages, for
example, a circular DNA molecule is densely packed inside a spherical capsid. Experiments show
that more complex knots are likely to be produced, compared to unconstrained DNA of similar
length in free solution [AVT+02]. The observed distribution is also biased towards chiral knots
and especially torus knots [AVM+05].

The explanation of these findings requires more realistic simulations that take into account
various biophysical features, see e.g. [MMOS08, MOS+09]. However, the simplicity of the random
jump model makes it amenable for rigorous mathematical analysis, while it is arguably a prototype
of a polygonal model in spatial confinement [ABD+07b].

3.5 The Petaluma Model We now abandon random polygons, and move to more combina-
torially oriented models. We start with the Petaluma model, studied by the author and collabora-
tors [EHLN16, Eve17, EHLN17].

Adams et al. [ACD+15, ACSF+15] have shown that every knot or link can be positioned so that
its planar projection is injective except for a single point. Several projected strands may smoothly
traverse this point of the über-crossing projection, each originating at a different height. Moreover,
every knot has a petal projection, where the loops that emanate from the multi-crossing point have
disjoint interiors. Consequently, petal projections are represented by a rose-shaped curve with an
odd number of petals, as in Figure 6A.

In order to reconstruct the original knot we need only the relative ordering of the heights of
the strands above the multi-crossing point. This information can be encoded by a permutation
σ ∈ S2n+1. We generate a random knot K2n+1 in the Petaluma model by picking σ uniformly at
random [EHLN16]. By the construction of Adams et al., every knot K is obtained with positive
probability for n large enough.

The Petaluma model extends to k-component links, by considering petal diagrams with k
components as in Figure 6. In [Eve17] we study its extension to framed knots, which can be
thought as knotted oriented ribbons.
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(A) 9-petal (B) 12-petal 2-component (C) 24-petal 3-component

Figure 6: Petal diagrams for knots and links.

In [EHLN16, Eve17] we explicitly find the limiting distribution of the linking number of a
two-component link, as well as the limiting distribution of the writhe of a random framed knot.
We similarly present formulas for the moments of the Casson invariant c2 and another finite type
invariant appearing in the Jones polynomial. We elaborate on finite type invariants of random
knots in the Petaluma model in Section 4 below.

As we show in a recent paper [EHLN17], every particular knot appears in this model with
vanishing probability. We conjecture that this probability decays at least exponentially with n,
but currently the best bounds we have are Ω(n−n) ≤ P [K2n+1=K] ≤ O(n−0.1).

It is of interest to understand the relation between the crossing number c(K) of a knot and the
least number of petals p(K) needed to represent it. We show in [EHLN17] that p(K) ≤ O(c(K)),
and this bound is tight by results of Adams et al. [ACD+15]. They have also shown that c(K) ≤
O(p2(K)), which is also tight.

Numerical simulations for n ≤ 100 suggest that most knots in the Petaluma model are prime,
and even hyperbolic. See Section 4.4 for more details, and further results by Adams and Kehne
[Ada17, AK16, Keh16]. They went on to extend the Petaluma model to the Überluma which
contains all diagrams of one multi-crossing, allowing for nested loops.

3.6 Random Grid Diagrams Grid diagrams are a useful kind of regular knot diagrams. They
describe all knots and links in a simple way [Bru97, Cro98]. A grid diagram consists of n horizontal
segments and n vertical segments, where vertical segments always pass over horizontal ones. Each
of the integers in {1, . . . , n} appears as the x-coordinates of exactly one vertical segment. Likewise
for the y-coordinates of the horizontal segments.

A grid diagram is encoded by a pair of permutations ρ, σ ∈ Sn for these horizontal and vertical
coordinates respectively. We alternately take steps of the form (ρi, σi)→ (ρi, σi+1)→ (ρi+1, σi+1)
and so on. See [EHLN16] for more details, and Figure 7A for an example.

A random knot in the random grid model is obtained by taking ρ and σ independently uniformly
at random. Extensions to k-component links are easy and we omit further details. A similar model
that produces links of varying number of components was considered in a scheme for quantum
money [FGH+12].

We numerically compare the distribution of c2 for the Petaluma and grid models, and find
that they share many features, see Section 5. As observed in [ACD+15], the Petaluma model is
contained in the grid model, and obtained by conditioning on ρ(k) = nk mod (2n+ 1).

Some preliminary work on precise moments’ computation for finite type invariants in the random
grid model has been done by Gal Lavi, Tahl Nowik, and the author [LN]. We report that E[c2] =
n2/288 +O(n) and V [c2] = 7n4/194400 +O(n3), which are of the same orders as in the Petaluma
model, cf. Section 4.

