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Abstract

We present a generalization of the induced matching theorem of as reported by Bauer and Lesnick 

(in: Proceedings of the thirtieth annual symposium computational geometry 2014) and use it to 

prove a generalization of the algebraic stability theorem for ℝ-indexed pointwise finite-

dimensional persistence modules. Via numerous examples, we show how the generalized algebraic 

stability theorem enables the computation of rigorous error bounds in the space of persistence 

diagrams that go beyond the typical formulation in terms of bottleneck (or log bottleneck) 

distance.
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1 Introduction

Persistent homology, see (Edelsbrunner and Harer 2010; Oudot 2015), or (Zomorodian and 

Carlsson 2004), is a key element in the rapidly-developing field of topological data analysis, 

where it is used both as a means of identifying geometric structures associated with data and 

as a data reduction tool. Any work with data involves approximations that arise from finite 

sampling, limits to measurement, and experimental or numerical errors. The results of this 

paper focus on obtaining rigorous bounds on the variations in persistence diagrams arising 

from these approximations.
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To motivate this work, we begin with the observation that many problems in data analysis 

can be rephrased as a problem concerned with the analysis of the geometry induced by a 

scalar function f:X ℝ defined on a topological space X. Two canonical examples are as 

follows. Assume that (X, ρ) is a metric space and let X ⊆ X. Single-linkage hierarchical 

clustering problems based on X are naturally associated with the function f : X → [0, ∞) 

given by

f(x): = ρ(x, X) = inf  ρ(x, ξ):ξ ∈ X ,

where clusters are derived from the connected components of the sublevel set

C(f, t): = x ∈ X:f(x) ≤ t

for choices of t ∈ [0, ∞). The collection C(f, t) t ∈ ℝ is called the sublevel set filtration of X 

induced by f. Superlevel sets and superlevel set filtrations are defined similarly by 

considering the sets {x ∈ X : t ≤ f (x)} for every t ∈ ℝ.

Alternatively, assume that X is a topological domain and f:X ℝ is a scalar value of a 

nonlinear physical model, e.g. the magnitude of vorticity or temperature field of a fluid, the 

chemical density in a reaction diffusion system, the magnitude of forces between particles in 

a granular system, etc. Patterns produced by these systems are often associated with sublevel 

or superlevel sets of f. In fact, the direct motivation for this work is to justify claims made in 

Kramár et al. (2016) concerning the time-evolution of patterns in convection models. These 

examples are meant to motivate our interest in studying the geometry of the sets C(f, t). 
Homology provides a coarse but computable representation of this geometry. In particular, 

for each t ∈ ℝ, there is an assigned graded vector space

M(f)t = H•(C(f, t), k),

where k is a field. Because each t ≤ s implies C(f, t) ⊆ C(f, s), the inclusion maps induce the 

following linear maps at the level of homology:

φM(f)(t, s):M(f)t M(f)s .

This homological information can be abstracted as follows.

Definition 1.1 A persistence module is a collection of vector spaces indexed by the real 

numbers, V t t ∈ ℝ, and linear maps φV (s, t):V s V t s ≤ t ∈ ℝ satisfying the following 

conditions:

i. φV (t, t) = idVt for every t ∈ ℝ, and

ii. φV (s, t) ∘ φV (r, s) = φV (r, t) for every r ≤ s ≤ t in ℝ.

We write (V, φV) to denote the collection of vector spaces and compatible linear maps, and 

will sometimes just write V for the full persistence module when the maps are clear. We say 
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that V is a pointwise finite dimensional (PFD) persistence module when every Vt is finite-

dimensional.

As is described in Sects. 2.1 and 4, a PFD persistence module gives rise to a persistence 

diagram, which is a set of points in ℝ2 × ℕ, where ℝ = ℝ ∪ − ∞, ∞ . Given a PFD 

persistence module (V, φV), we denote its associated persistence diagram by PD(V).

Observe that we have outlined a procedure by which the sublevel sets of a scalar field f 
produce a persistence diagram PD. Returning to our examples, in the first case, it is 

reasonable to assume that the actual available data is X′ ⊆ X ⊆ X, as opposed to X, which 

represents the true set of objects upon which the clustering is to be based. In this case, 

collecting experimental or numerical data results in f′:X ℝ, an approximation of the 

actual function of interest, f. Recent computational developments have led to the routine 

computation of PD′, the persistence diagram associated with X′ or f′. Thus, the natural 

question is this: how is PD′, the computed persistence diagram, related to PD, the 

persistence diagram of interest?

A fundamental result by Cohen-Steiner et al. (2007) in the theory of persistent homology is 

that a variety of metrics can be imposed on the space of persistence diagrams such that PD 

changes continuously with respect to L∞ changes in f. Recent developments by Bauer and 

Lesnick (2014) allow for comparisons of persistence modules through a matching of the 

associated persistence points. The primary theoretical results of this paper, Theorems 3.2 

and 4.1, are extensions of Bauer and Lesnick’s Induced Matching Theorem and Algebraic 

Stability Theorem, respectively.

As indicated above, the applications of these extensions provided the motivation for this 

paper. To give a particular example, consider the persistence module V = (M(f), φM(f)) 

associated with the scalar function f:X ℝ. However, assume that we are only able to 

sample the sublevel sets of f at the integers ℤ ⊂ ℝ. As explained in Sect. 5.1, this sampling 

gives rise to a persistence module V ℤ. Assume that the persistence diagram PD V ℤ  has a 

single persistence point (2, 6) as shown in Fig. 1. As a consequence of Proposition 5.2, we 

can conclude that the persistence diagram of interest, PD(V), contains a single persistence 

point in the light gray region and possibly some other persistence points in the dark gray 

regions. This would correspond to geometrical features of f:X ℝ that take place on a 

scale that is too fine to be detected by the integer-valued sampling. Finally, if a persistence 

point for PD V ℤ  occurred at one of the open circles centered at (n, n + 1), then this 

persistence point could be a computational artifact, i.e. it is not necessarily associated with 

any persistence point of PD(V).

Figure 1 also indicates the advantage of comparing persistence diagrams using the matching 

theorems of this paper as opposed to the classical metrics such as the bottleneck distance, 

see (Cohen-Steiner et al. 2007). In particular, if PD(W) is an arbitrary persistence diagram 

whose bottleneck distance from PD V ℤ  is one, then PD(W) may have a single point in the 

region indicated by the dashed square and arbitrarily many persistence points in the region 
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below the dashed line, versus a single point in the light gray box and arbitrarily many points 

in the dark gray region.

An outline of this paper is as follows. In Sect. 2 we review the essential concepts associated 

with persistence modules required for our results. This section defines the notions of 

persistence modules and their morphisms, interleavings, and induced matchings. Of 

particular note is the introduction of the concept of a non-constant translation pair that is 

used to extend the results of Bauer and Lesnick (2014), where translation pairs are defined in 

terms of uniform translations. We also include a review of Galois connections, as we use 

these concepts for some proofs in Sect. 4.

Section 3 focuses on Theorem 3.2, which is an extension of the Induced Matching Theorem 

of Bauer and Lesnick (2014). The proof incorporates ideas from the theory of generalized 

interleavings of Bubenik et al. (2014).

Section 4 begins with the proof of Theorem 4.1, which follows closely the proof of the 

Algebraic Stability Theorem of Bauer and Lesnick (2014). The remainder of the section 

provides results, corollaries, and re-interpretations of Theorem 4.1. In particular, under the 

assumption that the maps in the translation pair are invertible, Corollary 4.2 provides an 

easy-to-state version of Theorem 4.1 that clarifies how translation pairs relate to stability in 

the space of persistence diagrams. Proposition 4.6 and Corollary 4.7 indicate how Theorem 

4.1 applies to specific points in the associated persistence diagrams.

Finally, Sect. 5 provides examples of applications of Theorem 4.1. As indicated above Sect. 

5.1 considers the problem of bounds on the desired persistence diagram under the 

assumption that values of the function f:X ℝ can only be sampled discretely.

In Sect. 5.2, we consider the following problem associated with the first example of this 

introduction. Assume that one is given a large finite point cloud X ⊂ X for which one wishes 

to compute the persistence diagram PD(V) for the persistence module V = (M(f), ϕM(f)). 

However, because of the size of X, the computational cost of computing PD(V) is 

prohibitive. At the time of this writing, this is a reasonable concern since the standard 

approach is to use a Vietoris–Rips complex (this is discussed at the beginning of Sect. 5.2) to 

compute PD(V), and the size of this complex grows extremely fast as a function of the size 

of X and the magnitude of f. This suggests that once the magnitude of f is too large, then one 

should subsample and compute an approximate persistence diagram PD(V′) based on 

X′ ⊂ X. Proposition 5.6 provides a simple result bounding the locations of the persistence 

points in PD(V) based on PD(V′). This result immediately suggests that if one could make 

use of a sequence of subsamples associated with a sequence of values of f, then one could 

get a better approximation than just making use of a single subsampling. To obtain this 

result, we introduce in Sect. 5.2.2 the concept of stitching two persistence modules together 

to create a new persistence module. In Sect. 5.2.3, we outline how this can be used to obtain 

bounds on the persistence diagram of X from a sequence of subsamples 

X = X0 ⊃ X1 ⊃ ⋯ ⊃ XN and the associated persistence diagrams.
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It can be argued that for applications, the most difficult task is the construction of the 

interleaving between the two persistence modules. However, as we hope the examples of 

Sect. 5 illustrate, once the interleavings are determined, working with our framework is 

straightforward. With this in mind, we include Table 1 in Sect. 5.3, providing an easily-

referenced list of translation maps of generalized interleavings for common approximations 

to Vietoris–Rips and Čech filtrations.

2 Preliminaries

In this section, we summarize background material and establish notation for the work we 

present in this paper. In Sect. 2.1, we recall basic facts about persistence modules, their 

morphisms, and persistence diagrams. In Sect. 2.2 we provide a necessary background for 

interleavings of persistence modules. In Sect. 2.3 we give a treatment of monotone functions 

and Galois connections, and we define matchings. Section 2.4 introduces matchings between 

persistence diagrams induced by morphisms of persistence modules and recalls the results of 

Bauer and Lesnick (2014) concerning these matchings.

2.1 Persistence modules, persistence module morphisms, and persistence diagrams

This section provides basic facts about persistence modules (Definition 1.1). For alternative 

treatments, see (Bauer and Lesnick 2014; Bubenik et al. 2014; Chazal et al. 2016), or 

Zomorodian and Carlsson (2004).

