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Abstract

By invoking the reflection functors introduced by Bernstein, Gelfand, and Ponomarev in 1973, in

this paper we define a metric on the space of all zigzag modules of a given length, which we call the

reflection distance. We show that the reflection distance between two given zigzag modules of the

same length is an upper bound for the ℓ1-bottleneck distance between their respective persistence

diagrams.
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1 Introduction and Main Results

Persistent Homology is a circle of ideas [Fro90, Fro92, DE95, Rob99, ELZ00, ZC05] related to studying

the homology of diagrams of simplicial complexes or topological spaces. Often these diagrams are

parametrized by a scale parameter which has some geometric meaning. One fundamental example is

that given by an increasing sequence of subspaces of a given topological space X : ; = X0 ⊂ X1 ⊂ ·· · ⊂

Xn = X . In this case, upon passing to homology (with coefficients in a field), one obtains a similar dia-

gram of vector spaces and linear maps V0 →V1 →···→Vn . These diagrams are referred to as persistence

modules and, under mild tameness assumptions, their structure up to isomorphism can be summarized

by a multiset of pairs (i , j ) with i ≤ j . The intuition is that these multisets subsume the lifetime of homo-

logical features as these are born and are eventually annihilated.

The poset underlying the diagram of topological spaces ; = X0 ⊂ X1 ⊂ ·· · ⊂ Xn = X from above is

simply the poset on n points (generated by) •→•→ ·· ·→ •. This setting was generalized by Carlsson and

de Silva [CS10] to allow for any diagram of topological spaces (or simplicial complexes) whose underlying

poset is of the form •↔ •↔ ·· ·↔ •, where at each occurrence of ↔ exactly one choice for the direction of

the arrow is made; the finite sequence of all such choices is called the type of V. This generalized setting

is called zigzag persistence. It provides a complete algebraic invariant for sequences V= (Vi , pi ) of vector

spaces and linear maps of the form

V1 V2 · · · Vn−1 Vn .
p1 p2 pn−2 pn−1

As it was noted in [CS10] these complete algebraic invariants that zigzag persistence associates to V

also take the form of persistence diagrams, but these can now be enriched with the type of the zigzag

persistence module from which they arise.

Zigzag persistence has found applications in neuroscience [BMD17, CDM17], and in the analysis of

dynamic data [CJ16, KM17, CDM17]. See [TC11] for a general description of many possible applications

of zigzag persistence.

In practical applications one typically wishes to use the persistence diagram of a zigzag module to

gain insights about the underlying data from which the zigzag module was extracted. With applications

in mind, it is important to be able to guarantee stability of zigzag persistence. Informally, a process

which takes data as input and provides some invariant as output is stable if whenever the input data is

perturbed slightly, the resulting invariant changes only slightly. Since data is usually acquired with some

inherent noise, stability is a very desirable property.

Depending on the application, a metric ρ is defined on the space of input data and stability results

take the form db ≤ Cρ for some constant C > 0. A standard metric for measuring the closeness of two

persistence diagrams is the bottleneck distance db [EH10]. In the context of standard persistence, it has

been proven that persistence diagrams are stable in different degrees of generality [CSEH06, CSEM06,

CCSG+09, BL14, Les15, CSEHM10, BS14, BdSS15].

An alternative approach is to define a metric at the algebraic level, measuring the distance between

persistence modules directly. Stability of this form is referred to as algebraic stability and it is a notion

of algebraic stability that we study in this paper. The algebraic stability of standard persistent homology

was studied in [CCSG+09] (see also [CDSGO16, Les15, BL14]), whereas the algebraic stability of zigzag

persistence was approached by Botnan and Lesnick through a method different from ours in [BL18].

In essence, the distance between zigzag modules constructed by Botnan and Lesnick first suitably

extrapolates two given zigzag modules into persistence modules over R
2 and then computes an inter-

leaving type distance between these extrapolated modules. They were able to prove that the bottleneck

distance between the persistence diagrams of the original persistence modules is bounded above by a

constant times the value of the distance between them. A recent refinement by Bjerkevik [Bak16] has

found the optimal constant for this inequality.
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We now describe the structure of our distance and state our main stability result.

1.1 Statement of the Main Result

We introduce here a family of pseudometrics d
p

R
, parametrized by p ∈ [1,∞), on the space of zigzag

modules of length n and then show that in the special case p = 1, the inequality d 1
b
≤ d 1

R
holds, where

d
p

b
denotes the ℓp -bottleneck distance. The ℓp -bottleneck distance arises from considering a definition

analogous to the standard bottleneck distance [EH10] with the provision that the ground metric between

points is chosen to be the ℓp norm in R
2 (see details in Section 7).

For a given p ∈ [1,∞), d
p

R
is called the p-reflection distance. The idea behind the definition of the

reflection distance is the following: we consider some collection of transformations of zigzag modules

which we will model as a collection S of endofunctors on the category n-Mod of zigzag modules of a

fixed length n. For each p ∈ [1,∞), we associate a cost to each functor F ∈S by means of a cost function

Cp :S →R
+.

We then define a function d
p

R
: n-Mod×n-Mod →R by setting

d
p

R
(V,W) := min

(F1,F2)

{
max{Cp (F1),Cp (F2)} |F1(V)-W and F2(W)-V

}
,

where the minimum is taken over pairs (F1,F2) ∈S×S of functors satisfying the conditions thatF1(V)-W

and F2(W) - V. Here, V1 - V2 if and only if V1 is equivalent to a summand of V2, where “equivalent"

refers to equivalence of zigzag modules which differ only in the direction of linear maps representing

isomorphisms. If the cost function Cp satisfies the subadditivity condition

Cp (F2 ◦F2) ≤Cp (F1)+Cp (F2)

for all functors F1,F2 ∈S then d
p

R
turns out to be a pseudometric on n-Mod.

Of course, d
p

R
depends both on the collection of functors which we restrict ourselves to and the cost

function Cp used. The functors which we will restrict ourselves to in this paper are defined by replacing

certain subdiagrams of a given zigzag module by a diagram formed from its limit or colimit. Such func-

tors are closely related to the reflection functors of Bernstein, Gelfand, and Ponomarev [BGP73], hence

the name the reflection distance. The cost function chosen simply counts the number of transformations

needed to transform a pair of zigzag modules into each other, weighted by the parameter p . Our main

result is then the following

Theorem 1.1 (Main Theorem). For all zigzag modules V,W ∈ n-Mod we have

d 1
b(Dgm(V),Dgm(W)) ≤ d 1

R
(V,W).

Here, d 1
b

denotes the ℓ1-bottleneck distance as described above.

1.2 Organization of the paper

Section 2 recalls the main facts about zigzag modules that we will need in this paper; Section 3 recalls

elements regarding the decomposition of zigzag modules as direct sums of interval modules; Section 4

sets terminology which will be used in later sections to describe transformations between different types

of zigzag modules; Section 5 describes reflection functors and their effect on interval modules; Section

6 provides the precise description of our reflection distance. In Section 7 we describe the ℓp -bottleneck

distance and give the proof of our main theorem, Theorem 1.1; Section 8 provides an overview of some

lines of related research which may be of interest. Finally, Appendices A1 and A2 contain background

material on Category Theory and Matchings.
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2 Zigzag Modules

Fix a field F. All vector spaces throughout will be finite dimensional over F. A zigzag module V= (Vi , pi )

is a finite sequence

V1 V2 · · · Vn−1 Vn
p1 p2 pn−2 pn−1

(1)

of vector spaces and linear transformations between them. An arrow Vi
pi

←→ Vi+1 represents either a

forward linear map Vi
pi
−→Vi+1 or a backward linear map Vi

pi
←−Vi+1, but never both. The pi are referred

to as structure maps. Note that the i th structure map pi either has domain Vi or Vi+1 and codomain Vi+1

or Vi respectively. We will use the notation pi : Vi1
→Vi2

when the direction of pi has not been specified.

In other words, i1, i2 ∈ {i , i +1} with i1 6= i2, dom(pi )=Vi1
, and cod(pi ) =Vi2

.

The length of a zigzag module is the length of the sequence (1) above. We will denote the collection

of all zigzag modules of length n by n-Mod. A finite sequence τ of the symbols → and ←, indicating

the directions of the linear maps in (1) as read from left to right, is called the type of the zigzag module.

Formally, the type of a zigzag module of length n is a sequence τ ∈ {→,←}n−1. We will use the notation

Tn := {→,←}n−1.

Remark 2.1. Sequences in Tn have length n − 1, not length n. This is so that zigzag modules in n-Mod

have types in Tn .

We define a map

type= typen : n-Mod→ Tn

where type(V) is the type of V. We denote the collection of all zigzag modules of type τ by Modτ, that is1

Modτ := {V ∈ n-Mod | type(V) = τ}.

Note that Modτ = type−1(τ) and n-Mod =
⋃

τ∈Tn
Modτ. A zigzag module of type τ is also called a τ-

module.

Example 2.1. Let n = 3. Then

Tn = {(→,→)︸ ︷︷ ︸
τ1

, (→,←)︸ ︷︷ ︸
τ2

, (←,→)︸ ︷︷ ︸
τ3

, (←,←)︸ ︷︷ ︸
τ4

}.

Consider the zigzag modules

V1 = F F F
id id

V3 = F 0 F
0 0

V2 = F F 0
id 0

V4 = 0 F F
0 id

where F is viewed as a 1-dimensional vector space over itself and 0 denotes the trivial vector space. Each of

these zigzag modules is an element of n-Mod and we have type(V j ) = τ j for j = 1,2,3,4.