Two grid diagrams of the same knot can be related by a finite sequence of Cromwell moves,
which are local operations of three types, similar to the Reidemeister moves [Cro95]. Witte
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(A) A grid digram for ρ, σ ∈ S10 (B) The corresponding human knot

Figure 7: Here ρ = (4, 0, 6, 2, 9, 3, 8, 5, 1, 7) and σ = (9, 3, 6, 1, 5, 0, 8, 4, 7, 2).

et al. [WBV16] estimate the average writhe of a knot over its n× n grids, using a Markov chain of
these moves. See also [FGH+12].

We find a nice interpretation of the grid model in a common group-dynamic game named the
human knot [Ada94]. A group of n two-handed participants stand in a circle. Each player chooses
the next one at random and then they hold hands, until the last player holds the free hand of the
first one. Their goal is to simplify the knot to a circle without letting their hands go, which is of
course not always possible.

To analyze this game, we introduce the assumption of transitivity. Namely, connected pairs
of hands are ordered from bottom to top. See Figure 7B, where the players correspond to axial
segments on a cylinder, and connections are horizontal chords at different heights. If this ordering
is uniformly random, then this construction is equivalent to a random grid diagram. Horizontal
and vertical segments correspond to chords and players respectively. The permutation ρ records
the order at which players are connected, and σ represents the relative order of the hands’ heights.

A related model, based on the human knot game, was suggested by Gilad Cohen [Coh07], who
conducted computer experiments to study the distribution of the resulting knots.

3.7 Random Planar Diagrams Planar diagrams are routinely used to represent knots and
to investigate them. Naturally, this suggests the study of random knots by sampling diagrams
with a given number of crossings. Such models were studied by several authors [SZJ04, DEZ05,
DEHZ10, DHO+14, CCM16], with various sampling methods.

To this end, we start with a generic smooth immersion of S1 into R2 with n traverse double
points, considered up to diffeomorphism of the plane, as in Figure 8. This yields a 4-regular plane
graph, where loops and multiple edges are allowed. Then each vertex is assigned either of the two
possible crossing signs.

The number of n-vertex 4-valent graphs in R2 is asymptotically exponential in n. However,
an algorithm by Schaeffer [SZJ04, BM+07] uniformly samples such graphs with a base point, by
generating a random rooted binary tree and matching leaves to non-leaves in some clever way.
Some of the resulting graphs correspond to curves with several components, which is a problem if
one is interested only in knots rather than links. One can either reject [DHO+14, CCM16] these
curves, or modify [DEZ05, DEHZ10] them, but this, however, ruins uniformity.

Some delicate issues of symmetry arise. Namely, do we care about orientation and mirror
images? Should we distinguish between different planar diagrams which are equivalent in the
sphere S2? Do we want a base point on some edge? Finally, are different n-vertex graphs to be
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(A) The underlying graph (B) The knot diagram

Figure 8: A random assignment of crossings to an 11-vertex 4-regular plane graph.

weighted equally or according to the number of non-equivalent diagrams they give rise to, which
might be smaller than 2n due to symmetries? However, all subtleties of this sort become negligible
as n grows [RW95, Cha16b].

A recent advance in the study of this model is the establishment of a pattern theorem for
diagrams by Harrison Chapman [Cha16a, Cha16b]. This extends pattern theorems for planar
maps [BGR92], and parallels the above-mentioned results for grid and polygonal knots. Chapman
showed that small sub-diagrams appear Θ(n) times in an n-crossing knot or link diagram, except
for an exponentially small probability. In particular, as n grows the diagram contains a 3-crossing
trefoil summand and is hence nontrivial with high probability. Similar results hold if one restricts
to prime diagram, ones whose underlying graph is 4-edges-connected.

Numerical experiments tell us more. Dunfield, Obeidin et al. [DHO+14, Obe16] study random
links, knots, and prime connected summands of knots in this model. Their results suggest that
several invariants, including the hyperbolic volume, grow linearly with n. Cantarella, Chapman and
Mastin [CCM16, Cha16b] precisely compute knot probabilities for n ≤ 10, and study their behavior
for larger n based on random samples. The methods used in these experiments are implemented
into publicly available software packages: plCurve [ACC] and SnapPy [CDW].

3.8 Random Planar Curves Other models generate a random 4-regular plane graph in vari-
ous ways, and then assign crossing signs uniformly at random. For example, Diao et al. [DEHZ10]
randomly add n non-intersecting chords inside and outside an n-vertex cycle, to make it 4-regular,
and then toss a coin to decide each crossing.