Definition 2.1 A persistence module V is trivial if Vt = 0 for all t ∈ ℝ.

Definition 2.2 Let J ⊆ ℝ be a nonempty interval and let k denote a field. The interval 
persistence module (kJ, φkJ) is defined by the vector spaces

kJ t: = k if t ∈ J,
0  otherwise, 

and transition maps

φkJ(s, t): =
idk if s, t ∈ J,
0  otherwise.

Definition 2.3 Let (V, φV) and (W, φW) be persistence modules. A persistence module 
morphism ϕ : V → W is a collection of linear maps ϕt:V t W t t ∈ ℝ such that the 

following diagram commutes for all s, t ∈ ℝ with s ≤ t.
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If ϕt is injective (surjective) for every t ∈ ℝ, then we say that ϕ is a monomorphism 

(epimorphism). A persistence module morphism that is both a monomorphism and an 

epimorphism is an isomorphism.

Persistence modules and their morphisms form an abelian category, as shown in Bubenik 

and Scott (2014). Thus, it makes sense to talk about submodules, quotients, and direct sums 

of persistence modules. Moreover, the kernel and image of a persistence module morphism 

are submodules, and the cokernel of a persistence module morphism is a quotient 

persistence module. The following fundamental result (see Chazal et al. 2016; Crawley-

Boevey 2015) guarantees that nontrivial PFD persistence modules are direct sums of interval 

persistence modules.

Theorem 2.4 Every non-trivial PFD persistence module V is a direct sum of interval 
persistence modules. Moreover, the direct sum decomposition of V into interval persistence 
modules is unique up to a reindexing of these interval persistence modules.

This direct sum decomposition is called the interval decomposition of V, which we represent 

using the definitions that follow.

Definition 2.5 The set E of decorated points is defined by

E: = ℝ × − , + ∪ − ∞, ∞ .

For t ∈ ℝ, define t− := (t, −) and t+ := (t, +). Consider the ordering − < + on the set {−, +}. 

Then there is a natural ordering on E induced by a lexicographical ordering of ℝ and {−, +}, 

in that order, with {−∞} the minimal element and {∞} the maximal element.

Definition 2.6 Let a, b ∈ ℝ such that a ≤ b. Any nonempty interval J with endpoints a and b 
can be represented by an ordered pair (ℬ(J), D(J)) of decorated points where:
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ℬ(J): =
−∞ if a = − ∞,
a− if J is left closed, 
a+ if J is left open, 

   and   D(J): =

∞ if b = ∞,

b− if J is right open, 

b+ if J is right closed.

For an ordered pair (d1, d2) of decorated points with d1 < d2, we denote the interval they 

represent by 〈d1, d2〉.

Definition 2.7 Let V be a PFD persistence module and JV  be a multiset of interval 

persistence modules in the interval decomposition of V. Suppose that the function 

m:JV ℕ assigns to every interval persistence module kJ ∈ JV  its multiplicity in JV . The 

persistence diagram of V is defined as the set

PD(V ): = ∪
kJ ∈ JV

[ℬ(J), D(J), 1], …, ℬ(J), D(J), m kJ ⊂ E × E × ℕ .

Note that for every interval persistence module present in the interval decomposition of V, 

there is exactly one point in the persistence diagram. These points can be totally ordered as 

in the following definition.

Definition 2.8 Let PD be a persistence diagram. The left-handed ordering of the points [b, d, 
i] ∈ PD is given by a lexicographical ordering applied to (b, −d, i), where the minus sign 

indicates reversing the ordering for the second coordinate. The right-handed ordering of PD 
is given by a lexicographical ordering applied to (d, b, i).

2.2 Persistence module interleavings

In this section we review the notion of persistence module interleavings, introduced by 

Chazal et al. (2009) and generalized by Bubenik et al. (2014). Interleavings provide a 

measure of similarity between persistence modules.

Definition 2.9 A function σ:ℝ ℝ is monotone if x ≤ y implies that σ(x) ≤ σ(y). If, in 

addition, x ≤ σ(x) for all x ∈ ℝ, then σ is called a translation map.

Definition 2.10 A pair (τ, σ) of monotone functions is a translation pair if τ ∘ σ and σ ∘ τ are 

translation maps.

Definition 2.11 Let σ:ℝ ℝ be monotone and let (V, φV) be a persistence module. The σ-

shifted persistence module (V(σ), φV(σ)) is defined by the vector spaces

V (σ)t: = V σ(t)

for t ∈ ℝ and transition maps

φV (σ)(s, t): = φV (σ(s), σ(t))
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for every s ≤ t ∈ ℝ.

Definition 2.12 Let (V, φV) and (W, φW) be persistence modules, ϕ : V → W a persistence 

module morphism, and σ:ℝ ℝ a monotone function. The σ-shifted persistence module 
morphism ϕ(σ) : V(σ) → W(σ) is defined by

ϕ σ t: = ϕσ t

for every t ∈ ℝ.

Definition 2.13 Let (V, φV) and (W, φW) be persistence modules and let (τ, σ) be a 

translation pair. The ordered pair of persistence modules (V, W) is (τ, σ)-interleaved if there 

exist persistence module morphisms ϕ : V → W(τ) and ψ : W →V(σ) such that

ψ(τ)t ∘ ϕt = φV [t, (σ ∘ τ)(t)]

and

ϕ(σ)t ∘ ψt = φW [t, (τ ∘ σ)(t)]

for all t ∈ ℝ. We refer to these last two conditions as the commutativity constraint of the 

interleaving. The persistence module morphisms ϕ and ψ are called interleaving morphisms.

Definition 2.14 Given a persistence module V and a translation map σ, define a persistence 

module morphism ϕ{V,σ} : V → V(σ) by (ϕ{V,σ})t := φV (t, σ(t)) for all t ∈ ℝ.

Remark 2.15 The notion of δ-interleaved persistence modules, presented in Bauer and 

Lesnick (2014), Chazal et al. (2009), and Chazal et al. (2016), is equivalent to the notion of 

(τ, σ)-interleaved persistence modules with τ(t) = t + δ = σ(t).

Remark 2.16 Two persistence modules that are 0-interleaved are isomorphic as persistence 

modules.

Recall that the transition maps of the trivial persistence module are trivial. The following 

definition provides a way of quantifying the similarity between a persistence module V and 

the trivial persistence module in terms of a translation map.

Definition 2.17 Let σ be a translation map. A persistence module (V, φV) is σ-trivial if φV (t, 
σ(t)) = 0 for all t ∈ ℝ.

The following proposition provides information about the kernel and cokernel of the 

interleaving morphisms of two interleaved persistence modules.

Proposition 2.18 Let V and W be persistence modules such that (V, W) are (τ, σ)-

interleaved via the morphisms ϕ : V → W(τ) and ψ : W → V(σ). Then

i. ker ϕ and coker ϕ are (σ ∘ τ)-trivial, and
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ii. ker ψ and coker ψ are (τ ∘ σ)-trivial.

Proof (i) The persistence module ker ϕ is (σ ∘ τ)-trivial if and only if φker ϕ(t, σ ∘ τ(t)) = 0 for 

all t ∈ ℝ. By the commutativity constraint of a (τ, σ)-interleaving, we know that φV (t, σ ∘ 
τ(t)) = ψ(τ)t ∘ ϕt. Thus,

φV (t, σ ∘ τ(t))|ker ϕt = ψ(τ)t ∘ ϕt ker ϕt = 0.

By the definition of the persistence module ker ϕ, we have

φker ϕ(t, σ ∘ τ(t)) = φV (t, σ ∘ τ(t))|ker ϕt = 0,

and so we are done.

The persistence module coker ϕ is (σ ∘ τ)-trivial if and only if φcoker ϕ(t, σ ∘ τ(t)) = 0 for all 

t ∈ ℝ. Recall that the transition maps of the persistence module coker ϕ are defined to be the 

unique linear maps φcoker ϕ(r, s) such that

φcoker ϕ(r, s) ∘ qr = qs ∘ φW (τ)(r, s)

for every r ≤ s ∈ ℝ, where qr := (α ↦ α + im ϕr) for every α ∈ W(τ)r is the quotient map. 

Thus, it suffices to show that im φW(τ)(t, σ ∘ τ(t)) ⊆ im ϕ(σ ∘ τ)t for every t ∈ ℝ. for t ∈ ℝ we 

have

φW (τ)(t, σ ∘ τ(t)) = φW (τ(t), τ ∘ σ ∘ τ(t))
= ϕ(σ)τ(t) ∘ ψτ(t)
= ϕσ ∘ τ(t) ∘ ψτ(t),

where the first equality follows from the definition of the maps φW(τ), the second equality 

follows from the commutativity constraint of the interleaving morphisms ϕ and ψ, and the 

last equality follows from the definition of ϕ(σ). Hence, we have shown that

im φW (τ)(t, σ ∘ τ(t)) ⊆ im ϕσ ∘ τ(t)

for every t ∈ ℝ.

Part (ii) follows from (i) by reversing the roles of ϕ and ψ, creating a (σ, τ)-interleaving of 

W and V; it follows directly that ker ψ and coker ψ are (τ ∘ σ)-trivial. □

We close this section by recalling a result that allows us to compose interleavings. While the 

formulation of the definition of a (σ, τ)-interleaving above differs slightly from that in 

Bubenik et al. (2014), it is straightforward to show that the result still goes through with our 

more general definition (the proof ultimately relies on the notion of a translation pair, and 

does not explicitly require that each map is a translation map). Additionally, our definition of 

a (σ, τ)-interleaving is also given in the follow-up paper (Bubenik et al. 2017).
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Proposition 2.19 (Bubenik et al. 2014, Proposition 2.2.11) Let (U, φU), (V, φV), and (W, 
φW) be persistence modules such that (U, V) are (τ, σ)-interleaved and (V, W) are (τ′, σ′)-

interleaved. Then the persistence modules (U, V) are (τ′ ∘ τ, σ ∘ σ′)-interleaved.

2.3 Galois connections

In this section we provide a brief review of Galois connections (see Davey and Priestley 

2002) and establish some Galois connections that are used in Sect. 4.