1Note that we are slightly abusing notation since Modτ may not be a set.
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2.1 Morphisms Between Zigzag Modules

Fix zigzag modules V = (Vi , pi ) and W = (Wi , qi ) in Modτ. A morphism from V to W is a collection φ =

{φi : Vi →Wi }n
i=1

of linear transformations such that the diagram

V1 V2 · · · Vn−1 Vn

W1 W2 · · · Wn−1 Vn

p1

φ1

p2

φ2

pn−2 pn−1

φn−1 φn

q1 q2 qn−2 qn−1

commutes. We denote a morphism from V to W by φ : V→W. The linear maps φi comprising the mor-

phism φ are called the components of φ. Composition of morphisms is defined component-wise and the

identity morphism idV : V→V is the morphism all of whose components are identity maps. With these

definitions in place, for every n ∈N and for each τ ∈ Tn , the collection Modτ of τ-modules together with

the collection of all morphisms between them forms a category denoted Modτ. We call a morphism φ an

isomorphism, monomorphism, or epimorphism if all of the φi are either bijective, injective, or surjective,

respectively. If there exists an isomorphism between V and W we say that V and W are isomorphic and

write V∼=W.

Given a τ-module V = (Vi , pi ), a submodule W = (Wi , qi ) of V is a τ-module such that for all i ei-

ther pi (Wi ) ⊆ Wi+1 or pi (Wi+1) ⊆ Wi , depending on whether pi : Wi → Wi+1 or pi : Wi+1 → Wi , respec-

tively. In this case, the linear map qi is taken to be the restrictions of the map pi to the subspace Wi or

Wi+1, again depending on the direction of pi . A τ-module W is isomorphic to a submodule of V if and

only if there exists a monomorphism f : W→ V. This justifies working with monomorphisms between

zigzag modules instead of working with submodules directly. We write W ≤ V whenever there exists a

monomorphism f : W→V. Note that W∼=V if and only if W≤V and V≤W.

2.2 Interval Modules and the Zero Module

Fix n ∈ N and τ ∈ Tn . For each pair b,d ∈ {1, . . . ,n} with b ≤ d we define a zigzag module Iτ([b,d ]) =

(Ii , pi ) ∈ Modτ, called the interval τ-module on [b,d ], by setting

Ii :=

{
F b ≤ i ≤ d

0 otherwise
and pi :=

{
idF b ≤ i < d

0 otherwise.

When the type is fixed we will drop the subscript τ and just write I([b,d ]). Interval τ-modules of the form

Iτ([k ,k]) are called simple interval τ-modules. We also define the zero module Oτ = (Zi , zi ) of type τ to be

the τ-module with Zi = 0 and zi = 0 for all i .

Example 2.2. Let n = 3 and let τ= (→,←) ∈ Tn . There are 6 =
(n+1

2

)
nonzero interval τ-modules given by

Iτ([1,1]) = F 0 0
0 0

Iτ([1,3]) = F F F
id id

Iτ([2,3]) = 0 F F
0 id

Iτ([1,2]) = F F 0
id 0

Iτ([2,2]) = 0 F 0
0 0

Iτ([3,3]) = 0 0 F
0 0

3 Decompositions of Zigzag Modules

In this section we define the direct sum of zigzag modules of the same type and state a standard unique

decomposition theorem, an adaptation of the Krull-Remak-Schmidt theorem to the context of zigzag
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persistence. Combined with Gabriel’s Theorem which characterizes the indecomposable zigzag mod-

ules as precisely the interval zigzag modules, we are able to define persistence diagrams, an object of

fundamental importance in persistence theory.

3.1 Indecomposables and Summands

The direct sum of two τ-modules X = (Xi ,αi ) and Y = (Yi ,βi ) is a τ-module X⊕Y = (Zi ,γi ) where Zi =

Xi ⊕Yi and where γi =αi ⊕βi for all i . We say that W is a summand of V whenever there exists a τ-module

U such that V ∼=W⊕U and we write W ¹ V. The relation ¹ defines a partial order on the isomorphism

classes of Modτ. For later reference, we record the following easy proposition describing the structure

maps of a summand:

Proposition 3.1. If (Wi , qi ) =W¹V= (Vi , pi ) and if the k th structure map pk of V is injective, surjective,

or bijective then the k th structure map qk of W is also injective, surjective, or bijective, respectively.

A τ-moduleV is said to be decomposable if there exists nonzero τ-modulesW andU such that V∼=W⊕

U and is said to be indecomposable otherwise. The following important theorem says that every zigzag

module decomposes as a sum of indecomposable modules and characterizes the indecomposables as

the interval modules:

Theorem 3.1 (Krull-Remak-Schmidt, Gabriel [CS10],[Gab72]). For each n ∈ N and for every τ ∈ Tn , the

indecomposable τ-modules are precisely the interval τ-modules. Moreover, every V ∈ Modτ decomposes as

a direct sum of interval τ-modules. This decomposition is unique up to the order in which the summands

appear.

3.2 Persistence Diagrams

Fix an n ∈ N and a type τ ∈ Tn . By Theorem 3.1, every τ-module V ∈ Modτ has a decomposition of the

form

V∼= Iτ([b1,d1])⊕·· ·⊕ Iτ([bN ,dN ]), (2)

this decomposition being unique up to the ordering of the summands. We define the persistence diagram

of V to be the multiset

Dgm(V) := {{(bi ,di )∈N×N | 1 ≤ i ≤ N }},

whose elements are ordered pairs of endpoints defining the interval modules in the decomposition (2).

In particular, we always have the decomposition

V∼=
⊕

(b,d)∈Dgm(V)

Iτ([b,d ]). (3)

Persistence diagrams thus characterize zigzag modules. That is, for fixed type τ, a τ-module determines

and is determined up to isomorphism by its persistence diagram.

There is a simple relationship between the persistence diagram of a zigzag module and the persis-

tence diagram of any of its summands:

Proposition 3.2. Fix n ∈N and τ∈ Tn . If W,V ∈ Modτ with W¹V then Dgm(W) ⊆Dgm(V).

Proof. Since W¹V there exists U ∈ Modτ such that V∼=W⊕U. Using the decomposition (3), we have

V∼=

(
⊕

(b,d)∈Dgm(W)

I([b,d ])

)
⊕

(
⊕

(b,d)∈Dgm(U)

I([b,d ])

)
.

By the uniqueness statement of Theorem 3.1, Dgm(V) = Dgm(W)⊔Dgm(U) so that Dgm(W) ⊆ Dgm(V).

7



4 Type Transformations and Arrow Reversals

In this section we define several transformations of types, i.e. maps Tn → Tn , whose purposes are mainly

formal; they will serve to define the appropriate domains and codomains for the transformations of

zigzag modules defined in Section 5.

4.1 Sinks and Sources

Fix n ∈N and let τ ∈ Tn . A zigzag moduleV = (Vi , pi ) ∈ Modτ has a sink at index k ∈ {2, . . . ,n −1} if it has

the form

V= ·· · Vk−1 Vk Vk+1 · · · .
pk−2 pk−1 pk+1pk

In addition, we say thatV has a sink at index 1 or index n if the maps p1 or pn−1 are of the form V1
p1
←−V2

or Vn−1
pn−1
−→ Vn , respectively.

Similarly,V= (Vi , pi ) ∈ Modτ has a source at index k ∈ {2, . . . ,n −1} if it has the form

V= ·· · Vk−1 Vk Vk+1 · · · ,
pk−2 pk−1 pk pk+1

and has a source at index 1 or n if the maps p1 or pn are of the form V1
p1
−→V2 or Vn−1

pn−1
←−Vn , respectively.

Equivalently, a τ-module V has a sink at index k ∈ {1, . . . ,n} if none of the linear maps pi have domain

Vk , andV has a source at index k if none of the linear maps pi have codomain Vk .

Note that the property of having a sink or source at a given index depends only on the type of the

zigzag module in question; that is, if a τ-module V has a sink or source at index k ∈ {1, . . . ,n} then any

other τ-module will also have, respectively, a sink or source at index k . This leads to the following defi-

nitions:

Definition 4.1. We say a type τ∈ Tn has a sink or source at index k if any (and hence every) τ-module has,

respectively, a sink or source at index k. Otherwise, τ is said to have a flow at index k. If both the (k −1)st

and k th entries of τ are →, then τ is said to have a forward flow, and a flow which is not a forward flow is

called a backwards flow.

Caution 4.1. When we make mention of a type τ ∈ Tn as having a sink or source at index k ∈ {1, . . . ,n}, we

mean that any τ-module has a sink or source, respectively, at index k. The word “index" here does not refer

to the k th component of the sequence of arrows defining τ.

4.2 Type Transformations

Definition 4.2. Fix n ∈N. For each k ∈ {1, . . . ,n −1}, we define the k th reversal map

rk : Tn → Tn

which maps a type τ to a type rkτ whose k t h entry is obtained by reversing the k th entry of τ.

Example 4.1. Let n = 4 and τ= (→,←,→)∈ Tn . We have

r1τ= (←,←,→), r2τ= (→,→,→), r3τ= (→,←,←).

Definition 4.3. For fixed n and for each k ∈ {1, . . . ,n}, we define the k th extroversion map

σk : Tn → Tn

which maps a type τ to a type σkτ which is obtained by placing a source at index k in τ.