In the following random-crossing constructions the underlying graph is generated by sampling
polygonal curves in the plane.

• Equilateral closed polygons in R2 [MW89].

• Closed SAW in Z2 with diagonal crossings: or [GO99].

• Jumps between uniform points in the square [0, 1]2 [ABD+07b, DEHZ10].

• A chain of chords between uniform points around the circle [Coh07].

• The griddle: Random grid diagrams with randomized crossings [EHLN].

There are close connections between the finite type invariants of such knots and those of the un-
derlying curve [Pol98]. For example, the expected value of the Casson invariant c2 is one eighth the
defect, a first-order invariant of the curve. In the griddle model we calculated E[c2] = E[defect]/8 =
n2/144 +O(n) and V [c2] = n4/7776 +O(n3), though V [defect] = 29n3/4050 +O(n2) [EHLN].

Finally, we note that given a 4-valent graph in the plane, exactly two sign assignments produce
an alternating link diagram, where over-crossings and under-crossings alternate as one travels along
the link. Diao et al. [DEZ05, ABD+07b, DEHZ10] and Obeidin [Obe16] used this observation
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to construct models for prime alternating knots and links. Except for the (2, n)-torus these are
hyperbolic links, whose volume can be read off the diagram up to a multiplicative constant [Lac04].
Taking the uniform distribution over prime alternating link diagrams, the expected hyperbolic
volume is linear in the crossing number [Obe16].

3.9 The Knot Table Model The crossing number is perhaps the most popular measure
for knot complexity. Historically, prime knots are tabulated and nomenclated according to their
crossing number, as reflected in the widely used Alexander-Briggs–Rolfsen knot notation [AB26,
Rol76]. See also Figure 9.

Figure 9: Excerpt from Tait’s original table of knots with up to 8 cross-
ings [Tai84]. Note that unlike the discussed model it contains only alternating
knots, with several equivalent diagrams for some of them.

Consequently, many investigators find it quite natural to generate random prime knots by
uniformly sampling from knot tables with up to n crossings. If one cares about chirality and
orientation, these can be decided by further coin flips.

It is known that there are exponentially many knots with n crossings [ES87, Wel91, ST98], but
the exact count is known only for small n [HTW98]. The difficulties in recognition and enumeration
of n-crossing knots make this model less suitable for precise computations, though it is known that
most knots are not rational [ES87], nor are most links alternating [Thi98].

The vast majority of knots with up to n ≤ 16 are hyperbolic, which may suggest that their
asymptotic proportion tends to 1. This is however not likely to be true, in view of a recent
surprising result of Malyutin [Mal16]. He assumes the plausible, but still unproven, conjecture
that the crossing number is weakly monotone with respect to connected sum. The crux of his
proof is the addition of small satellite configurations to existing diagrams.

3.10 Random Braids It goes back to Alexander that every knot or link is the closure of some
braid [Lic97]. Namely, it can be represented by some m intertwining strings that monotonously go
from left to right, and close at some canonical way as in Figure 10. Such braids form a group Bm,
with generators {σ±1i }1≤i<m that correspond to swapping strings i and i + 1, and appropriate
relations.

There is recent interest in generating knots by random walk in the braid group. This parallels
well-known constructions of random 3-manifolds [DT06] and more.
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Such a model is defined in terms of a probability distribution on a finite subset of the braid
group Bm, such as the generators σ±1i . A random knot is obtained by n-step random walk in these
generators, with some standard closure as depicted in Figure 10. The context of Markov Chains
on groups proves useful in the analysis of this model [NGV96].

σ1 σ1 σ
−1
2 σ−12 σ1 σ

−1
2 σ−11 σ2 σ1 σ1 σ1 σ

−1
3 σ2 σ2 σ

−1
3 σ3 σ

−1
1 σ−12 σ1

(A) Trace Closure (B) Plat Closure

Figure 10: Random knots in the braid model.

This definition yields random links of a varying number of components. For fixed m and large
n we obtain knots with probability about 1/m. Additionally, only links of braid index or bridge
index at most m appear, according to the closure convention. Remarkably, random knots and links
in this setting are hyperbolic with high probability [Mal12, Ma13, Ma14, Ito15, IY15, IM16].

3.11 Crisscross Constructions This family of random models includes several constructions
in which a planar curve is explicitly specified, and all randomness comes from the choice of crossing
signs, sampled independently and uniformly at random.