Definition 2.20 Let P and Q be posets and suppose f : P → Q and g : Q → P are monotone 

functions. The pair (f, g) is a Galois connection if for all x ∈ P and all y ∈ Q

f(x) ≤ y if and only if x ≤ g(y) .

Proposition 2.21 Suppose P, Q, and R are posets and f : P → Q, g : Q → P, f′ : Q → R, and 
g′ : R → Q are monotone functions. Suppose further that (f, g) and (f′, g′) are Galois 
connections. Then (f′ ∘ f, g ∘ g′) is a Galois connection.

Proof For all x ∈ P, y ∈ R, we have f′ ∘ f (x) ≤ y ⇔ f (x) ≤ g′(y) ⇔ x ≤ g∘g′(y). □

We make use of Galois connections whose definition requires the poset ℝL of lower sets of 

ℝ (i.e. intervals 〈−∞, e〉 for e ∈ E) and the poset ℝU of upper sets of ℝ (i.e. intervals 〈e, ∞〉 

for e ∈ E). In both cases, the ordering is given by inclusion. Define the order isomorphisms 

| ⋅ :E ℝL and ⋅ |E ℝU as

e : = − ∞, e    and    e : = e, ∞ .

Moreover, for any set S ⊆ ℝ, define

S = x ∈ ℝ: ∃y ∈ S s.t. x ≤ y ∈ ℝL,
S = x ∈ ℝ: ∃y ∈ S s.t. y ≤ x ∈ ℝU .

Definition 2.22 Let σ:ℝ ℝ be a monotone function. we define σ :E E, σ :E E, and 

σ⋆:E E by requiring that the following sets are equal:

σ (e) = σ(x):x ∈ e ,
σ (e) = σ(x):x ∈ e ,  and

|σ⋆(e) = σ−1( |e ),  or, equivalently,  σ⋆(e)| = σ−1( e | ) .

for all e ∈ E. Note that these functions are defined since |·〉 and 〈·| are order isomorphisms 

and σ is monotone.

Proposition 2.23 Let σ, τ:ℝ ℝ be monotone functions. Then (σ ∘ τ)↑ = σ↑ ∘ τ↑, (σ ∘ τ)↓ = 

σ↓ ∘ τ↓, and (σ ∘ τ)⋆ = τ⋆ ∘ σ⋆.
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Proof It is easy to verify that ↑(σ ∘ τ)(S)) = ↑σ(↑τ(S)), ↓(σ ∘ τ)(S)) = ↓σ(↓τ(S)), and (σ ∘ τ)
−1(S) = τ−1(σ−1(S)) for any S ⊆ ℝ. Now the result follows from Definition 2.22 and the 

above equalities applied to S = 〈e| or S = |e〉 for e ∈ E. □

Proposition 2.24 Let σ:ℝ ℝ be a monotone function. Then both (σ↓, σ⋆) and (σ⋆, σ↑) are 
Galois connections.

Proof We show (σ↓, σ⋆) is a Galois connection. Suppose first that σ↓(x) ≤ y for some x, 

y ∈ E. We show x ≤ σ⋆(y). Since |·〉 is an order isomorphism, σ↓(x) ≤ y is equivalent to |σ↓

(x)〉 ⊆ |y〉. By the definition of σ↓, this is equivalent to ↓σ(|x〉) ⊆ |y〉. Taking the preimage of 

both sides yields σ−1(↓σ(|x〉)) ⊆ σ−1(|y〉). Since |x〉 ⊆ σ−1(σ(|x〉)) ⊆ σ−1(↓σ(|x〉)), we obtain |

x〉 ⊆ σ−1(|y〉). Since |·〉 is an order isomorphism, we conclude that x ≤ σ⋆(y).

We now prove the converse. That is, we suppose that x ≤ σ⋆(y) and show σ↓(x) ≤ y. From x 
≤ σ⋆(y), we obtain |x〉 ⊆ σ−1(|y〉). Applying σ to both sides and taking the downward closure 

gives ↓σ(|x〉) ⊆ ↓σ(σ−1(|y〉)). See that ↓σ(σ−1(|y〉) = |y〉, hence ↓σ(|x〉) ⊆ |y〉, or equivalently, 

σ↓(x) ≤ y, as desired. Hence, the pair (σ↓, σ⋆) is a Galois connection. To show the pair (σ⋆, 
σ↑) is a Galois connection, one proceeds similarly. □

The following maps are used to move between points in ℝ and decorated points in E.

Definition 2.25 The maps π:E ℝ, i−:ℝ E and i+:ℝ E are defined by:

π t± = t, i±(t) = t±,

for t ∈ ℝ, and

π( ± ∞) = ± ∞, i±( ± ∞) = ± ∞ .

Definition 2.26 Let f:E E be a monotone function. Define functions f+:ℝ ℝ and 

f−:ℝ ℝ via

f+: = π ∘ f ∘ i+ and f−: = π ∘ f ∘ i− .

We close this section by establishing some Galois connections that will be needed later.

Proposition 2.27 Both (i−, π) and (π, i+) are Galois connections.

Proof First we show that (π, i+) is a Galois connection. Using the easily-verified relations π 
∘ i+ = id and id ≤ i+ ∘ π, we have, for all x ∈ E and y ∈ ℝ, the circle of implications (π(x) ≤ y) 

⇒ (i+ ∘ π(x) ≤ i+(y)) ⇒ x ≤ i+(y)) ⇒ (π(x) ≤ π ∘ i+ (y)) ⇒ (π(x) ≤ y). Thus, (π(x) ≤ y) ⇔ (x 
≤ i+(y)). That is, the pair (π, i+) is a Galois connection.

Showing that the pair (i−, π) is a Galois connection proceeds similarly. Using the easily-

verified relations π ∘ i− = id and i− ∘ π ≤ id, we have, for all x ∈ ℝ and y ∈ E, the circle of 
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implications (x ≤ π(y)) ⇒ (i−(x) ≤ i− ∘ π (y)) ⇒ (i−(x) ≤ y) ⇒ (π ∘ i−(x) ≤ π(y)) ⇒ (x ≤ 

π(y)). Thus, (x ≤ π(y)) ⇔ (i−(x) ≤ y). That is, the pair (i−, π) is a Galois connecion.

Proposition 2.28 Suppose f, g:E E are monotone functions such that the pair (f, g) is a 
Galois connection. Then the pair (f−, g+) is a Galois connection.

Proof By Definition 2.26, we have (f−, g+) = (π ∘ f ∘ i−, π ∘ g ∘ i+). The result follows from 

Propositions 2.21 and 2.27. □

2.4 Induced matchings on persistence diagrams

In this section, we summarize the work of Bauer and Lesnick (2014) and Bauer and Lesnick 

(2016) on matchings of persistence diagrams of PDF persistence modules V and W induced 

by a morphism ϕ : V → W.

Definition 2.29 Let X be a relation between sets S and T (i.e. X ⊆ S × T ). We say that X is a 

matching X:S ⇸ T  if X is the graph of an injective function X′:S′ T ′, where S′ ⊆ S and 

T′ ⊆ T. We define the domain and image of a matching via dom X: = dom X′ and 

im X: = im X′, and we will use the notation X(s) = t to denote (s, t) ∈ X.

We use the following notation to define matchings induced by morphisms.

Definition 2.30 Let (V, φV) be a PDF persistence module. For b, d ∈ E, we define two 

subsets of the persistence diagram PD(V) by:

PDb(V ): = b, d′, i : b, d′, i ∈ PD(V ) ,
PDd(V ): = b′, d, i : b′, d, i ∈ PD(V ) .

If V is a PFD persistence module, then the sets PDb(V) and PDd(V) are countable for every 

b, d ∈ E. The left-handed (right-handed) ordering on PD(V) induces a total ordering on 

PDb(V) (PDd(V)). We will always consider these sets together with these induced orderings. 

Therefore, if we talk about the first n points in PDb(V) or PDd(V), we mean the n smallest 

points with respect to the induced ordering. The following proposition allows us to define 

matchings between the PFD persistence modules as introduced by Bauer and Lesnick 

(2014).

Proposition 2.31 (Theorem 4.2, Bauer and Lesnick 2014) Let V and W be PFD persistence 
modules, and let the symbol | · | denote the cardinality of a set.

i. If there exists a monomorphism V ↪ W, then |PDd(V)| ≤ |PDd(W)| for d ∈ E.

ii. If there exists an epimorphism V ↠ W, then |PDb(W)| ≤ |PDb(V) for b ∈ E.

The next two propositions establish the matchings induced by monomorphisms and 

epimorphisms. The proof of parts (i)–(iii) of each proposition is a simple consequence of the 

previous proposition, while (iv) follows from (Bauer and Lesnick 2014, Theorem 4.2).

Proposition 2.32 Let V, W be PFD persistence modules. If there exists a monomorphism 
from V to W, then there exists a unique matching Xi(V , W ):PD(V ) ⇸ PD(W ) which satisfies:
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i. the domain of Xi(V , W ) is PD(V),

ii. Xi(V , W ) preserves the right-handed ordering,

iii. Xi(V , W ) maps the points in PDd(V) to the smallest |PDd(V)| points in PDd(W),

iv. if Xi(V , W )([b, d, i]) = b′, d′, i′ , then d = d′ and b′ ≤ b.

Proposition 2.33 Let V, W be PFD persistence modules. If there exists an epiomorphism 
from V to W, then there exist a unique matching Xs(V , W ):PD(V ) ⇸ PD(W ) that satisfies.

i. the image of XS(V , W ) is PD(W),

ii. the inverse relation Xs(V , W )
−1  preserves the left-handed ordering,

iii. Xs(V , W )
−1  maps the points in PDb(W) to the smallest |PDb(W)| points in PDb(V),

iv. if Xs(V , W )([b, d, i]) = b′, d′, i′  then b = b′ and d′ ≤ d.

Every persistence module morphism ϕ : V → W can be factored as the composition of an 

epimorphism and monomorphism as follows:

V im ϕ W

Therefore, we can define a matching Xϕ:PD(V ) ⇸ PD(W ) via the composition of the 

following relations:

Xϕ: = XS(V , im ϕ) ∘ Xi(im ϕ, W ) .

In general, it is not true that if ϕ : U → V and ψ : V → W are PFD persistence module 

morphisms then Xψ ∘ ϕ = Xψ ∘ Xϕ. However, the following result provides hypotheses under 

which this is true.