8



More precisely, for k ∈ {2, . . . ,n −1}, σkτ is obtained from τ by replacing the (k −1)st and k th entries

of τ by ← and →, respectively. The type σ1τ is obtained by replacing the 1st entry of τ by → and the type

σnτ is obtained by replacing the (n −1)st entry of τ by ←. Similarly, we make the following:

Definition 4.4. For fixed n and for each k ∈ {1, . . . ,n}, we define the k th introversion map

ζk : Tn → Tn

which maps a type τ to the type ζkτ which is obtained by placing a sink at index k in τ.

Example 4.2. Let n = 4 and τ= (→,→,←)∈ Tn . Then we have

σ1τ= τ= (→,→,←)

σ3τ= (→,←,→)

σ2τ= (←,→,←)

σ4τ= τ= (→,→,←).

and
ζ1τ= (←,→,←)

ζ3τ= τ= (→,→,←)

ζ2τ= (→,←,←)

ζ4τ= (→,→,→).

4.3 Arrow Reversals

We wish to identify zigzag modules V,W ∈ n-Mod which differ only in the direction of arrows represent-

ing isomorphisms. For example, the zigzag modules

0 F F 0
0 id 0

and 0 F F 0
0 id 0

contain the same information and we wish to regard them as equivalent. The goal of this section is to

establish notation for dealing with zigzag modules which are to be regarded as equivalent in this way.

Definition 4.5. Fix τ∈ Tn . For each k ∈ {1, . . . ,n −1} we define Modiso,k
τ ⊂ Modτ by setting

Modiso,k
τ := {V= (Vi , pi ) | pk is an isomorphism}.

Recall the type reversal map rk : Tn → Tn of Definition 4.2 which reverses the k th arrow of a given τ ∈ Tn .

We define a map

Ak : Modiso,k
τ → Modiso,k

rkτ

by setting Ak (V) = (Vi , qi )∈ Modrkτ, where qi = pi for i 6= k and qk = p−1
k

.

Remarks 4.1.

1. If Vi
p

−→ V j is an isomorphism appearing in V, and V j
q

←→ Vk is an adjacent arrow, then we have

the following isomorphisms of zigzag modules:

· · · Vi V j Vk · · ·

· · · Vi Vi Vk · · ·

p

id

q

p−1 id

id α

where α = qp if V j
q

−→ Vk and α = p−1q if V j
q

←− Vk (and all vertical maps not appearing are

identities). Thus it is safe to assume without loss of generality that all structure maps which are

isomorphisms are in fact identities, in which case Ak (V) is obtained by changing the type of V from

τ to rkτ but leaving all of the vector spaces Vi and linear maps pi unchanged.
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2. Note that Ak ◦Ak = idModiso,k
τ

since reversing the direction of an isomorphism twice leaves the zigzag

module unchanged.

We make the following observations about arrow reversals:

Proposition 4.1. Let τ ∈ Tn and suppose that V ∈ Modiso,i
τ for some i ∈ {1, . . . ,n −1}.

(1) If V∼=W then W ∈ Modiso,i
τ and Ai (V) ∼=Ai (W),

(2) If W ∈ Modiso,i
τ then V⊕W ∈ Modiso,i

τ and Ai (V⊕W) =Ai (V)⊕Ai (W),

(3) If W¹V then W ∈ Modiso,i
τ and Ai (W) ¹Ai (V),

(4) If V ∈ Modiso,i
τ ∩Mod

iso, j
τ for some j ∈ {1, . . . ,n −1} then AiA j (V) =A jAi (V).

Proof. (1) That W ∈ Modiso,i
τ is immediate from the commutativity relations imposed on the components

of a τ-module isomorphism. Moreover, it is easily verified that the components of any isomorphism

φ : V→W of τ-modules will also serve as the components of an isomorphism of riτ-modules between

Ai (V) and Ai (W).

(2) This follows immediately after noticing that (pi ⊕qi )−1 = p−1
i

⊕q−1
i

, where pi and qi denote the

i th structure maps of V and W, respectively.

(3) If W¹V ∈ Modiso,i
τ then the i th structure map of V is an isomorphism so that, by Proposition 3.1,

the i th structure map of W is an isomorphism as well and hence W ∈ Modiso,i
τ . Now if U ∈ Modτ is such

that V∼=W⊕U then by parts (1) and (2), we have

Ai (V) ∼=Ai (W⊕U) =Ai (W)⊕Ai (U),

and thus Ai (W) ¹Ai (V).

(4) If i = j then the result follows immediately. If i 6= j , then the result follows by noting that Ai

and A j operate on different linear maps pi and p j , so that the order in which they are applied does not

matter.

4.4 Equivalence of Zigzag Modules

We now define an equivalence relation on n-Mod, formalizing our discussion at the beginning of the

previous section. For V,W ∈ n-Mod we writeV∼W if and only if either V∼=W or there is a finite sequence

k1, . . . ,k j of indices in {1, . . . ,n −1} such that

W∼=Ak j
Ak j−1

· · ·Ak1
(V).

In words, V ∼W if W can be obtained, up to isomorphism, from V by reversing some (possibly empty)

set of arrows representing isomorphisms. Reflexivity of the relation ∼ is clear, while symmetry follows

from Remark 4.1 (2) and transitivity from Proposition 4.1 (1). Thus ∼ does indeed define an equivalence

relation on the isomorphism classes of n-Mod.

Remark 4.1. Note that Oτ ∼ Oτ′ for any types τ,τ′ ∈ Tn . Hence, in what follows we drop the subscript

indicating type and denote the zero module of any type by O.

The proof of the next proposition is sketched out by Oudot in [Oud15]; we give the full details here:

Proposition 4.2 ([Oud15]). Let V,W ∈ n-Mod. If V∼W then

Dgm(V) = Dgm(W).
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Proof. Let τ= type(V) and write V∼=
⊕

(b,d)∈Dgm(V) Iτ([b,d ]). Since V ∼W, there is a sequence of indices

k1,k2, . . . ,k j ∈ {1, . . . ,n −1} such that

W∼=Ak j
Ak j−1

· · ·Ak1
(V).

Let τ′ = rk j
rk j−1

· · ·rk1
τ so that type(W) = τ′ and consider the zigzag module U ∈ Modτ′ defined by

U :=
⊕

(b,d)∈Dgm(V)

Iτ′([b,d ]).

By definition of U, we have Dgm(U) = Dgm(V). We claim that U∼=W. To see this, notice that if Vi
p

−→ V j

is a structure map of V with p being an isomorphism and i , j being consecutive integers in {1, . . . ,n}, and

if d := dim(Vi ) =dim(V j ), then there is an isomorphism ψ : Vi →
⊕d

m=1F so that the diagram

Vi V j

⊕d
m=1F

⊕d
m=1F

p

ψ ψ◦p−1

id

commutes. The above diagram commutes if and only if the diagram

Vi V j

⊕d
m=1F

⊕d
m=1F

ψ

p−1

ψ◦p−1

id

commutes. Applying this principle to every square at which an arrow reversal is applied, we see that

U∼=W. Hence Dgm(V) = Dgm(U) = Dgm(W) by Theorem 3.1.

Definition 4.6. We define a relation - on n-Mod by declaring W- V if and only if there exists a zigzag

module W′ ∈ n-Mod with W∼W
′ and W

′ ¹V.

In words, W - V if we can obtain a summand of V by reversing any number of the arrows of W

representing isomorphisms.

Proposition 4.3. - is a preorder on n-Mod. Moreover, V ∼W if and only if W- V and V-W so that -

induces a partial order on n-Mod/ ∼.

Proof. Since V ∼ V and V ¹ V, we have V- V. If V1 - V2 and V2 - V3 then there are zigzag modules

W1 and W2 such that V1 ∼W1 ¹V2 and V2 ∼W2 ¹V3. That is, there are compositions of arrow reversals

A and B such that A(V1) ∼=W1 ¹V2 and B(V2) ∼=W2 ¹V3. Then by Proposition 4.1 parts (1) and (3), we

have BA(V1)¹B(V2) ∼=W2 ¹V3 so that V1 -V3. This shows that - is a preorder.

Now if V ∼ W then V ∼ W ¹ W and W ∼ V ¹ V so that W - V and V - W. Conversely, if W - V

and V - W then there exists zigzag modules W
′ ¹ W and V

′ ¹ V such that W ∼ V
′ and V ∼ W

′. Let

U1,U2 ∈ n-Mod be such that

V∼=V
′⊕U1 and W∼=W

′⊕U2.

Since W ∼ V
′, there is a composition of arrow reversals A such that A(W) ∼= V

′, and similarly there is a

composition of arrow reversals B such that B(V) ∼=W
′. Hence W∼=W

′⊕U2
∼=B(V)⊕U2. Then we have

V
′ ∼=A(W) ∼=A(B(V)⊕U2)

=A(B(V))⊕A(U2) ∼=A(B(V′⊕U1))⊕A(U2)

=A(B(V′))⊕A(B(U1))⊕A(U2).

11



Using the above isomorphisms together with Propositions 3.2 and 4.2, we have

Dgm(V′) = Dgm(A(B(V′))⊕A(B(U1))⊕A(U2))

= Dgm(A(B(V′)))⊔Dgm(A(B(U1)))⊔Dgm(A(U2)))

= Dgm(V′)⊔Dgm(U1)⊔Dgm(U2)

so that Dgm(U1) =;= Dgm(U2). Hence U1 ∼ O∼U2 so that in fact

V∼=V
′ and W∼=W

′.

Thus V∼W, completing the proof.