One source for such models is planar Lissajous curves [Lis57], illustrated in Figure 11. These
closed curves are parametrized by (cos(at + φ), cos bt) where t ∈ [0, 2π] with ratio b : a ∈ Q and a
phase shift φ ∈ R. We also consider the open curve (cos at, cos bt) where t ∈ [0, π], being closed
from the outside. These curves are plane isotopic to the polygonal trajectory of a billiard ball
in [0, 1]2, fired at slope b/a [JP98].

(A) Closed, of ratio 3 : 2 (B) Open, of ratio 9 : 5

Figure 11: Billiard table diagrams from Lissajous curves.

The three-dimensional analogues of these curves constitute Lissajous knots [BHJS94, Lam97,
JP98] and Harmonic Knots [Com97, KP11], but these families do not contain all knots. However,
planar Lissajous curves with suitable crossing signs do give rise to all knots. This underlies the
construction of the above-mentioned Fourier Knots [Buc94, Tra95, Kau98, HZ06, Lam12, SV16]
and Chebyshev Knots [KP11], as well as the next random construction, the billiard table model
suggested by Cohen and Krishnan [CK15].

A random knot Kb:a is thus obtained by randomizing the crossing signs, as in Figure 11. It can
also be regarded as a special case of the random braid model. For example, the case a = 5 as in
Figure 11B is generated by the 16 elements {σ±1 σ

±
3 σ
±
2 σ
±
4 } with the uniform distribution.

In [CEK16] we study the asymptotic properties of Kn:3, which yields random two-bridge knots,
also known as rational knots [KL04]. We show that the probability of obtaining any particular
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(A) Petal (B) Star (C) Braid

Figure 12: From petal diagrams to regular knot diagrams.

knot is (α+ o(1))n for α = 3
√

27/32 ≈ 0.945, and the crossing number is (β+ o(1))n in probability,

for β = (
√

5− 1)/4 ≈ 0.309.
We remark that, without restricting to fixed diagrams, other random models arise from the

highly developed theory of rational knots. In particular, a random braid in {σ1, σ−12 }? ⊂ B4 yields
a rational knot by its Conway symbol [Con70]. See [ES87] and [DEHZ10] for corresponding results.

Star diagrams are obtained from (2n+1)-petal diagrams by straightening the segments between
petal tips. See Figure 12A-B. A random knot in the star model is generated by randomizing the
(n − 1)(2n + 1) crossings. Star diagrams are plane isotopic to closed n-braids [ACD+15], as
demonstrated in Figure 12B-C.

The star model yields all knots, since the Petaluma model does, but with quite different distri-
bution. We show in [EHLN16] that its expected Casson invariant is E[c2] = n3/12 +O(n2) with a
standard deviation of n2/

√
24 +O(n3/2). This means that c2 drifts away from zero.

Chang and Erickson [CE15] consider a generalization of the star model. They define the flat
torus diagram T (p, q) as the closed braid (σ1σ2 · · ·σp−1)q, and assign crossing signs at random. The
star model is T (n, 2n+ 1), as shown in Figure 12C for n = 4. Following Hayashi et al. [HHSY12],
they show that the expected Casson invariant of T (n+ 1, n) is Θ(−n3). It is conceivable that this
latter model contains all knots as well.

The probability space in such crisscross models consists of 2c crossing states. Some invariants
are more accessible in this simple setting, as they are computable by summation over 2c local
configurations at the c crossings. One important example is the Kauffman Bracket [Kau87], and
its connections to statistical physics [Kau88, Jon89, Wu92].

For crisscross diagrams on the 2-dimensional lattice, rather similar to the above ones, the
degree distribution of the Jones polynomial is analyzed in terms of the Potts model from statistical
mechanics [GN92, Nec96, VN01].

3.12 Miscellanea We have attempted to cover the main themes of random knot models. Of
course, our list of models and results is not completely exhaustive, neither historical, and to
some extent reflects our own viewpoint. To conclude, we mention some random ideas in further
directions.

Various models from the natural sciences seek to emulate dynamical processes of knot for-
mation in real life scenarios. Some studies describe numerical simulations of a polygonal DNA
chain that folds, coils and spools within a cavity, before its two ends anneal and produce a
knot [AD08, MOS+09, for example]. Such dynamical models are important for understanding
biological processes by comparing simulated and observed data, but usually they don’t lend them-
selves easily to mathematical analysis.