Proposition 2.34 (Proposition 5.7, Bauer and Lesnick 2014) Let ϕ : U → V and ψ : V → W 
be PFD persistence module morphisms. If ϕ and ψ are either both injective or both 
surjective, then Xψ ∘ ϕ = Xψ ∘ Xϕ.

Definition 2.35 Let A, B ⊆ ℝ. We say that A bounds B below, if for all y ∈ B, there exists 

some x ∈ A with x ≤ y. We say that B bounds A above, if for all x ∈ A, there exists some y 
∈ B such that x ≤ y. We say that B overlaps A above, if and only if each of the following 

conditions hold: A bounds B below, B bounds A above, and A ∩ B ≠ ∅.

Proposition 2.36 (Proposition 5.3, Bauer and Lesnick 2014) Let ϕ : V → W be a PFD 
persistence module morphism. If Xϕ([b, d, i]) = b′, d′, i′ , then 〈b, d〉 overlaps 〈b′, d′〉 above.

3 Generalized induced matching theorem

In this section we present a generalization of the Induced Matching Theorem of Bauer and 

Lesnick (2014).
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Definition 3.1 Let σ be a translation map and let b, d ∈ E. An interval 〈b, d〉 is σ-trivial if 〈b, 
d〉 ∩ σ(〈b, d〉) = ∅. A point [b, d, i] ∈ E × E × ℕ is σ-trivial if 〈b, d〉 is σ trivial. A point in 

E × E × ℕ that is not σ-trivial is called σ-nontrivial.

Theorem 3.2 Let ϕ : V → W be a PFD persistence module morphism and σ a translation 
map. Suppose that Xϕ([b, d, i]) = b′, d′, i′ .

i. If coker ϕ is σ-trivial, then 〈b, d〉 bounds σ(〈b′, d′〉) below and im Xϕ contains 

all σ-nontrivial points in PD(W).

ii. If ker ϕ is σ-trivial, then 〈b′, d′〉 bounds σ−1(〈b, d〉) above and dom Xϕ contains 

all σ-nontrivial points in PD(V).

Note that the Induced Matching Theorem of Bauer and Lesnick (2014) follows from 

Theorem 3.2 by setting σ(t) = t + δ for δ ≥ 0. The remainder of this section is devoted to the 

proof of Theorem 3.2.

Definition 3.3 Let V be a persistence module and σ a translation map. Define vector spaces 

of the persistence module Vσ by

V tσ: = ∪
s:σ(s) ≤ t .

im  φV (s, t)

for t ∈ ℝ. The linear maps φVσ are given by restriction of the maps φV to Vσ.

The following lemma shows that Vσ is a persistence module.

Lemma 3.4 Let V be a persistence module and σ a translation map. Then Vσ is a persistence 
submodule of V.

Proof By definition, V t
σ is a subspace of Vt for t ∈ ℝ. To see that Vσ is a persistence 

submodule of V, we must show that im φV (s, t)|V sσ ⊆ V t
σ for all s ≤ t. To do this, we consider 

y ∈ V s
σ and show that φ(s, t)(y) ∈ V t

σ. By definition, there exists x ∈ V t′ for some t′ ∈ ℝ such 

that σ(t′) ≤ s and φV(t′, s)(x) = y. Thus,

φV (s, t)(y) = φV (s, t) φV t′, s (x) = φV t′, t (x) .

Since σ is a translation map, we have that t′ ≤ σ(t′) ≤ s ≤ t, and so 

φ(s, t)(y) ∈ im φV t′, t ⊆ V t
σ.

Lemma 3.5 Let ϕ : V → W be a persistence module morphism and σ a translation map.

i. If coker ϕ is σ-trivial, then W t
σ ⊆ im ϕt ⊆ W t for every t ∈ ℝ, and

ii. if ker ϕ is σ-trivial, then ker ϕt ⊆ (ker ϕ{V,σ})t ⊆ Vt for every t ∈ ℝ.

Proof (i) By definition, given a morphism ϕ : V → W, the persistence module coker ϕ is σ-

trivial if and only if
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φcoker ϕ(t, σ(t)) = 0   for all   t ∈ ℝ,

which is true if and only if

im φW (t, σ(t)) ⊆ im ϕ(σ)t   for all   t ∈ ℝ,

which again is true if and only if for each t ∈ ℝ and each x ∈ Wt, there exists some y ∈ Vσ(t) 

such that

φW (t, σ(t))(x) = ϕ(σ)t(y) .

So, to prove that W t
σ ⊆ im ϕt, it is enough to show that im φW t′, t ⊆ im ϕt′ for every t′ ∈ ℝ

such that t′ ≤ σ(t). By commutativity of the diagram

we have

φW t′, t (x) = φW σ t′ , t φW t′, σ t′ (x) = ϕt φV σ t′ , t (y) ,

and so im φW (t′, t) ⊆ im ϕt.

To prove (ii), we show that ker ϕt ⊆ (ker φ{V,σ})t for all t ∈ ℝ whenever ϕ has a σ-trivial 

kernel. By definition, ker ϕ is σ-trivial if and only if

φV (t, σ(t))|ker ϕt = φker ϕ(t, σ(t)) = 0

for all t ∈ ℝ. Hence, ker ϕt ⊆ ker φV (t, σ(t)) = (ker ϕ{V,σ})t for all t ∈ ℝ if and only if ker ϕ is 

σ-trivial. □

We now study the relationship between the persistence module V and the persistence 

modules Vσ and V / ker ϕ{V,σ}. We start by considering an interval persistence module.

Lemma 3.6 Let kJ be an interval persistence module and σ a translation map. If J ∩ σ(J) ≠ 

∅, then

i. kJ
σ ≅ kJ ∩ Conv(σ(J)), where Conv(σ(J)) is the convex hull of σ(J),

ii. kJ /ker ϕ kJ, σ ≅ kJ ∩ σ−1(J),

If J ∩ σ(J) = ∅, then both persistence modules are trivial.
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Proof (i) We first show that kJ
σ

t ≠ ∅ for t ∈ J ∩Conv(σ(J)). Since σ is a translation map, 

for every t ∈ Conv(σ(J)), there exist s ∈ J such that s ≤ σ(s) ≤ t. The fact that t ∈ J implies im 

φkJ (s, t) idk and hence ∅ ≠ im φkJ(s, t) ⊆ kJ
σ

t.

To finish the proof of (i), we need to show that kJ
σ

t = 0 if t ∉ J ∩ Conv(σ(J)). Suppose that t 

∉ J. Then kJ
σ

t ⊆ kJ t = 0. On the other hand, if t ∉ Conv(σ(J)) and σ(s) ≤ t, then s ∉ J, and 

so φkJ (s, t) = 0. for all s such that σ(s) ≤ t.

If J ∩σ(J) = ∅, then J ∩Conv(σ(J)) = 0 and we showed above that φkJ(s, t) = 0 for all s ≤ t. It 

follows that kJ
σ is trivial. Similar arguments can be used to prove (ii), and we leave it to the 

reader. □

For the following two definitions, for an interval J ⊆ ℝ, we recall the symbols ℬ(J) and 

D(J) (Definition 2.6) give the left and right (decorated) endpoints of J, respectively.

Proposition 3.7 Let V be a PFD persistence module and σ a translation map. Suppose that 

[b, d, i] ∈ PD(V) and the interval J = 〈b, d〉 ∩ Conv(σ 〈b, d〉). Then [ℬ(J), d, i] ∈ PD V σ  if 

and only if J ≠ ∅. Moreover, in that case,

Xi(V σ, V )([ℬ(J), d, i]) = [b, d, i] .

Proof Let [b, d, i] ∈ PD(V). Since σ a translation map, J = ℬ(J), d . By Lemma 3.6, the 

interval persistence module I b, d
σ  is nontrivial if and only if J ≠ ∅. It follows from Theorem 

2.4 that the interval persistence module k b, d
σ ≅ k ℬ(J), d  belongs to the interval 

decomposition of Vσ if and only if J ≠ ∅. Thus, [ℬ(J), d, i] ∈ PD V σ  for every [b, d, i] ∈ 
PD(V) such that 〈b, d〉 ∩ Conv(σ 〈b, d〉) ≠ ∅. Now, Xi V σ, V ([ℬ(J), d, i]) = [b, d, i] is a 

simple consequence of Propostion 2.32. □

By using Lemma 3.6(ii) and similar reasoning as above, one can prove the following about 

the matching XS V , V /ker ϕ V , σ .

Proposition 3.8 Let V be a PFD persistence module and σ be a translation map. Suppose 
that [b, d, i] ∈ PD(V). Then [b, D(J), i] ∈ PD V /ker ϕ V , σ  if and only if J := 〈b, d〉 ∩ σ−1 

(〈b, d〉) ≠ ∅. Moreover, in that case,

Xs V , V /ker ϕ[V , σ] ([b, d, i]) = [b, D(J), i] .

Proof of Theorem 3.2 Our proof closely follows the proof of the Induced Matching 

Theorem in Bauer and Lesnick (2014). To prove (i), we start by establishing the existence of 

certain matchings. By Lemma 3.5(i), Wσ is a submodule of im ϕ and so the matching 
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Xi(W ,  im ϕ) is defined. It follows from Lemma 3.4 that Wσ is a submodule of W and thus 

Xi W σ, W  is defined. Proposition 2.34 implies that the following diagram commutes.

It follows from Proposition 2.33(i) that im Xϕ = im Xi(im ϕ, W ). By commutativity of the left 

triangle, im Xi W σ, W ⊆ im Xi(im ϕ, W ). Now it follows from Proposition 3.7 that im Xϕ

contains all σ-nontrivial points in PD(W).

To finish the proof of (i), we must show that if Xϕ([b, d, i]) = b′, d′, i′ , then 〈b, d〉 bounds 

σ(〈b′, d′〉) below. First we suppose that [b′, d′, i′] is σ-nontrivial. In this case for J := 〈b′, d

′〉 ∩ Conv(σ 〈b′, d′〉), the point ℬ(J), d′, i′ ∈ PD W σ  and 

Xi W σ, W ℬ(J), d′, i′ = b′, d′, i′ . Since σ a translation map, we have ℬ(J), d′  bounds 

σ(〈b′, d′〉) below. Due to commutativity of the above diagram, 

Xi W σ, im ϕ ℬ(J), d′, i′ = Xs(V , im ϕ)([b, d, i]). It follows from Proposition 2.32(iv) and 

Proposition 2.33(iv) that b ≤ ℬ(J). Therefore, 〈b, d〉 bounds σ(〈b′, d′〉) below. On the other 

hand, if [b′, d′, j] is σ-trivial, then 〈b′, d′〉 ∩ σ(〈b′, d′〉) = ∅ and every point in σ(〈b′, d′〉) 
is larger than d′. By Proposition 2.36, b < d′ and we get 〈b, d〉 bounds σ(〈b′, d′〉) below.