5 Reflection Functors

In this section, we define reflection functors, first introduced by Bernstein, Gelfand, and Ponomarev in

[BGP73] as a tool for proving Gabriel’s Theorem. Reflection functors were more recently applied to zigzag

persistence by Kalisnik in [Kal13] to give an alternative proof of Carlsson and de Silva’s Diamond Principle

[CS10].

In the language of category theory, reflection functors send a diagram in the category of vector spaces

to a new diagram in that same category, obtained by replacing particular subdiagrams by universal cones

or cocones. We refer to the reader to Appendix A1 for a review of the necessary categorical notions.

5.1 Reflections on Zigzags

Suppose that V= (Vi , pi ) ∈ Modτ for some τ ∈ Tn . For k ∈ {2, . . . ,n −1}, we isolate the subdiagram

Vk−1 Vk Vk+1.
pk−1 pk

(4)

We compute the limit (Lk ,λ j ) of the extracted diagram and then consider the new diagram

Vk−1 Lk Vk+1,
λk−1 λk

(5)

and then define Lk (V) ∈ Modσkτ to be the zigzag module obtained by replacing the appearance of the

subdiagram (4) in V by diagram (5). That is, a map

Lk : Modτ → Modσkτ

is specified by the following diamond diagram relating V and Lk (V):

V=

Lk (V) :=

Vk

V1 · · · Vk−1 Vk+1 · · · Vn

Lk

p1 pk−2

pk−1

pk+1

pk

pn−1

λk−1 λk

Similarly, if (Ck ,γ j ) is the colimit of diagram (4), then we consider the new diagram

Vk−1 Ck Vk+1.
γk−1 γk

(6)

12



and define Ck (V) ∈ Modζkτ to be the zigzag module obtained by replacing the appearance of the subdia-

gram (4) in V by diagram (6). Thus, we have a map

Ck : Modτ → Modζkτ

for which V and Ck (V) are related by the diamond diagram

V=

Ck (V) :=

Vk

V1 · · · Vk−1 Vk+1 · · · Vn

Ck

p1 pk−2

pk−1

pk+1

pk

pn−1

γk−1 γk

In order to define reflections at indices 1 and n, we consider the diagrams

0 V1 V2
0 p1

and Vn−1 Vn 0
pn−1 0

and their limits or colimits. These reflections thus depend on the choice of direction for the zero map.

We wish to allow the flexibility of choosing the direction of this map each time a reflection is applied at

index 1 or n. Thus, we define reflections L→
1 and L←

1 obtained by replacing V1 and p1 with the limit of

the diagram

0 V1 V2
0 p1

or 0 V1 V2
0 p1

respectively. The maps L→
n , L←

n , C→
1 , C←

1 , C→
n , and C←

n are all defined analogously.

For each k ∈ {2, . . . ,n −1}, we let Rk denote an unspecified choice of Lk or Ck . Similarly R1 denotes

an unspecified choice of L→
1 , L←

1 , C→
1 , or C←

1 and Rn denotes an unspecified choice of L→
n , L←

n , C→
n , or

C←
n .

5.2 Functoriality of Reflections

Let V,W ∈ Modτ and let φ : V → W be a morphism of τ-modules. Denote the limits of the diagrams

Vk−1
pk−1
←→Vk

pk
←→Vk+1 and Wk−1

qk−1
←→Wk

qk
←→Wk+1 by (LV

k
,λV

j
) and (LW

k
,λW

j
), respectively. Then we have

the following commutative diagram:

LV
k

LW

Vk−1 Vk Vk+1

Wk−1 Wk Wk+1

λV
1 λV

2
λV

3

∃!µ

λW
3

φk−1

pk−1 pk

φk φk+1

qk−1

λW
1

qk

From this diagram, we see that (LV
k

,γV
j

) is a cone over Wk−1
qk−1
←→Wk

qk
←→Wk+1 so that by the universality

of LW
k

, there exists a unique linear transformation µ : LV
k
→ LW

k
making the diagram commute. We then

define ψ = Lk (φ) : Lk (V) → Lk (W) by setting ψ j = φ j for all j 6= k and φk := µ. The fact that ψ is a

well-defined morphism follows from the commutativity of the boldened portion of the diagram above.

Appealing to duality, we similarly obtain a morphism Ck (φ) : Ck (V) → Ck (W).
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Definition 5.1. For each k ∈ {1, . . . ,n} and for each τ ∈ Tn , the above definitions make Lk into a functor

from Modτ to Modσkτ, which we call the extroversion reflection functor at index k. Similarly, Ck is a

functor from Modτ to Modζkτ, which we call the introversion reflection functor at index k.

Remark 5.1. When a zigzag module V has a sink at index k, i.e., when V has the form

V= ·· · Vk−1 Vk Vk+1 · · · .
pk−2 pk−1 pk+1pk

then, up to isomorphism, Lk (V) is the same as the zigzag module obtained by applying the sink reflection

functor of [BGP73] to V. Dually, when V has as source at index k then the zigzag module obtained by

applying Ck to V is isomorphic to that obtained by applying the source reflection functor.

5.3 Properties of Reflection Functors

A number of the results below hold for categorical reasons, and we will rely on several high-level results

for their proofs. Statements and proofs of these general categorical results are contained in Appendix A1.

We will denote by vectF the category of finite-dimensional vector spaces over the field F.

Proposition 5.1. Fix k ∈ {1, . . . ,n}, let τ ∈ Tn , and let V,W ∈ Modτ. If W≤V then Rk (W) ≤Rk (V). Further-

more, if V∼=W then Rk (V) ∼=Rk (W).

Proof. If W ≤ V then there exists a monomorphism j : W ,→V. By functoriality of Rk we obtain a mor-

phism Rk ( j ) : Rk (W) → Rk (V). Theorem A1.1 of the appendix implies that all of the components of

Rk ( j ) are monomorphisms in vectF, i.e., are injective. Thus Rk ( j ) is a monomorphism from Rk (W) to

Rk (V) so thatRk (W) ≤Rk (V). The second statement follows from the fact that V∼=W if and only if W≤V

and V≤W.

Proposition 5.2. Fix k ∈ {1, . . . ,n}, let τ ∈ Tn , and let V,W ∈ Modτ. Then Rk (V⊕W) ∼=Rk (V)⊕Rk (W). This

statement generalizes to the sum of any finite number of τ-modules.

Proof. Viewing zigzag modules as diagrams in vectF, the result follows from Theorem A1.2. The result

extends to arbitrary finite sums by induction.

Corollary 5.1. Fix k ∈ {1, . . . ,n}, let τ ∈ Tn , and let V, W ∈ Modτ. If W¹V then Rk (W) ¹Rk (V).

Proof. If W¹V then V∼=W⊕U for some U ∈ Modτ so that by Propositions 5.1 and 5.2,

Rk (V) ∼=Rk (W⊕U) ∼=Rk (W)⊕Rk (U)

and hence Rk (W)¹Rk (V).

Corollary 5.2. Fix k ∈ {1, . . . ,n}, let τ ∈ Tn , and let V, W ∈ n-Mod. If W-V then Rk (W)-Rk (V).

Proof. If W - V then W ∼ W
′ ¹ V for some W

′. Now note that that if W ∼ W
′ then Rk (W) ∼ Rk (W′).

This follows from the fact that limits and colimits of diagrams are unaltered if any number of arrows

representing isomorphisms are reversed. From this fact and Corollary 5.1, we have

Rk (W) ∼Rk (W′) ¹Rk (V),

and hence Rk (W)-Rk (V).
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Theorem 5.1. Fix k ∈ {1, . . . ,n}, let τ ∈ Tn , and let V ∈ Modτ. Then we have

Rk (V) ∼=
⊕

(b,d)∈Dgm(V)

Rk (Iτ([b,d ])).

Proof. Write V∼=
⊕

(b,d)∈Dgm(V) Iτ([b,d ]). Using Propositions 5.1 and 5.2, we have

Rk (V) ∼=Rk

(
⊕

(b,d)∈Dgm(V)

Iτ([b,d ])

)
∼=

⊕

(b,d)∈Dgm(V)

Rk (Iτ([b,d ])).

Theorem 5.1 together with the following theorems describe exactly how reflections of zigzag modules

effect their persistence diagrams:

Theorem 5.2 (The Diamond Principle Part I, [BGP73],[CS10],[Kal13]). Let k ∈ {2, . . . ,n −1} and let τ ∈ Tn

have a sink at index k so that σkτ has a source at index k. Then the reflection functors Lk and Ck induce

mutually inverse bijections between the isomorphism classes of interval τ-modules and the isomorphism

classes of intervalσkτ-modules, with the exception of the simple interval modules Iτ([k ,k]) and Iσkτ([k ,k])

which are annihilated by these functors.2 These functors act on the (isomorphism classes of) interval mod-

ules as follows:

Iτ([k ,k]) −→ O

O ←− Iσkτ([k ,k])

Iτ([b,k −1]) ←→ Iσkτ([b,k]) for b ≤ k −1

Iτ([b,k]) ←→ Iσkτ([b,k −1]) for b ≤ k −1

Iτ([k +1,d ]) ←→ Iσkτ([k ,d ]) for d ≥ k +1

Iτ([k ,d ]) ←→ Iσkτ([k +1,d ]) for d ≥ k +1

Iτ([b,d ]) ←→ Iσkτ([b,d ]) otherwise.

