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Abstract

We introduce a new model for planar point point processes, with the aim of captur-
ing the structure of point interaction and spread in persistence diagrams. Persistence
diagrams themselves are a key tool of TDA (topological data analysis), crucial for the
delineation and estimation of global topological structure in large data sets. To a large
extent, the statistical analysis of persistence diagrams has been hindered by difficulties
in providing replications, a problem that was addressed in an earlier paper, which intro-
duced a procedure called RST (replicating statistical topology). Here we significantly
improve on the power of RST via the introduction of a more realistic class of models for
the persistence diagrams. In addition, we introduce to TDA the idea of bagplotting,
a powerful technique from non-parametric statistics well adapted for differentiating
between topologically significant points, and noise, in persistence diagrams.

Outside the setting of TDA, our model provides a setting for fashioning point pro-
cesses, in any dimension, in which both local interactions between the points, along with
global restraints on the general point cloud, are important and perhaps competing.
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logical inference, replicating statistical topology, bagplots.
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1 Introduction

Over the past decade there has been considerable interest and success in the exploitation of
topological thinking, particularly that coming from Algebraic Topology, in developing tools
for the analysis of large and complex data sets and networks. Under the brand name of
‘Topological Data Analysis’ – hereafter ‘TDA’, this approach has been put on a reasonably
solid mathematical footing, and applications have been as widespread as signal processing,
Barbarossa and Tsitsvero [2016], genetic analysis for some breast cancers, Nicolau et al.
[2011], functional (neural) networks in the brain, Bendich et al. [2016], Petri et al. [2014],
and cosmology, Adler et al. [2017], Sousbie [2011], Sousbie et al. [2011], van de Weygaert
et al. [2011]. In addition, there are connections between TDA, dimension reduction, and
machine learning that are both mathematically deep and highly practical, as can be seen
by the adoption of both of these techniques by the start up Ayasdi.
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In almost all of the applications of TDA, and in most of the theory, persistence dia-
grams (or, equivalently, barcodes) arise as the key topological summary of the underlying
phenomenon, or mathematical models, being studied, and provide the basis for all sub-
sequent analysis. We shall describe persistence diagrams briefly, as well as giving some
pertinent examples, in Section 2. With relatively few exceptions, notably Chazal et al.
[2014], Fasy et al. [2014], Robinson and Turner [2013], Bobrowski et al. [2017b], Bubenik
[2015b], Wasserman [2016] (see additional citations in the SI Appendix (Sec. 1.3) to Adler
et al. [2017]) TDA has not employed statistical methodology as part of its approach, and,
as a consequence, has typically been unable to associate clearly defined levels of statistical
significance to its discoveries. While there may be a variety of reasons for this, one of the
main obstacles to doing so is that the mathematical challenges involved in computing the
statistical distributions of topological quantifiers have so far proven to be intractable.

There have been a number of attempts to solve this problem by reducing the entire
persistence diagram to a lower dimensional summary statistic, usually combining this with
some sort of bootstrapping procedure (e.g. Chazal et al. [2014], Fasy et al. [2014], Robinson
and Turner [2013]). In Adler et al. [2017] we introduced a new approach, dubbed ‘Replicat-
ing Statistical Topology’, hereafter ‘RST’. We shall describe all of this below in Section 4.4,
along with examples in Section 5, but the main point, from the point of view of the current
paper, was that RST was based on a semi-parametric procedure for providing multiple
simulations of an observed persistence diagram. The first step involved fitting a parametric
model to a given persistence diagram via a Gibbs distribution, and the current paper is
mainly about a developing a significant improvement to the this step.

After developing the new model, and seeing that, from many aspects, it, together with
an appropriate MCMC simulation procedure, does an excellent job of producing (almost)
independent persistent diagrams from a single initial example, we introduce a powerful new
method for distinguishing between topologically informative points and ‘topological noise’.
This method is based on the statistical procedure known as bagplotting. To the best of our
knowledge this has never before been used in the TDA setting (with the possible exception
of Pranav et al. [2018], but in a different role). Nevertheless, as we shall show in Section 6,
the use of bagplots to distinguish between ‘signal’ and ‘noise’ in a persistence diagram is a
natural application of this technique. On the other hand, without the replication methods
we develop in the paper, it would not allow assigning levels of statistical certainty to these
discoveries. This, of course, is the role of RST.