The proof of (ii) is based on similar ideas combined with the commutativity of the diagram

and is left to the reader.

4 Algebraic stability theorem for generalized interleavings

In this section we provide a generalization of the Algebraic Stability Theorem of Bauer and 

Lesnick (2014).

Theorem 4.1 Let (V, φV) and (W, φW) be PFD persistence modules such that (V, W) are (τ, 
σ)-interleaved via the morphisms ϕ : V → W(τ) and ψ : W → V (σ). There exists a 
matching X:PD(V ) ⇸ PD(W ) such that X([b, d, i]) = b′, d′, i′  implies

i. τ−1(〈b′, d′〉) bounds (σ ∘ τ)−1, (〈b, d〉) above,
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ii. 〈b, d〉 overlaps τ−1(〈b′, d′〉) above, and

iii. 〈b, d〉 bounds σ ∘ τ ∘ τ−1(b′, d′〉) below.

Moreover, if [b, d, i] ∈ PD(V) is unmatched, then it is (σ ∘ τ)-trivial, and if [b′, d′, i′] ∈ 
PD(W) is unmatched, then either 〈b′, d′〉 ∩ im τ = ∅ or τ−1(〈b′, d′〉) is (σ ∘ τ)-trivial.

As in the case of the Induced Matching Theorem, the result of Bauer and Lesnick (2014) 

follows from setting τ(t) = σ(t) t + δ for δ ≥ 0. It is worth pointing out that Theorem 4.1 is 

not self-dual, in contrast to the result of Bauer and Lesnick (2014). This is due to the fact 

that the maps τ and σ from the interleavings might not be bijections.

Proof It follows from Propostion 2.18(i) that ker ϕ and coker ϕ are (σ ∘ τ)-trivial. By 

Theorem 3.2, the domain of Xϕ:PD(V ) ⇸ PD(W (τ)) contains all σ-nontrivial points in 

PD(V), and its image contains all σ-nontrivial points in PD(W(τ)). Now suppose that 

Xϕ([b, d, i]) = [x, y, j]. Then

a. 〈x, y〉 bounds (σ ∘ τ)−1(〈b, d〉) above by Theorem 3.2,

b. 〈b, d〉 overlaps 〈x, y〉 above by Proposition 2.36, and

c. 〈b, d〉 bounds σ ∘ τ 〈x, y〉 below by Theorem 3.2.

To finish the proof, we build an appropriate matching X′:PD(W (τ)) ⇸ PD(W ). It follows 

from the definition of W(τ) that there is a one-to-one correspondence between the points in 

PD(W(τ)) and the set

b′, d′, i′ ∈ PD(W ): b′, d′ ∩ im τ ≠ ∅ .

This correspondence can be realized by a matching X′:PD(W (τ)) ⇸ PD(W ) such that 

X′([x, y, j]) = b′, d′, i′  implies 〈x, y〉 = τ−1(〈b′, d′〉). Thus, the desired matching X is 

obtained by the composition X′ ∘ Xϕ. Conditions (i–iii) then follow from (a–c) above and 

the fact that 〈x, y〉 = τ−1(〈b′, d′〉). □

Statements (i–iii) in Theorem 4.1 may seem impractical. However, it can be rewritten as a 

set of inequalities concerning the endpoints of the intervals, and if the translation maps τ and 

σ are bijective, then the inequalities can be simplified considerably.

Corollary 4.2 Let (V, φV) and (W, φW) be persistence modules such that (V, W) are (τ, σ)-

interleaved. Suppose that X([b, d, i]) = b′, d′, i′ , where X is the matching given by Theorem 
4.1, then the inequalities:

τ⋆ b′ ≤ b,    τ⋆ d′ ≤ d,
σ⋆(b) ≤ τ ∘ τ⋆ b′ ,    σ⋆(d) ≤ τ ∘ τ⋆ d′

hold. Moreover, if the maps τ and σ are bijections, then the above inequalities reduce to

τ⋆ b′ ≤ b,    τ⋆ d′ ≤ d,
σ⋆(b) ≤ b′,    σ⋆(d) ≤ d′,
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and we have that if [b, d, i] ∈ PD(V) is unmatched, then it is (σ ∘ τ)-trivial, and if [b′, d′, i′] 

∈ PD(W) is unmatched, then it is (τ ∘ σ)-trivial.

Proof We start by showing that the first set of inequalities follows from Theorem 4.1(i–iii).

The fact that 〈b, d〉 overlaps τ−1(〈b′, d′〉) above together with the monotonicity of τ implies 

that τ(〈b, d〉) overlaps 〈b′, d′〉 above, and by definition we thus have 〈b′, d′〉 bounds τ(〈b, 

d〉) below and τ(〈b, d〉) bounds 〈b′, d′〉 above.

The inequality τ⋆(b′) ≤ b (τ⋆(d′) ≤ d) follows from definition of τ⋆ and the fact that 〈b′, d′〉 
bounds τ(〈b, d〉) below (τ(〈b, d〉) bounds 〈b′, d′〉 above). Now we prove that σ⋆(b) ≤ τ↑ ∘ 
τ⋆(b′). Starting from the fact that 〈b, d〉 bounds σ ∘ τ ∘ τ−1(〈b′, d′〉) below, we obtain 〈b, d〉 
that bounds.

σ ∘ τ ∘ τ−1 b′, d′ = (σ ∘ τ) ∘ τ⋆ b′ , ∞

below. Hence b ≤ (σ ∘ τ)↑ ∘ τ⋆(b′), and the desired inequality follows from the definition of 

σ⋆. The last inequality follows again from the definitions of σ⋆, τ↑, and τ⋆, and thus, by 

Theorem 4.1(iii), we have that (σ ∘ τ)−1(〈b, d〉) bounds τ−1(〈b′, d′〉) below.

Now the moreover part. We suppose that τ and σ are invertible. Combining the invertibility 

of τ with the definitions of τ↑ and τ⋆ (i.e. Definition 2.22), it is routine to verify τ↑∘τ⋆ = id. 

Similarly, σ↑∘σ⋆ = id. The second set of inequalities follows. The statement that if [b, d, i] ∈ 
PD(V) is unmatched, then it is (σ ∘ τ)-trivial carries over from Theorem 4.1. The statement 

that if [b′, d′, i′] ∈ PD(W) is unmatched, then it is (τ ∘σ)-trivial follows from Theorem 4.1 

as well, observing that the 〈b′, d′〉 ∩im τ = ∅ case cannot happen when τ is surjective, and 

that the condition that τ−1 (〈b′, d′〉) is (σ ∘ τ)-trivial is equivalent to 〈b′, d′〉 being (τ ∘ σ)-

trivial when τ is injective. □

Most of the algorithms for computing persistence diagrams do not store information about 

decorations of the endpoints, and they produce undecorated persistence diagrams. To define 

undecorated persistence diagrams we will use the maps introduced in Definition 2.25.

Definition 4.3 Let V be a PDF persistence module and PD(V) its persistence diagram. The 

undecorated persistence diagram PD(V) of V is a subset of ℝ2 × ℕ > 0 with the following 

properties:

i. if [b, d, n] ∈ PD(V), then [b, d, m] ∈ PD(V) for all m < n; and

ii. there exists a bijection XV :PD(V ) ⇸ PD(V ) such that if XV ([b, d, i]) = b′, d′, i′ , 

then b′ = π(b) and d′ = π(d).

It is clear that by condition (ii) the subset PD(V ) ⊆ ℝ2 × ℕ > 0 exists, and by condition (i) it is 

unique. To formulate an analog of Theorem 4.1 for undecorated persistence diagrams we 

make use of the following functions.
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Definition 4.4 Let τ:ℝ ℝ be a monotone function. We define monotone functions 

τL, τL
† , τR, τR

† :ℝ ℝ as:

1. τL(±∞) = limx→±∞ τ(x) and τL(x) := limy→x− τ(y) for x ∈ ℝ.

2. τR(±∞) = limx→±∞ τ(x) and τR(x) := limy→x+ τ(y) for x ∈ ℝ.

3. τL
† ( ± ∞): = ± ∞ and τL

† (x) = inf  y:x < τ(y)  for x ∈ ℝ.

4. τR
† ( ± ∞): = ± ∞ and τR

† (x): = inf  y:x ≤ τ(y)  for x ∈ ℝ.

Proposition 4.5 Let τ:ℝ ℝ be a monotone function. We have that τL = (τ↓)−, τR = (τ↑)+, 

τL
† = τ⋆

+, and τR
† = τ⋆

−. Moreover, the pair (τR
† , τR) is a Galois connection and the pair 

(τL, τL
† ) is a Galois connection.

Proof To establish the first part of the result, one performs a routine verification (which we 

omit) that the functions defined in Definition 4.4 could have been alternatively defined using 

the concepts in Definition 2.22 and Definition 2.26 according to the formulas given. Now the 

moreover part. Since τL, τL
† = τ −, τ⋆

+  and τR
† , τR = τ⋆

−, τ + , the result follows 

from Proposition 2.24 and Proposition 2.28. □

Proposition 4.6 Let (V, φV) and (W, φW) be persistence modules such that (V, W) are (τ, 

σ)-interleaved. Then there exists a matching X:PD(V ) ⇸ PD(W ) with the following 
properties. If X([b, d, i]) = b′, d′, i′ , then

τR
† b′ ≤ b ≤ σR ∘ τR ∘ τL

† b′ ,

τR
† d′ ≤ d ≤ σR ∘ τR ∘ τL

† d′ ,

τL ∘ τR
† ∘ σR

† (b) ≤ b′ ≤ τR(b),

τL ∘ τR
† ∘ σR

† (d) ≤ d′ ≤ τR(d) .

Moreover, if [b, d, i] ∈ PD(V) is unmatched, then

d ≤ σR ∘ τR(b),

and if [b′, d′, i′] ∈ PD(W) is unmatched, then

d′ ≤ τR ∘ σR ∘ τR ∘ τL
† b′ .