For k = 1, we have that L→
1 and C←

1 are mutually inverse except on the simple interval modules Iτ([1,1])

and Iσ1τ([1,1]):

Iτ([1,1]) −→ O

O ←− Iσ1τ([1,1])

Iτ([1,d ]) ←→ Iσ1τ([2,d ]) for d ≥ 2

Iτ([2,d ]) ←→ Iσ1τ([1,d ]) for d ≥ 2

and for k = n, we have that L←
n and C→

n are mutually inverse except on the simple interval modules

Iτ([n,n]) and Iσ1τ([n,n]):

Iτ([n,n]) −→ O

O ←− Iσnτ([n,n])

Iτ([b,n]) ←→ Iσnτ([b,n −1]) for b ≤n −1.

Iτ([b,n −1]) ←→ Iσnτ([b,n]) for b ≤n −1.

In the above, arrows pointing from left to right denote the effect of applying Lk (or L←
k

,L→
k

) while arrow

pointing from right to left denote the effect of applying Ck (or C←
k

,C→
k

).

A statement completely analogous to Theorem 5.2 holds in the case that τ has a source at index k ,

with the roles of Lk and Ck reversed, L→
1 , C←

1 , L←
n , C→

n replaced with C←
1 , L→

1 , C→
n , L←

n respectively, and

with σ begin replaced with ζ, but with the actions on interval modules being otherwise identical.

2We warn the reader that while we are referring to isomorphism classes of interval τ modules, in order to keep our notation

simple, we will use the notation Iτ([b,d]) instead of the more correct notation [Iτ([b,d])].
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m Rk

Figure 1: Left: Points in the diagram of a zigzag module V move according to the arrows when the reflec-

tion functors Lk or Ck are applied to diagrams with sinks or sources, respectively, at index k . The point

(k ,k) corresponding to the simple summand I([k ,k]) is killed. Right: An analogous picture for barcodes.

Example 5.1. Let n = 4, let τ= (→,←,→)∈ Tn , and let V be the τ-module

V= Iτ([1,4])⊕ Iτ([1,2])⊕ Iτ([2,3])⊕ Iτ([2,3])⊕ Iτ([3,3])

Evidently, τ has a sink at index 2. Applying L2 and using Theorems 5.1 and 5.2, we have

L2(V) ∼= Iσ2τ([1,4])⊕ Iσ2τ([1,1])⊕ Iσ2τ([3,3])3.

Similarly, we see that τ has a source at index 3, and

C3(V) ∼= Iζ3τ([1,4])⊕ Iζ3τ([1,2])⊕ Iζ3τ([2,2])2.

The following theorem is the analogue of Theorem 5.2 for interval modules having a flow, i.e. neither

a sink or a source, at the index to which a reflection functor is applied:

Theorem 5.3 (The Diamond Principle Part II). Let k ∈ {2, . . . ,n −1} and let τ ∈ Tn have a forward flow at

index k.

(1.) The extroversion functor Lk acts as follows on the interval τ-modules:

Iτ([k ,k])
Lk
−→ O

Iτ([b,k −1]) −→ Iσkτ([b,k]) for b ≤ k −1

Iτ([k ,d ]) −→ Iσkτ([k +1,d ]) for d ≥ k +1

Iτ([b,d ]) −→ Iσkτ([b,d ]) otherwise.

(2.) The introversion functor Ck acts as follows on the interval τ-modules:

Iτ([k ,k])
Ck
−→ O

Iτ([b,k]) −→ Iξkτ([b,k −1]) for b ≤ k −1

Iτ([k +1,d ]) −→ Iξkτ([k ,d ]) for d ≥ k +1

Iτ([b,d ]) −→ Iξkτ([b,d ]) otherwise.

Proof. The proof is just a straightforward verification of the universal properties of limits and colimits.

We omit the details.
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k
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Lk

k

k

Ck

Figure 2: Points in the persistence diagram of a zigzag module V with a forward flow at index k move

according to the arrows when the extroversion functor Lk (left) or introversion functor Ck (right) are

applied. The point (k ,k) corresponding to the simple summand I([k ,k]) is annihilated by both of these

functors.

The same computations can be made for reflections applied to the indices with backwards flows or

to the indices 1 or n, though these details are not so important for us. The upshot of Theorems 5.2 and

5.3 is that points in the diagram of zigzag module move at furthest horizontally or vertically to adjacent

nodes on the integer lattice (see Figures 1 and 2).

5.4 Removing Simple Summands

In the next section we define the reflection distance. In order to avoid having the distance between a

simple summand and the zero zigzag module be nonzero, we introduce a map sending a zigzag module

V to a zigzag module V
′ obtained from V by removing simple summands.

We define the map S : n-Mod → n-Mod as follows: given a zigzag module V with interval decompo-

sition V=
⊕

[b,d]∈Dgm(V) I([b,d ]), we define

S(V) :=
⊕

[b,d]∈Dgm(V)
b 6=d

I([b,d ]).

That is, S(V) is obtained from V by removing simple summands. If V is a direct sum of simple modules,

then we set S(V) := O. We also set S(O) := O. By definition, S sends zigzag modules of type τ to zigzag

modules of type τ so that S restricts to a map S : Modτ → Modτ for each type τ.

Remarks 5.1. (1) If V = V1 ⊕V2 where V1 is a direct sum of simple modules and V2 has no simple

summands, then S(V) =V2.

(2) By definition,S(V) ¹V and hence S(V) -V for any zigzag module V.

(3) S(S(V)) =S(V) for all zigzag modules V.

(4) Dgm(S(V)) = {{(b,d ) ∈ Dgm(V) | b 6= d }}. That is, the diagram of S(V) is that of V minus the points

on the diagonal.

We also have the following analogues of Corollaries 5.1 and 5.2:

Proposition 5.3. Fix k ∈ {1, . . . ,n}, let τ∈ Tn , and let V, W ∈ Modτ. If W¹V then S(W) ¹S(V).
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Proof. If W¹V then V∼=W⊕U for some U ∈ Modτ. Write

W=W1 ⊕W2 and U=U1 ⊕U2,

where W1,U1 are direct sums of simple modules and W2,U2 have no simple summands. By Remark 5.1,

S(W) =W2 and S(U) =U2. Moreover V∼= (W1⊕U1)⊕(W2⊕U2), with W1⊕U1 being a direct sum of simple

modules and W2 ⊕U2 having no simple summands. Then again by Remark 5.1,

S(V) ∼=W2 ⊕U2 =S(W)⊕S(U),

and hence S(W) ¹S(V).

Proposition 5.4. Fix k ∈ {1, . . . ,n}, let τ∈ Tn , and let V, W ∈ n-Mod. If W-V then S(W)-S(V).

Proof. If W - V then W ∼ W
′ ¹ V for some W

′. Now note that that if W ∼ W
′ then S(W) ∼ S(W′). This

is because if an arrow representing an isomorphism is reversed, then the source and target of this arrow

cannot be an index at which a simple summand appears. From this fact and Corollary 5.3, we have

S(W)∼S(W′) ¹S(V),

and hence S(W)-S(V).

Definition 5.2. Define an equivalence relation ∼S on n-Mod by

V∼S W ⇐⇒ S(V) -W and S(W)-V.

Reflexivity of ∼S follows from the fact that S(V) -V and symmetry is immediate from the definition. To

see that ∼S is transitive, suppose that V∼S W and W∼S U. Then

S(V) -W, S(W)-V, S(W)-U, and S(U)-W.

Using Proposition 5.4 together with the fact that S(S(V)) =S(V) for all zigzag modules V, we have

S(V) =S(S(V)) -S(W)-U and S(U) =S(S(U)) -S(W)-V.

By transitivity of the preorder -, we have S(V) -U and S(U) -V so that V ∼S U. Thus ∼S is indeed an

equivalence relation on n-Mod.

6 The Reflection Distance

Let R = (Rkℓ
,Rkℓ−1

, · · · ,Rk1
) be a sequence of ℓ reflection functors with 1 ≤ ki ≤ n for all i . For V ∈

n-Mod, we denote by R(V) the zigzag module

(S ◦Rkℓ
◦S ◦Rkℓ−1

◦ · · · ◦S ◦Rk1
◦S)(V),

where S is the map defined in Section 5.4. That is, R(V) is obtained from V by first removing simple

summands from V, applying the reflection Rk1
, removing simple summands from the resulting zigzag

module, and so on. We also set ε(V) :=S(V), where ε denotes the empty sequence.

For each p ∈ [1,∞) define the p-cost of a nonempty sequence R of length ℓ by

Cp (R) := ℓ1/p

and define Cp (ε) = 0.
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Definition 6.1. For each p ∈ [1,∞), we define a function d
p

R
: n-Mod×n-Mod →R by setting

d
p

R
(V,W) := min

(R,R′)

{
max{Cp (R),Cp (R′)} |R(V)-W and R

′(W)-V
}

,

where the minimum is taken over all pairs (R,R′) of sequences of reflection functors.

Given two sequences R= (Rkℓ
,Rkℓ−1

, . . . ,Rk1
), R′ = (Rm j

,Rm j−1
, . . . ,Rm1

) of reflection functors, de-

note by R′ ◦R the concatenation (Rm j
, . . . ,Rm1

,Rkℓ
, . . . ,Rk1

).

Fact 6.1. For any p ∈ [1,∞) we have Cp (R′ ◦R) ≤Cp (R)+Cp (R′).

Proof. This follows from the inequality (a +b)1/p ≤ a1/p +b1/p for all nonnegative integers a,b.

We will say that a sequence R of reflection functors annihilates a summand W of V if R(W) = O. Note

that if V=W⊕U and R annihilates W then R(V) ∼=R(U).

Proposition 6.1. For any V ∈ n-Mod there exists a sequence of reflection functors R which annihilates V,

i.e., R(V) = O.