Other studies [FMS04, HNR+07, LC08, SS11, CMSS14] are inspired by the interaction between
DNA and topoisomerase, a specific enzyme that cuts and rejoins strands, and thus modifies their
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topological state. Such strand-passage models induce transition probabilities between knot types,
which can be estimated by numerical simulations, and these lead to a stationary equilibrium
distribution over knots.

Finally, Babson and Westenberger study knots obtained from a curve in Rn by projecting
to R3 in a random direction. They relate several of the above constructions to this original frame-
work [Wes16].

In principle, any reasonable way to construct or represent knots could be turned into a random
model. Another case in point are trajectories of dynamical systems, such as three-dimensional
billiard [JP98].

4 A Closer Look at the Petaluma Model

We now focus on random knots and links in the Petaluma model (3.5), and discuss the distribution
of their finite type invariants and hyperbolic volume. First we recall the definition of finite type
invariants, given in terms of singular knots and links [BL93].

4.1 Finite type invariants Unlike a regular knot, which is a smooth embedding of S1 into R3

up to isotopy, a singular knot is allowed to have finitely many double points of transversal self
intersection. Each of these points can be locally resolved in two well-defined ways: positive ,
and negative .

Let v be a knot invariant taking values in some abelian group, usually in Z. The extension of
v to singular knots is given by v(K) = v(K+

p ) − v(K−p ), where K±p are the two resolutions of the
singular knot K at the double point p. By recursion, the value of v on a singular knot with m
double points is given by a signed sum of its value on 2m regular knots. We say that v is a finite
type knot invariant of order m if it vanishes on all singular knots with m+ 1 double points.

This condition is satisfied by several well-studied knot invariants, such as coefficients of knot
polynomials [BN95b, CDM12] and the Kontsevich integral [BN95a, CD01]. There is only one
knot invariant of order two, up to affine equivalence – the Casson invariant c2(K), which is the
coefficient of x2 in the Alexander–Conway polynomial CK(x). It similarly appears in the modified
Jones polynomial, VK(ex) considered as a power series in x, which also yields an invariant v3(K)
of order three. The number of new independent finite type invariants grows with the order: 3
invariants of order four, 4 of order five, 9 of order six, etc. [BN95a].

No invariant of knots has order one. However, the Gauss linking number lk(L) is a classical first
order invariant of two-component links. Also the framing number, or writhe w(K) as in [Eve17],
is a first order invariant of framed knots.

4.2 Asymptotic Distributions Finite type invariants of random knots and links in the
Petaluma model (3.5) have been studied by Hass, Linial, Nowik, and the author [EHLN16, Eve17].
In particular, we have investigated how these invariants scale and distribute for knots with a large
number of petals.

Consider the Casson invariant of a random knot with 2n+1 petals. It is not hard to observe that
c2(K2n+1) = O(±n4), which is shown to be sharp for torus knots and other explicit constructions.
However, we have found that the typical order of magnitude of the Casson invariant is actually n2.
Indeed, its expectation is E[c2] = n(n− 1)/24, its variance is V [c2] = 7/960 · n4 +O(n3), and such
formulas have been given for all moments, yielding E[ck2 ] = Θ(n2k). We find it intriguing that the
distribution of the properly normalized Casson invariant c2/n

2 is asymmetric and not centered at
zero, asymptotically as n→∞.

The third order invariant v3(K2n+1) is antisymmetric with respect to reflection, hence its dis-
tribution is symmetric around zero. As for its even-order moments, we have similarly shown
E[vk3 ] = O(n3k), e.g., V [v3] = 9298/5443200 · n6 +O(n5).

In terms of their moments, c2 grows as n2 and v3 as n3. This naturally suggests that an
mth order invariant of random knots with n petals asymptotically scales as nm. In [EHLN16] we
conjecture that vm(K2n+1)/nm weakly converges to a limiting distribution as n → ∞ for every
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finite type invariant vm of order m. The existence of continuous limit distributions for c2 and v3
is supported by computational evidence, as discussed below.

We have established such a limiting distribution in two cases: the linking number of a random
two component link with 2n petals in each component, and the writhe of a random framed knot
with 2n+ 1 petals. Both are first order invariants, and obtain integer values sharply between ±n2.
In [EHLN16] we prove that lk(L2n,2n)/4n converges to the logistic distribution, with density func-
tion f(t) = π/ cosh2(2πt). The normalized writhe w(K2n+1)/n converges to another non Gaussian
limiting distribution, established and described in [Eve17].

Our proofs combine the method of moments with careful combinatorial analysis of the limiting
moments of these invariants, expressed via Gauss diagram formulas.