Proof We consider the matching X:PD(V ) ⇸ PD(W ) defined by

X: = XW ∘ X′ ∘ XV
−1,
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where XV , XW  are bijections given by Definition 4.3 and X′ is the matching from Theorem 

4.1. We start by proving the inequalities for the end points. We only need to show that 

τR
† b′ ≤ b, τR

† d′ ≤ d, τL ∘ τR
† ∘ σR

† (b) ≤ b′ and τL ∘ τR
† ∘ σR

† (d) ≤ d′ since by Proposition 4.5 

the other inequalities can be recovered using Galois connections (e.g. τR
† b′ ≤ b if and only 

if b′ ≤ τR(b)).

We only prove τR
† b′ ≤ b since the rest can be obtain by using similar arguments. Let 

[c, e, j] = XV
−1([b, d, i]) and c′, e′, j′ = XW

−1 b′, d′, i′ . Then X′([c, e, j]) = c′, e′, j′ . It follows 

from Corollary 4.2 that τ⋆(c′) ≤ c, and so π ∘ τ⋆(c′) ≤ π (c). Since i− ∘ π(x) ≤ id(x) for all 

x ∈ E, we get π ∘ τ⋆ ∘ i− ∘ π(c′) ≤ π(c). By Proposition 4.5, we get τR
† = π ∘ τ⋆ ∘ i−, which 

implies that τR
† π c′ ≤ π(c). It follows from the definition of XV  and XW  that b′ = π(c′) 

and b = π(c). Combining this with the previous inequality yields τR
† b′ ≤ b.

Now we assume that [b, d, i] ∈ PD(V) is not in dom X. Again, let [c, e, j] = XV
−1([b, d, i]). By 

Theorem 4.1, the point [c, e, j] is (σ ∘ τ)-trivial, i.e. e ≤ σ↑∘ τ↑(c). Since id(x) ≤ i+ ∘ π(x) for 

all x ∈ E. we have π(e) ≤ π∘σ↑∘(i+∘π)∘τ↑∘(i+∘π)(c). Proposition 4.5 implies that π(e) ≤ σR ∘ 
τR (π(c)). By using π(c) = b and π(c′) = b′, we obtain that d ≤ σR ∘ τR(b). The inequality 

for the points [b′, d′, i′] ∈ PD(W) that are not in im X can be achieved by using similar 

methods as above and is left to the reader. □

Corollary 4.7 Let (V, φV) and (W, φW) be persistence modules such that (V, W) are (τ, σ)-

interleaved. Suppose that the maps τ and σ are bijections. If X:PD(V ) PD(W ) is the 
matching given by Proposition 4.6 and X([b, d, i]) = b′, d′, i′ , then

σ−1(b) ≤ b′ ≤ τ(b) and σ−1(d) ≤ d′ ≤ τ(d) .

If [b, d, i] ∈ PD(V) is unmatched, then d ≤ (σ ∘ τ)(b), and if [b′, d′, i′] ∈ PD(W) is not in im 

X, then d′ ≤ (τ ∘ σ)(b′).

Proof If τ and σ are invertible, then τL = τR = τ, σL = σR = σ, τL
† = τR

† = τ−1, and 

σL
† = σR

† = σ−1. The proof is obtained by evaluating expressions in Proposition 4.6. □

5 Applications

We illustrate the use of results obtained in Sect. 4 through a series of applications. Our first 

example examines the relationship between ℤ-indexed and ℝ-indexed persistence modules. 

The second example focuses on obtaining bounds on errors that arise from computational 

limitations to obtaining the true persistence diagrams for large point clouds. We conclude 

with a table indicating how to apply Theorem 4.1 for a variety of approximations that are 

commonly used.
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5.1 Discretizing a persistence module

The ℝ-indexed persistence module V derived by considering the sublevel set filtration of a 

function f:X ℝ provides a characterization of the topography of f. However, in practice 

only a finite number of calculations can be performed. A simple idealization is to assume 

that calculations are performed only at integer values of f. This leads to the following 

definition.

Definition 5.1 The ℤ-discretized persistence module V ℤ is defined as follows. Set

V tℤ: = V t    and   φV ℤ(s, t): = φV ( s , t ),

where ⌊·⌋·is the floor function.

The following proposition provides an answer to the following question: given the ℤ-

discretized persistence module V ℤ, what are the constraints on the persistence diagram 

associated to the persistence module V?

Proposition 5.2 If V is an ℝ-indexed PFD persistence module and V ℤ is the associated ℤ-
discretized PFD persistence module, then the following are true:

i. (V, V ℤ) are (τ, σ)-interleaved, where τ(t) = t and σ(t) = ⌈t⌉; and

ii. there exists a matching X:PD V ℤ ⇸ PD(V ) such that if X([b, d, i]) = b′, d′, i′ , 

then

b − 1 ≤ b′ ≤ b and d − 1 ≤ d′ ≤ d .

Additionally, any unmatched points [b′, d′, i′] ∈ PD(V) satisfy d′ < ⌊b′ + 1⌋, 
and all points in PD V ℤ  are matched.

Proof (i) Define persistence module morphisms ϕ:V ℤ V (τ) = V  by ϕt := φV(⌊t⌋, t) and 

ψ:V V ℤ σ  by ψt := φV(t, ⌈t⌉). Observe that

ψ(τ)t ∘ ϕt = ψτ(t) ∘ φV ( t , t)
= φV (t, t ) ∘ φV ( t , t)
= φV ( t , t )
= φV ℤ(t, σ ∘ τ(t)) .

It is left to the reader to check that φ(σ)t ∘ ψt = φV [t, (τ ∘ σ)(t)], and therefore that (V, V ℤ) 

are (τ, σ)-interleaved.

(ii) First, note that that if [b, d, i] ∈ PD V ℤ  then b, d ∈ ℤ. This, together with a direct 

application of Proposition 4.6 and the fact that for t ∈ ℝ.

τR(t) = τL(t) = τR
† (t) = τL

† (t) = t
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and

σR(t) = t + 1    and   σR
† (t) = t − 1 ,

yields the bounds for the matched points. Since the matching given by Proposition 4.6 

inherits the matching on PD V ℤ  and PD(V) from the matching given by Theorem 4.1 on 

PD V ℤ  and PD(V), we prove the statements about the unmatched points using this latter 

result. By the definition of the maps τ, σ and the interleaving map σ:V ℤ V (τ) = V , we see 

that Theorem 4.1 implies that unmatched intervals in both PD V ℤ  and PD(V) are σ-trivial. 

By the definition of V ℤ, any interval 〈c, e〉 in PD V ℤ  necessarily has π(c) ∈ ℤ and so σ ∘ 

π(c) = π(c). Hence, no such interval is σ-trivial, and so every point in PD V ℤ  is matched. 

Finally, the only σ-trivial intervals 〈c′, e′〉 in PD(V) are those that do not contain an integer, 

and thus any unmatched point [b′, d′, n′] ∈ PD(V) necessarily has d′ < ⌊b′ + 1⌋. □

See Fig. 1 for an illustration of an estimate of PD(V) from PD V ℤ .

5.2 Computing persistence diagrams for large point clouds

We now turn to the question of computing persistence diagrams for large point clouds. For 

point clouds in arbitrary metric spaces, a standard approach makes use of a filtration of the 

associated Vietoris–Rips complex, which we define next.

Definition 5.3 Let (X, d) be a finite metric space with metric d. The Vietoris–Rips complex 
of X at scale t, denoted by ℛ(X, t), is the simplicial complex with vertices given by X and 

containing the N-simplex xi0, …, xiN  if and only if d xkJ, xik ≤ 2t for all j, k = 0, …, N.

The collection ℛ(X, t) t ∈ ℝ is called the Vietoris–Rips filtration associated to X.

Definition 5.4 Let (X, d) be a finite metric space. Fix a field k. The persistence module 

induced by the Vietoris–Rips filtration associated to X, denoted by Mℛ(X), is defined via 

simplicial homology as follows:

Mℛ(X)t: = H*(ℛ(X, t), k),    t ∈ ℝ

and the transition maps φMℛ(X)(t, s) are the associated linear maps on homology induced by 

the inclusion maps jX; t, s:ℛ(X, t) ℛ(X, s).

We remark that given a finite metric space X, the induced persistence module Mℛ(X) is a 

PFD persistence module.

Observe that for large X, the computational cost of determining H*(ℛ(X, t), k) grows rapidly 

as a function of t. If Y ⊂ X, then one expects that it is cheaper to compute H*(ℛ(Y , t), k). 
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The goal of this section is twofold: first, to quantify the difference between Mℛ(X) and 

Mℛ(Y ); and second, to suggest an iterative procedure, motivated by Dey et al. (2014), for 

obtaining reasonable approximations of Mℛ(X).

5.2.1 Subsampling a large point cloud—Definition 5.5 Let (X, d) be a finite metric 

space. A subset Y ⊂ X is a δ-approximation of X if for every x ∈ X there exists a y ∈ Y 
such that d(x, y) ≤ δ.

Proposition 5.6 If (X, d) is a finite metric space and Y is a δ-approximation of X, then the 
following approximations hold.

i. The persistence modules (Mℛ(Y ), Mℛ(X)) are (τ, σ)-interleaved, where τ(t) = t 
and σ(t) = t + δ.

ii. There exists a matching X:PD Mℛ(Y ) ⇸ PD Mℛ(X)  such that if 

PDX(b, d, i) = b′, d′, i′ , then b − δ ≤ b′ ≤ b and d − δ ≤ d′ ≤ d. Moreover, all 

unmatched points in PD Mℛ(Y )  and PD Mℛ(X)  are at most δ above the 

diagonal.

Figure 2 (left) provides an illustration of Proposition 5.6 (ii). Observe that since τ and σ are 

invertible, Proposition 5.6 (ii) follows from Proposition 5.6 (i) and Corollary 4.7. The proof 

of Proposition 5.6 (i) occupies the remainder of this section. We begin with some 

preliminary arguments.

Lemma 5.7 Let Y, Y′ ⊆ X and δ ≥ 0. If γ : Y → Y′ satisfies d(x, γ(x)) ≤ δ for all x ∈ Y, 
then γt:ℛ(Y , t) ℛ Y ′, t + δ , defined by

γt x0, …, xk = γ x0 , …, γ xk  for any simplex  x0, …, xk ∈ ℛ(Y , t),

is a simplicial map.