Proof. Let τ= type(V). It suffices to show that for any interval module Iτ([b,d ]), there is a composition of

reflections R such that R(Iτ([b,d ])) = O. For if this is the case then we can iteratively annihilate interval

summands of V until we arrive at O.

We demonstrate that this can be done as follows: the interval τ-module Iτ([b,d ]) has either a sink,

source, or flow at index d . In any case, Theorems 5.2 and 5.3 guarantee that we can choose a reflection

functor Rd at index d such that Rd (I([b,d ])) is an interval module supported over [b,d −1]. In this way,

we obtain a sequenceR1 = (Rb ,Rb+1, · · · ,Rd−1,Rd ) such thatR1(Iτ([b,d ]))= O. Applying this procedure

again to an interval summand ofR1(V) yields a sequenceR2 of reflection functors which annihilates this

summand. Since V ∈ n-Mod has only finitely many summands, and since applying a reflection functor

to a zigzag module can only reduce the number of summands, we obtain a sequence (R1, . . . ,Rm) of

sequences of reflection functors, where m ≤ |Dgm(V)|, for which the concatenation R = Rm ◦ · · · ◦R1

satisfies R(V) = O.

Remark 6.1. By Theorems 5.2 and 5.3, it is clear that it takes exactly d −b reflections to annihilate an

interval module supported over [b,d ]. It follows that d
p

R
(I([b,d ]),O) = (d−b)1/p . Moreover, if |Dgm(V)| =K

for V ∈ n-Mod then d
p

R
(V,O) ≤ K n. This follows since we can iteratively annihilate each of the K interval

summands of V with at most n reflections.

Theorem 6.1. For each n ∈N and for all p ∈ [1,∞), the function d
p

R
is a pseudometric on n-Mod. Moreover,

d
p

R
(V,W) = 0 if and only if V∼S W so that d

p

R
induces a metric on n-Mod/∼S .

Proof. It follows from Remark 6.1 that d
p

R
(V,W) is finite for all V,W ∈ n-Mod. The facts that d

p

R
is a non-

negative and symmetric function follow immediately. Since ǫ(V) =S(V)-V we have d
p

R
(V,V) = 0 for all

V ∈ n-Mod.

Next, we verify the triangle inequality. Fix p ∈ [1,∞) and let V1, V2, V3 ∈ n-Mod. Then there exist

sequences of reflections R1,R2 such that

R1(V1)-V2, R2(V2)-V1 with Cp (R1)≤ d
p

R
(V1,V2), Cp (R2) ≤ d

p

R
(V1,V2).

Similarly, there exist sequences of reflections R′
1,R′

2 such that

R
′
1(V2)-V3, R

′
2(V3)-V2 with Cp (R′

1)≤ d
p

R
(V2,V3), Cp (R′

2) ≤ d
p

R
(V2,V3).
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Then by Corollary 5.2 and Proposition 5.4, R′
1 ◦R1(V1) -R

′
1(V2) -V3 and R2 ◦R

′
2(V3) -R2(V2) -V1.

By transitivity of the preorder -, we have

R
′
1 ◦R1(V1)-V3 and R2 ◦R

′
2(V3)-V1. (7)

By Fact 6.1, Cp (R′
1 ◦R1) ≤Cp (R′

1)+Cp (R1) and Cp (R2 ◦R
′
2) ≤Cp (R2)+Cp (R′

2) so that

Cp (R′
1 ◦R1) ≤ d

p

R
(V1,V2)+d

p

R
(V2,V3) and Cp (R2 ◦R

′
2) ≤ d

p

R
(V1,V2)+d

p

R
(V2,V3). (8)

Equations (7) and (8) together imply

d
p

R
(V1,V3) ≤ d

p

R
(V1,V2)+d

p

R
(V2,V3).

Now if V ∼S W then ǫ(V) = S(V) - W and ǫ(W) = S(W) - V so that d
p

R
(V,W) = 0. Conversely, if

V 6∼S W then either S(V) 6-W or S(W) 6- V. In any case, we must apply some non-trivial reflection to

either V or W, incurring a nonzero cost so that d
p

R
(V,W) > 0. It follows that if V∼S V

′ and W∼S W
′ then

d
p

R
(V,W) = d

p

R
(V′,W′) so that d

p

R
induces a well-defined metric on the equivalence classes of n-Mod

under ∼S .

Corollary 6.1. If V ∈ n-Mod is a direct sum of simple modules then d
p

R
(V,O) = 0.

Proof. We have S(V) = O - O and S(O) = O - V so that V ∼S O and hence d
p

R
(V,O) = 0 by the second

statement of Theorem 6.1.

7 The ℓp-Bottleneck Distance and the Proof of the Main Theorem

In this section we define a family of metrics on the space of persistence diagrams which we call the ℓp -

bottleneck distances. We show that the map which takes a zigzag module to its persistence diagram is

1-Lipschitz with respect to the 1-reflection distance and the ℓ1-bottleneck distance.

7.1 Matchings

Let S and T be sets. A matching between S and T is a relation M ⊆ S ×T such that

(1) For any s ∈ S, there is at most one t ∈ T such that (s, t )∈ M ,

(2) For any t ∈ T , there is a most one s ∈ S such that (s, t )∈ M .

We denote a matching by M : S 9 T . Equivalently, a matching is a bijection M : S ′→ T ′ for some subsets

S ′ ⊆ S and T ′ ⊆ T . From this point of view, S ′ is called the coimage of M , denoted S ′ = coim(M ), and T ′

is called the image of M , denoted T ′ = im(M ). A matching M is said to be finite if |coim(M )| = |im(M )| is

finite. If (s, t )∈ M then s and t are said to be matched. Points in S ⊔T which are not matched are said to

be unmatched.

The following classical theorem from matching theory is crucial to our proof of stability:

Lemma 7.1 (Matching Lemma, [Ore62]). Let S and T be sets and let f : S 9 T and g : T 9 S be matchings.

Then there exists a matching M : S 9 T such that

(1) coim( f )⊆ coim(M ),

(2) coim(g ) ⊆ im(M ),

(3) if M (s)= t then either f (s) = t or g (t ) = s.

The Matching Lemma holds for arbitrary matchings but, for our purposes, we will only use the Match-

ing Lemma in the case of finite matchings. A proof of the Matching Lemma 7.1 for the case of finite

matchings is provided in Appendix A2.
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7.2 The ℓp -Bottleneck Distance

Let S and T be multisets of points from R
2 and let M : S 9 T be a matching. For each p ∈ [1,∞] define

cp (M ) :=max

{
max

(s,t )∈M
‖s − t‖p , max

r∈S⊔T unmatched

|r y − rx |

21−1/p

}
, (9)

where rx and r y denote the x and y coordinates, respectively, of the point r ∈R
2, and where ‖·‖p : R2 →R

denotes the usual ℓp -norm on R
2. Here we use the convention 1/∞= 0. We then define the ℓp-bottleneck

distance between S and T by

d
p

b
(S,T ) := inf

M :S9T
cp (M ),

where the infimum is taken over all matchings between S and T .

Remark 7.1. The bottleneck distance (as defined in [BL14]) is just a special case of the ℓp -bottleneck dis-

tance when p =∞. It is simply the limit of d
p

b
as p →∞. Since ‖x‖∞ ≤ ‖x‖1 ≤ 2‖x‖∞ for all x ∈R

2, we see

that d∞
b

(S,T )≤ d 1
b

(S,T )≤ 2d∞
b

(S,T ) for all multisets S and T .

Given a multisubset S of points in R
2, and given p ∈ [1,∞] and η> 0, we define

S
η
p :=

{{
s ∈ S

∣∣∣
|sy − sx |

21−1/p
> η

}}
.

Lemma 7.2. Fix p ∈ [1,∞], let S and T be multisubsets of points in R
2, and let M : S 9 T be a matching

such that

(1) S
η
p ⊆ coim(M ),

(2) T
η
p ⊆ im(M ),

(3) if M (s)= t then ‖s − t‖p ≤ η.

Then cp (M ) ≤ η.

Proof. Condition (3) guarantees that max(s,t )∈M ‖s− t‖p ≤ η. If r ∈ S⊔T is unmatched then r 6∈ S
η
p ⊔T

η
p so

that
|ry−rx |

21−1/p ≤ η. That cp (M ) ≤ η now follows from equation (9).

7.3 Stability of Persistence Diagrams with Respect to d 1
R

In this section, we show that the ℓ1-bottleneck distance between the persistence diagrams of two given

zigzag modules is bounded above by the 1-reflection distance between the zigzag modules themselves.

Lemma 7.3. Let τ ∈ Tn and V ∈ Modτ. If R(V) = O then

C1(R) ≥ max
(b,d)∈Dgm(V)

(d −b).

Moreover, if R(I([b,d ])) = I([b′,d ′]) then

C1(R) ≥ |d ′−d |+ |b′−b|.
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Proof. By Theorem 5.1 we have

O=R(V) =R

(
⊕

(b,d)∈Dgm(V)

Iτ([b,d ])

)
∼=

⊕

(b,d)∈Dgm(V)

R(Iτ([b,d ]))

so that R(Iτ([b,d ])) = O for all (b,d ) ∈ Dgm(V). Hence C1(R) ≥ d −b for all (b,d ) ∈ Dgm(V), proving the

first claim.