4.3 Numerical Experiments We study the invariants c2(Kn) and v3(Kn) in the Petaluma
model, by computing their values for a random sample of permutations in Sn. Comparing the
results for various values of n, we observe that as n grows the joint distribution of c2/n

2 and
v3/n

3 seems to converge to a continuous bivariate distribution of a certain shape. The heat map
in Figure 13 shows the resulting density function of this distribution for n = 41, which seems to
be a good approximation of the conjectured limiting distribution.

Figure 13: The normalized distribution of c2 and v3 for a random
knot K41, based on 108 random samples.
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The planar representation of these two invariants follows previous work by Willerton [Wil02,
CDM12] and Okuda [O+02], who generated scatter plots of (c2, v3) for all prime knots with up to
n crossings. They similarly obtained fish-shaped figures, although it is unclear how these should
scale as the crossing number grows. The Petaluma model may provide a more concrete way to
catch this fish, in the form of a limit density function defined on R2.

Besides representing the first two finite type invariants, the planar map ϕ : K 7→ (c2(K), v3(K))
has some interesting properties. As observed by Dasbach et al. [DLL01], the evaluation of the Jones
polynomial at roots of unity near 1 can be approximated by VK(eih) = 1 + 3c2h

2 + 6v3h
3i+O(h4),

and this yields similar fish graphs for VK(e2πi/N ) in the complex plane, for N � n.
Note that by the multiplicativity of the Jones polynomial, the map ϕ is additive with respect to

connected sum: ϕ(K#K ′) = ϕ(K) + ϕ(K ′) in Z2. Using this fact and some known constructions
one can show that as n grows the resulting point set of all (c2/n

2, v3/n
3) is dense in R2. We

actually conjecture that the limiting bivariate distribution has positive density everywhere in the
plane.

4.4 Hyperbolic Volume We conclude this section with further numerical experiments, con-
cerning the distribution of the hyperbolic volume in the Petaluma model, as approximated by the
Sage package SnapPy [CDW].
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Figure 14: The hyperbolic volume per petal grows with the number of
petals. This is based on random samples of 25 knots with 21 to 121
petals. Non-hyperbolic knots (< 2.5%) were omitted.
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As mentioned in Section 3.5, our simulations show that randomly sampled knots with up to
200 petals are mostly hyperbolic. This trend seems to strengthen with increasing number of
petals, although one must be careful drawing conclusions from small cases, cf. [Mal16] mentioned
in Section 3.9.

Figure 14 shows how the empirical hyperbolic volume grows super-linearly with the number of
petals. More speculatively, the volume of an n-petal knot appears to be concentrated around a
curve of the form An logBn, which seemed to fit better than a linear function, or one of order n3/2.
These experiments have been repeated by Adams and Kehne [Keh16]. They have also proved that
the expected volume is at most 4π n log n, by constructing a pyramid decomposotion of the petal
knot complement [Ada17, AK16]. Any such lower bound would be of great interest.

5 Discussion

This great variety of approaches for random knot models suggests that we ask how they differ.
Do they exhibit some kind of common properties? By what means should we compare models?
What do they teach us about knot invariants and knot theory? Below we record some thoughts
concerning these questions.

5.1 Local knotting The Delbruck–Frisch–Wasserman conjecture, that a typical random knot
is non-trivial, has been proved by now in several models. Some insight on their properties can be
gained by comparing the arguments involved in these proofs.

The knottedness of random polygonal and grid walks (3.1,3.2) is based on the fact that such
knots tend to have many spatially localized connected summands. This phenomenon can be at-
tributed to the small steps taken in these models [SW88, Pip89, DPS94, Dia95]. We do know,
however, that large scale knotting occurs as well [Jun94, DNS01]. Also for planar diagrams (3.7),
knottedness follows from the existence of small prime summands in random knot and link dia-
grams [Cha16b]. Even for prime knots in the knot table model (3.9), local configurations of a
double figure-eight knot provide a satellite decomposition [Mal16].

In contrast to the highly composite knots produced by small-steps models, we believe that
models of non-local nature yield knots with much simpler factorization. By non-local we mean
that the typical step length is comparable to the diameter of the whole curve.

For example, local entanglements yield only a vanishing probability of order 1/n3 for a trefoil
summand in the Petaluma model (3.5). Indeed, its knottedness with high probability was shown
by other means, a coupling argument based on the effect of random crossing changes on finite type
invariants [EHLN17]. As mentioned above, numerical experiments indicate that these knots are
mostly hyperbolic, so that any connected sum or satellite-type decomposition might become rare.