Proof To prove that γ is a simplicial map, we need to show that for every k-simplex 

x0, …, xk ∈ ℛ(Y , t), its image [γ(x0), …, γ(xk)] under γ is a simplex in ℛ Y ′, t + δ . Since 

the simplices in a Vietoris–Rips complex are fully determined by its 1-skeleton, we only 

need to show that the 1-skeleton of ℛ(Y , t) is mapped to the 1-skeleton of ℛ Y ′, t + δ . Recall 

that [x, y] is an edge in ℛ(Y , t) if and only if d(x, y) ≤ 2t. Thus, we have

d(γ(x), γ(y)) ≤ d(γ(x), x) + d(x, y) + d(y, γ(y))
≤ δ + 2t + δ
= 2(t + δ),

and so [γ(x), γ(y)] is either a 1-simplex or a 0-simplex in ℛ Y ′, t + δ . □

Let Y ⊂ X be a δ-approximation and let ιt:ℛ(Y , t) ℛ(X, t) denote the inclusion map. Set

ϕt: = ιt * :H*(ℛ(Y , t)) H*(ℛ(X, t)) .
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Since Y is a δ-approximation, there exists γ : X → Y such that d(x, γ (x)) ≤ δ for all x ∈ X, 

and γ (y) = y for all y ∈ Y. By Lemma 5.7, γt:ℛ(X, t) ℛ(Y , t + δ) is a simplicial map and 

hence we can define

ψt: = γt * :H*(ℛ(X, t)) H*(ℛ(Y , t + δ)) .

Our goal is to show that ϕ:Mℛ(Y ) Mℛ(X) and ψ:Mℛ(X) Mℛ(Y )(δ) are persistence 

module morphisms that guarantee that the persistence modules (Mℛ(Y ), Mℛ(X)) are (τ, σ)-

interleaved, and therefore, provide a proof of Proposition 5.6(i).

Observe that γt ∘ ιt = jY ; t, t + δ and hence

ψ(τ)t ∘ ϕt = ψt ∘ ϕt = φMℛ(Y )[t, t + δ] = φMℛ(Y )[t, (σ ∘ τ)t] . (5.1)

The challenge is to show that the middle equality holds for

ϕ(σ)t ∘ ψt = ϕt + δ ∘ ψt = φMℛ(X)[t, t + δ] = φMR(X)[t, (τ ∘ σ)t] . (5.2)

For purposes of the next section, we prove a more general result than necessary.

Lemma 5.8 Consider Y, Y′ ⊆ X and δ ≥ 0. Let ιt′:ℛ Y ′, t ℛ(X, t + δ) and 

ιt:ℛ(Y , t) ℛ(X, t) be the simplicial maps induced by inclusion. If γ : Y′ → Y satisfies d(y, 

γ(y)) ≤ δ for all y ∈ Y′ and γt:ℛ Y ′, t ℛ(Y , t + δ) is the simplicial map as defined in 

Lemma 5.7, then ι(t + δ) ∘ γt and ιt′ are homotopic and hence

ι(t + δ) ∗ ∘ γt ∗ = ιt ∗′ .

Proof To prove this we make use of the theory of simplicial sets (see Weibel 1995 or 

Friedman 2012) and begin with the remark that by (Weibel 1995, Lemma 8.3.13, Theorem 

8.3.8) it is sufficient to prove that ι(t + δ) ∘ γt and ιt′ are homotopic.

Given a simplicial complex K let K denote the associated simplicial set. To establish 

notation let Kk denote the k-dimensional simplices in K and let di:Kk Kk − 1 and 

si:Kk Kk + 1 be the delete and duplicate i-th vertex operations defined by

di v0, …, vk : = v0, …, vi − 1, vi + 1, …, vk

and

si v0, …, vk : = v0, …, vi, vi, …, vk .

We claim that the functions ℎi:ℛ Y ′, t k ℛ(X, t + δ)k + 1, i = 0, …, k, defined by
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ℎi x0, …, xk = x0, …, xi, γ xi , …, γ xk

provide a simplicial homotopy between ι(t + δ) ∘ γt and ιt′. Recall that to justify this claim, it is 

sufficient to verify the following equalities:

d0ℎ0 = ι(t + δ) ∘ γt   and   dk + 1ℎk = ιt′

diℎj =
ℎj − 1di if i < j
diℎi − 1 if i = j ≠ 0
ℎjdi − 1 if i > j + 1

   and   siℎj =
ℎj + 1si if i ≤ j
ℎjsi − 1 if i > j .

We leave these calculations to the reader. □

Proof of Proposition 5.6 (i) As indicated above, the proof of Proposition 5.6(i) follows from 

(5.1), which has already been justified, and (5.2), which follows from Lemma 5.8 under the 

assumption that Y′ = X. □

5.2.2 Stitching persistence modules—We begin this section by giving a useful 

construction and then motivate it with an application.

Definition 5.9 Let (V, φV) and (W, φW) be persistence modules and s0 ≤ t0. Suppose that ϕ : 

Vs0 → Wt0 is a linear map. If s0 = t0 we require that the vector spaces Vs0 and Wt0 are the 

same, and that ϕ is the identity map. The stitched persistence module U = U(V, W, ϕ) is 

defined by the vector spaces

Ut =

V t if t ≤ s0
V s0 if s0 ≤ t < t0
W t if t0 ≤ t

and linear maps

φU(s, t) =
φV min s, s0 , min t, s0 if s ≤ t < t0
φW t0, t ∘ ϕ ∘ φV min s, s0 , s0 if s < t0 ≤ t
φW (s, t) if t0 ≤ s ≤ t .

Remark 5.10 The stitched persistence module U = U(V, W, ϕ) is a PFD persistence module.

Proof Since V and W are PFD persistence modules, Ut is finite dimensional for each t ∈ ℝ. 

It is left to the reader to check that φU (t, t) idUt for every t ∈ ℝ and that φU (s, t) ∘ φU (r, s) = 

φU (r, t) for every r ≤ s ≤ t in ℝ.

We showed that the persistence module Mℛ(X) of a finite metric space (X, d) can be 

approximated by the persistence module Mℛ Y δ , where Yδ is a δ-approximation of X. The 

quality of this approximation and the computational cost of constructing Mℛ Y δ  decreases 

as δ increases. In particular, given fixed computational resources, the value of t for which the 
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vector spaces Mℛ Y δ t and the maps between them can be computed increases with δ. 

Therefore, to obtain a computable approximation of Mℛ(X) that is better than Mℛ Y δ , we 

stitch together the persistence modules Mℛ(X) and Mℛ Y δ  at t0, chosen in such a way that 

the vector spaces Mℛ Y δ t (and the maps) can be computed. Figure 2 demonstrates how the 

approximation given by Mℛ Y δ  improves when it is stitched with Mℛ(X). Alternatively, we 

could consider stitching together two persistence modules Mℛ Y δ  and Mℛ Y δ′  for δ < δ′, 

or even iterate the this procedure, as explained in the following section.

This motivates our interest in combining (or stitching together) two different approximations 

of a persistence module (W, φW). We recall that the quality of the approximation can be 

assessed by interleavings. Thus, in the rest of the sections that follow, by saying that (V, φV) 

and (V′, φV′) are two different approximations of (W, φW), we mean that the persistence 

modules:

1. (V, W) are (τ, σ)-interleaved via ϕ : V → W(τ) and ψ : W → V(σ); and

2. (V′, W) are (τ′, σ′)-interleaved via ϕ′ : V′ → W(τ′) and ψ′ : W → V′(σ′).

In the following definition, we explain when two different approximations of W can be 

stitched together, and then we consider the best interleaving that is guaranteed to exist 

between W and the stitched persistence module.

Proposition 5.11 Let (V, φV) and (V′, φV′) be two different approximations of (W, φW) and 

suppose that t0 ∈ ℝ satisfies t0 ≤ σ′ ∘ τ(t0). Let U = U V , V ′, ψτ t0′ ∘ ϕt0  be the stitched 

persistence module. Then (U, W) are (η, ρ)-interleaved where

η(t) =
τ(t)  if t < t0
τ t0  if t0 ≤ t < σ′ ∘ τ t0
τ′(t)  if σ′ ∘ τ t0 ≤ t;

ρ(t) =
σ(t)  if σ(t) ≤ t0
σ′ ∘ τ t0  if t0 < σ(t) and t < τ t0

σ′(t)  if τ t0 ≤ t .

The following diagram (with unlabeled arrows assumed to be the appropriate transition 

maps) shows the idea behind how the vector spaces of U and the transition maps φU (s, t) for 

s < σ′ ∘ τ(t0) ≤ t fit with Definition 5.9.

Proof We start by showing that (η, ρ) is a translation pair, i.e. both functions are monotone 

and the functions ρ ∘ η and η ∘ ρ are translation maps. First we prove that η is monotone. By 

its definition and the monotonicity of the functions τ, τ′, we get that η is monotone for t < σ 
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∘ τ(t0) as well as for σ ∘ τ(t0) ≤ s. Thus, we only have to show that η(s) ≤ η(t) for any s < σ ∘ 
τ(t0) ≤ t. This is true because

η(s) ≤ τ t0 ≤ τ′ ∘ σ′ ∘ τ t0 ≤ η(t),

where the first and last inequality follow from definition of η and the middle one holds 

because the map τ′ ∘ σ′ is a translation map. The proof of the monotonicity of ρ is based on 

the inequality t0 ≤ σ′ ∘ τ(t0), which holds by assumption.

The map ρ ∘ η is defined by σ ∘ τ for t such that σ ∘ τ(t) ≤ t0 and by σ′ ∘ τ′ for σ′ ∘ τ(t0) ≤ t. 
Thus, we see that ρ ∘ η is a translation map for these values of t. For all the other values of t 
we have ρ ∘ η(t) = σ′ ∘ τ(t0). However, in this case t < σ′ ∘ τ(t0), which proves that the map 

is a translation map on ℝ. We leave it to the reader to show that η ∘ ρ is a translation map as 

well.

In the rest of the proof we will show that the morphisms ϕ:U W (η) and ψ:W U(ρ)
defined by

ϕt =

ϕt if t ≤ t0
ϕt0 if t0 < t < σ′ ∘ τ t0
ϕt′ if σ′ ∘ τ t0 ≤ t,

ψt =

ψt if σ(t) ≤ t0
ψτ t0′ ∘ φW t, τ t0 if t0 < σ(t) and t < τ t0
ψt′ if τ t0 ≤ t,

give the desired interleaving of U and W. We leave it to the reader to check that the shifts in 

indices of ϕ and ψ are consistent with the shifts given by the maps η and ρ.