To prove the second claim, suppose that R is a sequence of m reflections so that C1(R) = m. By

Theorems 5.2 and 5.3, any reflection moves points in corresponding diagram a distance of at most 1 in

the ℓ1 norm. Thus if R(I([b,d ])) = I([b′,d ′]) then (b′,d ′) lives in the m-ball of (b,d ) with respect to the ℓ1

norm. Hence

‖(b,d )− (b′,d ′)‖1 = |d ′−d |+ |b′−b| ≤m =C1(R).

We can now prove our main theorem.

Theorem 1.1 (Main Theorem). For all zigzag modules V,W ∈ n-Mod we have

d 1
b(Dgm(V),Dgm(W)) ≤ d 1

R
(V,W).

Proof. We show that for any pair of sequences of reflections (R1,R2) with R
1(V) -W and R

2(W) - V,

there is a matching M : Dgm(W)9Dgm(V) satisfying c1(M )≤ max{C1(R1),C1(R2)}.

Let η= max{C1(R1),C1(R2)}. Consider the multisubsets

V
η
1 = {{(b,d ) ∈ Dgm(V) | |d −b| > η}},

W
η
1 = {{(b′,d ′) ∈ Dgm(W) | |d ′−b′| > η}}

and

I = {{(b,d ) ∈ Dgm(V) |R1(I([b,d ])) 6= O}},

J = {{(b′,d ′) ∈ Dgm(W) |R2(I([b′,d ′])) 6= O}}.

Note that by Lemma 7.3, V
η
1 ⊆ I and W

η
1 ⊆J .

Letα1 : I → Dgm(R1(V)) andα2 :J → Dgm(R2(W)) be the injections given byαi (b,d )= (b′,d ′) if and

only if Ri (I[b,d ])= I[b′,d ′] for each i ∈ {1,2}. By Theorem 3.2 and Proposition 4.2, we have Dgm(R1(V)) ⊆

Dgm(W) and Dgm(R2(W)) ⊆ Dgm(V). Let j1 and j2 denote the respective inclusion maps. Then M1 :=

j1◦α1 : I → Dgm(W) and M2 := j2◦α2 :J → Dgm(V) are injective and hence can be viewed as matchings

M1 : Dgm(V) 9Dgm(W) and M2 : Dgm(W)9Dgm(V). Note that V
η
1 ⊆ coim(M1) and W

η
1 ⊆ coim(M2).

Let M : Dgm(V) 9Dgm(W) be the matching constructed from M1 and M2 provided by the Matching

Lemma 7.1. This matching has the following properties:

(1) coim(M1) ⊆ coim(M ),

(2) coim(M2) ⊆ im(M ),

(3) if M (b,d )= (b′,d ′) then either M1(b,d )= (b′,d ′) or M2(b,d )= (b′,d ′).

In particular, we haveV
η
1 ⊆ coim(M ) andW

η
1 ⊆ im(M ). Also, if M (b,d )= (b′,d ′) then eitherR1(I([b,d ])) =

I([b′,d ′]) or R2(I([b,d ])) = I([b′,d ′]). By Lemma 7.3, ‖(b,d )− (b′,d ′)‖1 ≤ max{C1(R1),C2(R2)} = η. Hence

by Lemma 7.2, c1(M )≤ η, completing the proof.

Since d∞
b

≤ d 1
b

, we have the following

Corollary 7.1. For any V,W ∈ n-Mod we have d∞
b

(Dgm(V),Dgm(W)) ≤ d 1
R

(V,W).
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7.4 Comparison with d 1
b

and the Bottleneck Distance

The next proposition shows that restricting the reflection distance to Modτ for a fixed type τ, we obtain

bi-Lipschitz equivalence of d 1
R

and d 1
b

. First, we need the following lemmas:

Lemma 7.4. Fix n ∈N. For V ∈ n-Mod we have d 1
R

(V,O)≤ n ·
(n

2

)
= n2(n +1)/2.

Proof. There are precisely
(n

k

)
intervals in {1, . . . ,n} corresponding to non-simple summands. Note that

any sequence of reflections which annihilates an interval summand of V annihilates all copies of this

summand. Since any interval summand of a zigzag module can be annihilated with no more than n

reflections, we have d 1
R

(V,O) ≤ n ·
(n

2

)
.

Lemma 7.5. Fix n ∈N and a type τ ∈ Tn . For V,W ∈ Modτ, if d 1
b

(Dgm(V),Dgm(W)) = 0 then dR(V,W) = 0.

Proof. It is not hard to see that if d 1
b

(Dgm(V),Dgm(W)) = 0 then

{{(b,d ) ∈ Dgm(V) | b 6= d }} = {{(b,d ) ∈ Dgm(W) | b 6= d }},

i.e. Dgm(V) and Dgm(W) have the same multisubsets of off-diagonal points. It follows that S(V) =S(W)

so that ǫ(V) =S(V) =S(W)-W and ǫ(W) =S(W)=S(V)-V. Hence d 1
R

(V,W) = 0.

Proposition 7.1 (Bi-Lipschitz Equivalence of d 1
R

and d 1
b

for fixed n). Fix n ∈N and a type τ ∈ Tn . For all

zigzag modules V,W ∈ Modτ we have

d 1
b(Dgm(V),Dgm(W)) ≤ d 1

R(V,W) ≤ n2(n +1) ·d 1
b (Dgm(V),Dgm(W)).

Proof. The first of these inequalities is the claim of Theorem 1.1. Now let η= d 1
R

(V,W). If η= 0 then the

second inequality holds trivially, so suppose that η > 0. By (the contrapositive of) Lemma 7.5, we have

d 1
b

(Dgm(V),Dgm(W)) ≥ 1. By Lemma 7.4 and the triangle inequality,

d 1
R(V,W) ≤ d 1

R(V,O)+d 1
R(W,O) ≤n2(n +1).

Thus d 1
R

(V,W) ≤n2(n +1) ≤ n2(n +1) ·d 1
b

(Dgm(V),Dgm(W)).

Corollary 7.2. Fix n ∈N and a type τ ∈ Tn . For any V,W ∈ Modτ we have

d∞
b (Dgm(V),Dgm(W)) ≤ d 1

R
(V,W) ≤ 2n2(n +1) ·d∞

b (Dgm(V),Dgm(W)).

Proof. This follows immediately from Proposition 7.1 and the equivalence d∞
b

≤ d 1
b
≤ 2d 1

b
(see Remark

7.1).

Remark 7.2. Bi-Lipschitz equivalence does not hold in general on n-Mod. To see this, consider any two

zigzag modules V,W ∈ n-Mod for which Dgm(V) = Dgm(W) but V 6∼S W. Then d 1
b

(Dgm(V),Dgm(W)) = 0

but d 1
R

(V,W) > 0 by the second statement of Theorem 6.1. For example, let n = 3, let τ = (→,→), and let

τ′ = (→,←). Define

V= Iτ([1,2])⊕ Iτ([2,3]) and W= Iτ′([1,2])⊕ Iτ′ ([2,3]).

By definition Dgm(V) = Dgm(W). On the other hand, we have S(V) =V and S(W) =W so that V∼S W if

and only if V-W and W-V which is true if and only if V∼W. But V 6∼W, as none of the structure maps

of V nor W are isomorphisms. Thus V 6∼S W.
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7.5 Comparison with Botnan and Lesnick’s Distance

Botnan and Lesnick introduced a distance between zigzag modules in [BL18]. Their distance is defined

by considering extensions of zigzag modules to so-called block decomposable, two-dimensional persis-

tence modules. Their distance, denoted dI , is defined to be the two-dimensional interleaving distance

between these extensions. In this section we consider examples which show that in general there is not a

bi-Lipschitz equivalence between dI and d 1
R

. We refer the reader to [BL18, Definition 4.4] for details on

dI .

Example 7.1. Let n = 3 and let τ = (←,→) ∈ Tn . Consider the interval modules V := Iτ([1,3]). We have

d 1
R

(V,O)= 2 by Remark 6.1. On the other hand, we can view V as the zigzag module

Ṽ= ·· · 0 F F F 0 · · · ,
0 0 idid 0 0

a zigzag module indexed by the integers obtained from V by extending with 0. The block extension functor

of Botnan and Lesnick sends Ṽ to an unbounded block in R
2 and hence dI (Ṽ,O) = ∞ (see Figure 4 in

[BL18]).

The next example gives a sequence (Vn)n∈N of zigzag modules whose reflection distance to the zero

module increases linearly but whose dI distance to the zero module is constant:

Example 7.2. For each n ∈N let Vn be the zigzag module

Vn = F F 0 0 · · · F F 0 0
id 0 00 0 id 0 0

of length 4n (Vn is the “concatenation" of n copies of F
id
←− F

0
−→ 0

0
←− 0). It is not hard to see that

d 1
R

(Vn ,O) = n. On the other hand, extending each Vn by 0 to obtain zigzag modules Ṽn indexed over the

integers, we have dI (Ṽn ,O) = 1/2 for all n. To see this, note that the extension of Ṽn to a two-dimensional

persistence module is a direct sum of block modules I [1,2)BL, I [3,4)BL, . . . , I [2n−1,2n)BL (see Section 4.1 of [BL18]

for notation). These block modules are infinite horizontal strips of height 1 with vertical distance 1 be-

tween adjacent blocks (see again Figure 4 from [BL18]; I [k ,k+1)BL is a vertical shift by k of the block I [1,2)BL).

The zero morphism then serves as a 1/2-interleaving between this direct sum of block modules and the

zero module. Moreover, after a moment of reflection one sees that 1/2 is the smallest possible interleaving

constant.