5.2 Dimension It would be interesting to further distinguish knot models from each other by
their asymptotic topological features. On the other hand, it would be very interesting to discover
universal phenomena and parameters that hold for a variety of different models.

We shall venture some speculations along these lines. As a first step, consider the following
three classes of random models.

1D Grid walks (3.1), polygonal walks (3.2), and smoothed Brownian motion (3.3).

2D Random planar diagrams (3.7), the griddle (3.8), knot table (3.9), and star (3.11).

3D Random jumps (3.4), the Petaluma (3.5), and grid diagrams (3.6).

This classification attempts to grasp the “dimension”, or general shape, of the actual spatial
curves constructed by the different models, in some loose and undefined sense. It is a fundamental
challenge to characterize such a classification precisely.
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Would it be possible to reconstruct the class to which some random model belongs, by looking
only at the asymptotics of the topological invariants of the resulting knots?

5.3 Comparing Invariants Our computations and experiments [EHLN16, EHLN] show that
the asymptotic distributions of the Casson invariant in models of the third class share several
important features. In Figure 15, we exhibit numerically generated histograms of the Casson
invariant for three models: Petaluma (3.5), grid (3.6), and several random jump models (3.4). They
all seem to converge to continuous unimodal limit distributions on R, with two-sided exponentially
decaying tails, strictly positive expectations and similarly asymmetric shapes.

Even though models of the second class also seem to converge to distributions of similar
shapes around their expectations, their main terms are inconsistent. In the griddle (3.8) model
E[c2]/

√
V [c2] = Θ(1), while in the star (3.11) model E[c2]/

√
V [c2] = Θ(n).

We hope that extending such comparisons to other invariants would shed more light on the
above questions of classification and universality.
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Figure 15: The distribution of c2(Kn)/n2 in several random knot models,
for n = 80 or 81, based on 108 random samples each, and normalized to
have variance one. Only the star histogram was shifted to compensate for
its rightward drift.
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5.4 Open Problems Models of the third class outlined above seem especially interesting from
a knot-theoretic point of view. They presumably avoid phenomena of local knotting or “flatness”,
and their finite type invariants seem to follow well-behaved distributions.

We close our review by listing some of the desired features of these random models, which are
yet to be established.

Conjecture. Let Kn be a random knot, sampled from any of the following models: Random
Jump (3.4), Petaluma (3.5), Grid (3.6). Then,

• With high probability Kn is prime, and even hyperbolic.

• With high probability Kn is non-alternating.

• The typical crossing number is super-linear: E[c(Kn)] = ω(n).

• The probability of every knot K is sub-exponential: P [Kn=K] = e−ω(n).

• Any finite type invariant of order m has typical order of magnitude nm.

5.5 Implementation Details We include here some information about the numerical results
that are firstly reported in this paper.

The generation of random knots in various models was performed by a C++ program, available
at [EZb]. The computation of finite type invariants, as in Sections 4.3 and 5.3, was carried out using
Gauss diagram formulas [CDM12], which can be evaluated in polynomial time. The computations
were distributed on up to 168 processors in the computing facilities of the School of Computer
Science and Engineering at HUJI. They were supported by ERC 339096.

The formulas for invariants of random grid and griddle knots with 2n segments in Sections 3.6
and 3.8, were derived by automated case analysis of the many possible configurations of the involved
crossings. It was implemented in a Python program, available at [EZa]. These computations took
several hours on a PC.

The data in Figure 14 was obtained from the Sage software SnapPy [CDW], that approximates
the hyperbolic volume of a link by finding a triangulation of its complement with compatible
hyperbolic structure. In order to make the random samples suitable as input for the program,
we first converted them from petal diagrams to braids, as shown in Figure 12. Some concerns
regarding the verification of hyperbolicity and the stability of the computed volume are discussed
by Kehne [Keh16]. Our results are available, together with the source code that generated them,
at [EZc]. The computation took several days on a PC.
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[JP98] Vaughan FR Jones and Józef H Przytycki. Lissajous knots and billiard knots. Banach Center
Publications, 42:145–163, 1998.

[Jun94] Douglas Jungreis. Gaussian random polygons are globally knotted. Journal of Knot Theory and its
Ramifications, 3(04):455–464, 1994.

[JVROTW07] EJ Janse Van Rensburg, E Orlandini, MC Tesi, and SG Whittington. Knotting in stretched polygons.
Journal of Physics A: Mathematical and Theoretical, 41(1):015003, 2007.

[JVRR11] EJ Janse Van Rensburg and A Rechnitzer. On the universality of knot probability ratios. Journal
of Physics A: Mathematical and Theoretical, 44(16):162002, 2011.