Showing that ϕ:U W (η) and ψ:W U(ρ) are persistence module morphisms is done by 

using the fact that ϕ, ϕ′, ψ and ψ′ are persistence module morphisms and unwrapping the 

definitions of ϕ, ψ, η, ρ and φU based on the values s ≤ t ∈ R. While each case is a 

straightforward computation, there are many of them. Thus, we only show that 

ϕt ∘ φU(s, t) = φW (η)(s, t) ∘ ϕs for s < t0 < σ′ ∘ τ(t0) ≤ t and leave the rest to the reader. In this 

case,

ϕt ∘ φU(s, t) = ϕt′ ∘ φV ′ σ′ ∘ τ t0 , t ∘ ψτ t0′ ∘ ϕt0 ∘ φV s, t0
= ϕt′ ∘ φV ′ σ′ ∘ τ t0 , t ∘ ψτ t0′ ∘ φW τ(s), τ t0 ∘ ϕS
= φW τ′ ∘ σ′ ∘ τ t0 , τ′(t) ∘ ϕ σ′ ∘ τ t0′ ∘ ψτ t0′ ∘ φW τ(s), τ t0 ∘ ϕS
= φW τ′ ∘ σ′ ∘ τ t0 , τ′(t) ∘ φW τ t0 , τ′ ∘ σ′ ∘ τ t0 ∘ φW τ(s), τ t0 ∘ ϕS
= φW τ(s), τ′(t) ∘ ϕs
= φW (η)(s, t) ∘ ϕs .

□

We conclude this section with a simple, but hopefully illustrative, application of Proposition 

5.11.
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Corollary 5.12 Let (X, d) be a finite metric space and let Y ⊂ X be a δ-approximation of X 

with δ > 0. Let U = U Mℛ(X), Mℛ(Y ), γt0 *  be the stitched persistence module with γ

defined as in Lemma 5.7, and PD(U) its persistence diagram. If [b, d, i] ∈ PD(U), then 
neither b or d is in the interval (t0, t0 + δ). Moreover, there exists a matching 

X:PD(U) ⇸ PD Mℛ(X)  such that if X([b, d, i]) = b′, d′, i′ and

if b < d ≤ t0 tℎen b′ = b and d′ = d;
if b ≤ t0 < t0 + δ ≤ d tℎen b′ = b and max t0, d − δ ≤ d′ ≤ d;
if b = t0 + δ < d tℎen t0 ≤ b′ ≤ t0 + δ and max t0, d − δ ≤ d′ ≤ d;
if t0 + δ < b < d tℎen b − δ ≤ b′ ≤ b and d − δ ≤ d′ ≤ d .

All unmatched points [b, d, i] ∈ PD(U) satisfy

t0 + δ ≤ b and d ≤ b + δ,

and all unmatched points b′, d′, i′ ∈ PD Mℛ(X)  satisfy

t0 < b′ < d′ ≤ b′ + δ .

Proof It follows form the definition of the Vietoris–Rips filtration that every interval in 

PD Mℛ(X)  and PD Mℛ(Y )  has a closed left-hand endpoint and an open right-hand 

endpoint, and so b < d and b′ < d′. Moreover, by the definition of U, we cannot have t0 < b 

< t0 + δ or t0 < d < t0 + δ. Observe that the persistence modules (Mℛ(X), Mℛ(X)) are (τ(t) = 

t, σ(t) = t)-interleaved and that (Mℛ(Y ), Mℛ(X)) are (τ′(t) = t, σ′(t) = t + δ)-interleaved. 

The result follows by applying Propositions 5.11 and 4.6, with the additional observation 

that the identity map yielding Ut0 = Mℛ(X)t0 and the definition of U forces that every point 

[t0, d, i] ∈ PD(U) is matched to some point t0, d′, i′ ∈ PD Mℛ(X)  and vice versa. For the 

reader’s benefit, we indicate the forms of η, ρ, η⋆
†  and ρ⋆

†  in Fig. 3. □

5.2.3 Iterated subsampling of a large point cloud—The goal of this section is to 

demonstrate that the techniques developed in Sects. 5.2.2 and 5.2.1can be used to obtain a 

multiscale approximation of the persistence diagram of a large point cloud X. Our aim is to 

highlight the method as opposed to presenting an optimal result, and thus we begin with a 

sequence of δ-approximations of X.

Definition 5.13 Let (X, d) be a finite metric space. A sequence Y = Y i ⊆ X i = 0
m  is a 

Δ = δi > 0 i = 1
m  sampling of X if

i. Y0 = X, Yi+1 ⊂ Yi, and δi < δi+1 for all i, and

ii. for every i > 0, Yi is a δi approximation of X.
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Definition 5.14 Let Y = Y i ⊆ X i = 0
m  be a Δ = δi > 0 i = 1

m  sampling a finite metric space 

(X, d). An admissible stitching sequence is a sequence T = ti ≥ 0 i = 1
m  satisfying

ti + 1 ≥ ti + δi,    i = 1, …, m − 1.

The associated stitched Vietoris–Rips persistence module

U = U Y, Δ, T; Mℛ(X)

is defined inductively as follows:

U0: = Mℛ(X),
Ui: = U Ui − 1, Mℛ Yi , γi ti * ,  and 
U : = Um,

where γi ti *  is the map from Mℛ(X)ti to Mℛ Y i ti + δi induced at the level of homology.

Proposition 5.6(i) guarantees that (Mℛ Y i , Mℛ(X)) are (t, t + δi) interleaved. By repeated 

application of Proposition 5.11, we could obtain the precise interleavings between 

U Y, Δ, T; Mℛ(X)  and Mℛ(X) and provide a quantitative comparison of their persistence 

diagrams as we did in Corollary 5.12. The detailed bounds on the relationship between the 

persistence diagrams are rather complicated to state precisely. Thus, we limit ourselves to 

remarking that U Y, Δ, T; Mℛ(X)  and Mℛ(X) are roughly (t, t + δi) interleaved on the 

interval (ti, ti+1]. The only exceptions occur on the intervals (ti+1 − δi, ti+1 + δi+1) that 

overlap the stitching points, and in this case, the bounds on the errors are no worse than δi + 

δi+1.

In practice, the main constraint in computing persistence diagrams of a Vietoris–Rips 

filtration is the memory constraint associated with storing the Vietoris–Rips complex 

ℛ(X, t). Thus, a desirable strategy is to: compute Mℛ(X) over a longest possible interval [0, 

t0]; downsample to Y1 ⊂ X; compute U1 using Mℛ Y 1  over a longest possible interval [t0, 

t1]; downsample to Y2 ⊂ Y1; and repeat the process. An open question is how to optimize 

the choice of the locations ti of downsampling and the δi ≥ 0 used to construct the 

downsampled sets Y i i = 1
m .

5.3 A comparison of approximations of Vietoris–Rips and Cech filtrations

In applications, a persistence module is associated to a finite metric space (X, d) via the 

construction of a simplicial complex. There is typically a natural choice of complex for the 

problem of interest (e.g. Čech complex). However, the Vietoris–Rips complex is usually 

more manageable than the Čech complex. Table 1 provides a list of examples of pairs of 

filtrations and their approximations that have appeared in the literature. Proposition 4.6 
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provides a general quantitative comparison of persistence diagrams given an interleaving 

between the associated persistence modules.

Table 1 explicitly defines interleavings and the interested reader can derive the bounds for 

the matching of persistence diagrams using Corollary 4.7 since all of the maps τ and σ in the 

table are bijections. Note that Proposition 2.19 enables one to keep track of errors even when 

multiple approximation steps have been used. For example, say that one desires to make a 

statement about the persistence diagram corresponding to the Čech filtration of a finite point 

cloud in ℝn via the persistence diagram corresponding to a filtration of the Sparsified 

Vietoris–Rips complex from Dey et al. (2014) with parameter ε. Then the (η, ρ)-interleaving 

between the persistence module induced by the Čech filtration and the persistence module 

induced by the Sparsified Vietoris–Rips complex filtration is given by η(t) = t 2n
n + 1  and ρ(t) 

= (1+ε)t, where an intermediate approximation uses the Vietoris–Rips complex filtration 

(e.g. the translation pairs that one plugs into Proposition 2.19 come from the first and last 

rows of the first section of the table).
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Fig. 1. 
A schematic diagram illustrating the potential locations of persistence points of PD(V) based 

on the computation of PD V ℤ . The persistence point (2, 6) of PD V ℤ  is matched with a 

persistence point of PD(V) which must lie strictly within the light gray region. The dark 

gray region indicates the potential location of persistence points of PD(V) that cannot be 

detected because of the integer-valued approximation used to compute PD V ℤ . Finally, if W 

is an arbitrary PFD persistence module and the bottleneck distance between PD V ℤ  and 

PD(W) is one, then PD(W) may have a single point in the region indicated by the dashed 

square, and arbitrarily many persistence points in the region below the dashed line
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Fig. 2. 
(left) Schematic diagram illustrating the quality of the matching from Proposition 5.6. The 

persistence diagram PD Mℛ(Y )  is shown. The dark gray region indicates the possible 

locations of the unmatched points for the persistence diagrams PD Mℛ(Y )  and PD Mℛ(X) . 

The light gray region indicates the possible location of the point of PD Mℛ(X)  that is 

matched to the point of PD Mℛ(Y )  that is shown. (right) Schematic diagram illustrating the 

quality of the matching from Corollary 5.12. The persistence diagram PD Mℛ(U)  is shown. 

Persistence points for the persistence diagrams PD Mℛ(U)  and PD Mℛ(X)  agree in the 

region [0, t0) × [0, t0). Unmatched points for the persistence diagrams PD Mℛ(U)  and 

PD Mℛ(X)  will lie in the dark gray region. The light gray region indicates the possible 

location of the point of PD Mℛ(X)  that is matched to the point of PD Mℛ(U)  that is shown
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Fig. 3. 
Functions η and ρ that provide an interleaving between the stitched persistence module 

U = Mℛ(X), t0, Mℛ(Y ); Mℛ(X)  and Mℛ(X) where Y is a δ-approximation of a finite 

metric space X
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