8 Discussion

Our definition of the reflection distance made use of the notion of reflection functors introduced by

Gelfand et al [BGP73] which are transformations on zigzag modules that affect only a portion a given

module. In our constructions, the effect of these transformations was restricted to a subdiagram of

length at most 3 (cf. Section 5.1, equation (4)). This design choice could also potentially be altered,

and its exploration may lead to other interesting distances. In particular, it is conceivable that similar

ideas can be exported to the setting of persistence modules over graphs other than those inducing zigzag

modules.

Indeed, since Gelfand et al consider reflection functors on arbitrary graphs, the possibility of extend-

ing our reflection distance to such general setting appears interesting. One initial question arising from

this is whether by applying a suitable sequence of reflections to a given persistence module defined on a

graph, one can transform it into a summand of another such persistence module. Whereas we were able

to show that this is always possible for zigzag modules, it is not clear that this can be done for persistence

modules defined on arbitrary graphs.
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Our construction of a distance between zigzag modules took a route different from the one followed

by Botnan and Lesnick in [BL18]. We showed that these two distances are in general not bi-Lipschitz

equivalent. It seems of interest to identify large families of zigzag persistence modules for which a bi-

Lipschitz equivalence might be possible.

Another topic where research would be welcome is the elucidation of the computational complex-

ity associated to estimating distances between zigzag modules of a given length. In this direction, re-

cent results by Botnan, Bjerkevik, and Kerber [BBK18] about the computational complexity of the two-

dimensional interleaving distance might be relevant.
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Appendices

A1 Limits and Colimits

We assume the reader is familiar with (small) categories, functors, and natural transformations (see

[ML71], [Rie17] for details). We denote by Vect the category of vector spaces over some fixed field F.

Definition A1.1. Fix a small category J .

1. A diagram of vector spaces of shape J is a functor D :J → Vect.

2. A cone over a diagram D :J → Vect is a vector space N together with a collection of linear transfor-

mations λ := {λJ : N → D(J) | J ∈ Ob(J )}, indexed by the objects of J , such that for any morphism

f : A → B in Hom(J ) we have λB = D( f )◦λA . We denote such a cone by (N ,λ).

3. A cocone over a diagram D : J → Vect is a vector space M together with a collection of linear trans-

formationsγ := {γJ : D(J) → M | J ∈ Ob(J )}, indexed by the objects ofJ , such that for any morphism

f : A → B in Hom(J ) we have γA = γB ◦D( f ). We denote such a cocone by (M ,λ).

Limits and colimits are then universal cones or cocones, respectively:

Definition A1.2. Let D :J → Vect be a diagram of vector spaces.

1. The limit of the diagram D is a cone (L,φ) over D such that for any other cone (N ,λ) over D, there

exists a unique linear transformation ψ : N → L with λA = φA ◦ψ for all A ∈ Ob(J ). We denote the

limit L by lim D.

2. The colimit of the diagram D is a cocone (C ,φ) over D such that for any other cocone (M ,λ) over D,

there exists a unique linear transformationψ : M →C with λA =φA◦ψ for all A ∈ Ob(J ). We denote

the colimit C by colim(D).
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Theorem A1.1. Let J be a small category and let D1,D2 be diagrams of vector spaces. If there exists a nat-

ural transformation η : D1 → D2 all of whose components are monomorphisms, then (L1,ηJ ◦λ
1
J ) is a cone

for D2 and the unique morphism ψ : L1 → L2 satisfying ηJ ◦λ
1
J =λ2

J ◦ψ for all J ∈J is a monomorphism.

Proof. The proof can be found in more generality in [BRD+94] pg. 89, Corollary 2.15.3.

Let 2 denote the discrete category with 2 objects. That is, Ob(2) = {1,2} and Hom(1,2) =;.

Definition A1.3. Let X ,Y be objects in the category C and let D : 2 → C be the diagram given by D(1) = X

and D(2) =Y .

1. The product of B and C , denoted B ×C , is the limit of D, if it exists,

2. The coproduct of B and C , denoted B ∐C , is the colimit of D, if it exists.

In Vect, products and coproducts always exist and coincide.

Theorem A1.2. Let J be a small category and let D1,D2 be diagrams of vector spaces. Then lim(D1×D2) ∼=
lim(D1)× lim(D2) Dually, colim(D1 ∐D2) ∼= colim(D1)∐colim(D2). Here D1 ×D2 and D1 ∐D2 denote the

product and coproduct, respectively, of D1 and D2 in the functor category CJ .

Proof. Consider the product category 2× J and let F : 2×J → C be the functor given by F (i , j ) = D i ( j )

for i = 1,2 and j ∈J . By commutativity of limits,

lim
2

lim
J

F (i , j )= lim
J

lim
2

F (i , j )

(see [Rie17] pg. 111, Theorem 3.8.1). Now

lim(D1 ×D2) = lim
J

(D1 ×D2) = lim
J

lim
2

F (i , j )

= lim
2

lim
J

F (i , j ) = lim
2

lim D i

= lim(D1)× lim(D2).

The second statement follows by a duality argument.

A2 Matchings

The Matching Lemma is a useful tool for combining matchings in opposite directions into a single match-

ing. For us, the lemma was crucial for proving our stability result, while Bjerkevik makes use of the lemma

in proving his generalization of the algebraic stability theorem [Bak16]. While it may be one of the ear-

liest results in infinite matching theory [Aha91], we believe its applications to stability-type questions in

persistence theory make it worth expounding upon here.

Lemma A2.1 (Matching Lemma for Finite Matchings). Let S and T be sets and let f : S 9T and g : T 9 S

be finite matchings. Then there exists a matching M : S 9T such that

(1) coim( f )⊆ coim(M ),

(2) coim(g ) ⊆ im(M ),

(3) if M (s)= t then either f (s) = t or g (t ) = s.
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Proof. The proof is inspired by a proof of the Cantor–Schröder–Bernstein theorem 3 given in [Sch00]. Let

s ∈ coim( f ), t ∈ coim(g ), and consider sequences of the form

· · ·
g

−→ f −1(g−1(s))
f

−→ g−1(s)
g

−→ s
f

−→ f (s)
g

−→ g ( f (s))
f

−→ ···

and

· · ·
f

−→ g−1( f −1(t ))
g

−→ f −1(t )
f

−→ t
g

−→ g (t )
f

−→ f (g (t ))
g

−→ ··· ,

where we allow these sequences to terminate to the right or left when undefined. We refer to these

sequences as the orbits of s or t . Since f and g are finite matchings, such sequences either terminate on

both the left and right, or are infinite but periodic. By injectivity of f and g , every element of coim( f )⊔

coim(g ) appears in exactly one orbit. Moreover, every orbit falls into one of the following five classes:

1. s → t → ···→ s → y ,

2. s → t → ···→ s → t → x,

3. t → s → ···→ t → x,

4. t → s → ···→ t → s → y ,

5.

s t s t s

t t

s t · · · t s

where the s’s and t ’s represent elements of coim( f ) and coim(g ), respectively, arrows represent either f

or g , and y ’s and x’s represent elements of im( f ) \ coim(g ) and im(g ) \ coim( f ), respectively. We define a

matching M : S 9 T as follows: for each i = 1, . . . ,5 let

Sco
i := {s ∈ coim( f ) | s appears in an orbit of type i }

and

T co
i := {t ∈ coim(g ) | t appears in an orbit of type i }.

Then coim( f )=
⋃
· Sco

i
and coim(g ) =

⋃
· T co

i
. We partition Sco

1 and T co
3 further by defining

S
co\p
1 := {s ∈ Sco

1 | f (s)∈ coim(g )}, S
p
1 := {s ∈ Sco

1 | f (s) 6∈ coim(g )},

T
co\p
3 := {t ∈ T co

3 | g (t ) ∈ coim( f )}, and T
p
3 := {t ∈ T co

3 | g (t ) 6∈ coim( f )},

so that S1 = S
co\p
1 ∪· S

p
1 and T3 = T

co\p
3 ∪· T

p
3 . The image, coimage, and mapping of M is specified by the

diagram

coim(M ) S
co\p
1 Sco

2 Sco
3 Sco

4 Sco
5 S

p
1 g (T

p
3 )

im(M ) T co
1 T co

2 T
co\p
3 T co

4 T co
5 T

p
3 f (S

p
1 )

M

:=
⋃
·

f

⋃
·

f

⋃
·

g−1

⋃
·

g−1

⋃
·

f

⋃
·

f g−1

:=
⋃
·

⋃
·

⋃
·

⋃
·

⋃
·

⋃
·

3The infinite version of the Matching Lemma holds as well [Ore62] and actually generalizes the Cantor–Schröder–Bernstein

(CSB) theorem slightly; the CBS theorem says that if f : S →T and g : T → S are injections between sets S and T then there exists

a bijection M : S →T . Since injective maps can be viewed as matchings with coimages being equal to the domain of the map,the

infinite Matching Lemma implies the existence of a matching M : S 9 T with coim(M) = coim( f ) = S and im(M) = coim(g ) = T ,

i.e. a bijection between S and T .
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Note that f (S
co\p
1 ) = T co

1 , f (Sco
2 ) = T co

2 , g (T
co\p
3 ) = Sco

3 , g (T co
4 ) = Sco

4 , and f (Sco
5 ) = T co

5 so that M is

surjective. Since f and g are injective, we see that M is a bijection between each of the parts specified and

thus defines a matching. Moreover, coim(M )= coim( f )∪· g (T
p
3 ) ⊇ coim( f ) and im(M ) = coim(g )∪· f (S

p
1 ) ⊇

coim(g ). Property (3) evidently holds by the definition of M .
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