[JVRW90] EJ Janse Van Rensburg and Stuart G Whittington. The knot probability in lattice polygons. Journal
of Physics A: Mathematical and General, 23(15):3573, 1990.

[JVW90] François Jaeger, Dirk L Vertigan, and Dominic JA Welsh. On the computational complexity of the
Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc, 108(1):35–53, 1990.

[Kah16] Matthew Kahle. Random simplicial complexes. arXiv preprint arXiv:1607.07069, 2016.

[Kar10] Enver Karadayi. Topics in random knots and R-matrices from Frobenius algebras. PhD thesis,
University of South Florida, 2010.

[Kau87] Louis H Kauffman. State models and the Jones polynomial. Topology, 26(3):395–407, 1987.

[Kau88] Louis H Kauffman. Statistical mechanics and the Jones polynomial. Contemporary Mathematics,
78:175–222, 1988.

24

https://www.math.utk.edu/~morwen/knotscape.html
https://www.math.utk.edu/~morwen/knotscape.html


[Kau98] Louis H Kauffman. Fourier knots. Ideal knots, World Scientific, available at arXiv preprint q-
alg/9711013, 19, 1998.

[Keh16] Gregory Kehne. Bipyramid decompositions of multi-crossing link complements, 2016. Advisor: Colin
Adams. available: https://unbound.williams.edu/theses/islandora/object/studenttheses:126.

[Kel67] Lord Kelvin. On vortex atoms. In Proc. R. Soc. Edin, volume 6, pages 94–105, 1867.

[Ken79] WS Kendall. The knotting of Brownian motion in 3-space. Journal of the London Mathematical
Society, 2(2):378–384, 1979.

[Kes63] Harry Kesten. On the number of self-avoiding walks. Journal of Mathematical Physics, 4(7):960–969,
1963.

[KI13] Dustin Kleckner and William Irvine. Creation and dynamics of knotted vortices. Nature Physics,
9:253–258, 2013.

[KKI16] Dustin Kleckner, Louis H Kauffman, and William Irvine. How superfluid vortex knots untie. Nature
Physics, 12:650–655, 2016.

[KL04] Louis H Kauffman and Sofia Lambropoulou. On the classification of rational tangles. Advances in
Applied Mathematics, 33(2):199–237, 2004.

[KM91] Kleanthes Koniaris and M Muthukumar. Knottedness in ring polymers. Physical review letters,
66(17):2211, 1991.

[Kow10] E Kowalski. On the complexity of Dunfield–Thurston random 3-manifolds. available at www.math.

ethz.ch/~kowalski/complexity-dunfield-thurston.pdf, 2010.

[KP11] P-V Koseleff and Daniel Pecker. Chebyshev knots. Journal of Knot theory and its ramifications,
20(04):575–593, 2011.

[KR03] David A Kessler and Y Rabin. Effect of curvature and twist on the conformations of a fluctuating
ribbon. The Journal of chemical physics, 118(2):897–904, 2003.

[Kup09] Greg Kuperberg. How hard is it to approximate the Jones polynomial? arXiv preprint arXiv:
0908.0512, 2009.

[Kup14] Greg Kuperberg. Knottedness is in NP, modulo GRH. Advances in Mathematics, 256:493–506, 2014.

[Lac04] Marc Lackenby. The volume of hyperbolic alternating link complements. Proceedings of the London
Mathematical Society, 88(1):204–224, 2004.

[Lac15] Marc Lackenby. A polynomial upper bound on Reidemeister moves. Annals of Mathematics,
182(2):491–564, 2015.

[Lac16] Marc Lackenby. The efficient certification of knottedness and Thurston norm. arXiv preprint
arXiv:1604.00290, 2016.

[Lam97] Christoph Lamm. There are infinitely many Lissajous knots. manuscripta mathematica, 93(1):29–37,
1997.

[Lam12] Christoph Lamm. Fourier knots. arXiv preprint arXiv:1210.4543, 2012.

[LB80] Marc Le Bret. Monte Carlo computation of the supercoiling energy, the sedimentation constant, and
the radius of gyration of unknotted and knotted circular DNA. Biopolymers, 19(3):619–637, 1980.

[LC08] Zhirong Liu and Hue Sun Chan. Efficient chain moves for Monte Carlo simulations of a wormlike DNA
model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight
and lattice models. The Journal of chemical physics, 128(14):04B610, 2008.

[Lic97] WB Raymond Lickorish. An introduction to knot theory, volume 175. Springer, 1997.
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