In fact, although our motivation comes from TDA and RST, what this paper provides
extends beyond these specific settings. Persistence diagrams are (at each homology level)
random, planar, point processes about which very little is known. What we do know, as
will be explained below by investigating specific cases, is that they are most definitely not
Poisson processes, as the points interact strongly at a local level. This interaction strongly
suggests the adoption of a Gibbsian approach to modelling, along with its associated MCMC
technology for later simulation. On the other hand, there is a very definite global structure
to the ‘cloud’ of points making up a persistence diagram that is hard to capture via purely
local interactions. Placing these two (competing) requirements into a single, data based,
model is the truly novel contribution of this paper. The application of the new model in an
RST setting, in the examples of Section 5, then basically follows the recipe of Adler et al.
[2017] and Agami and Adler [2017]. However, the fact the resultant analysis significantly
improves on the previous ones is compelling justification for applying the new model in the
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RST setting in particular, and TDA in general.

Acknowledgment: We are grateful to Katherine Turner who, at a conference in Japan,
suggested that we should be able to improve on the model of Adler et al. [2017] by incorpo-
rating information on the global shape of the persistence diagrams into the model. It was
an insightful and useful suggestion.

2 Persistence diagrams

As mentioned in the Introduction, persistence diagrams are undeniably the most single
useful tool of TDA. To make this paper self-contained, they should now be carefully defined,
but we have decided not to do so. There are three main reasons for this:

(i) A reader who is interested in this paper from the point of view of its application in
TDA will already be so familiar with the notion of persistence that any description
which we would provide would simply be skipped over.

(ii) For the reader interested in our results from the point of view of modelling point
processes, the intrinsic interest of this is sufficient that understanding its connection
to persistence diagrams is not necessary.

(iii) There are already so many good introductions to TDA and persistence that we would
be hard put to write anything without accusations of plagiarism. For statisticians,
there is the comprehensive and up to date review Wasserman [2016] which includes
close to 100 references. (See also Robinson and Turner [2013] which also considers
a number of interesting hypothesis testing issues for persistence diagrams.) For the
reader wanting a more general approach, there are the recent excellent and quite
different books and reviews Carlsson [2009, 2014], Edelsbrunner [2014], Edelsbrunner
and Harer [2008, 2010], Zomorodian [2005], Oudot [2015] and Ghrist [2014], all of
which give broad expositions of the homology needed for TDA. (For a description of
the history of persistence, see the Introduction in Edelsbrunner and Harer [2008].)

Despite having abrogated our didactic responsibilities to the reader regarding persis-
tence diagrams, we nevertheless do need to set up some notation and conventions.

Throughout this paper, all the specific examples we shall treat arise as persistence
diagrams for which the underlying filtration is generated by the excursion, or upper level,
sets of a real valued, smooth function f on a nice space Z. Thus, the filtration is given by
{Zu, u ∈ R}, where

Zu
∆
= {z ∈ Z : f(z) ∈ [u,∞)} ≡ f−1([u,∞)). (1)

Given this filtration, there will be a persistence diagram for each persistence homology
Hk(Z) of order k, 0 ≤ k ≤ dim(Z). Each point (b, d) of each diagram represents a generator
in Hk(Z) which was ‘born’ at level b and ‘died’ at level d. Since u < v implies Zu ⊇ Zv,
we always have b > d, and since we shall place births on the vertical axis and deaths on
the horizontal axis of our persistence diagrams, the points will always lie in the half plane
above the line b = d.

We now turn to two of the motivating examples behind our work. While each comes from
quite a different background, they share a common theme in that they involve excursion
set filtrations.
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2.1 Gaussian random field excursions

By ‘Gaussian random field’ we mean a random, real valued, function f over a topological
space Z, the finite dimensional distributions of which are multivariate Gaussian. We shall
always assume that f has smooth sample paths. In particular, implicitly assuming that Z
is a C2 (perhaps stratified) manifold, we shall assume throughout that f is, with probability
one, twice differentiable. For a full theory of such random fields, including many topological
properties of their excursion sets which are quoted below without reference, see any of
Adler and Taylor [2007, 2011, 2016]. Gaussian random fields, including the topological
properties of their sample paths, have been at the core of numerous applications, perhaps
the most notable ones being in cosmological and neurophysiological problems. (The history
of topology mixed with ‘modern’ random field theory in cosmology probably starts with
Bardeen et al. [1986], Coles [1988], with recent papers including TDA concepts such as
persistence including Feldbrugge and van Engelen [2012], van de Weygaert et al. [2011],
Cole and Shiu [2018], Adler et al. [2017] and Pranav et al. [2018]. The last two of these,
in particular, treat modelling of the CMB (Cosmic Microwave Background radiation) and
are motivating applications for the example of Gaussian excursion sets that we are about
to discuss. As for the applications of Gaussian processes to neurophysiology, Friston et al.
[1994], along with its many thousands of citations, is a good place to enter the literature.)

Because of the importance of Gaussian random fields in stochastic modelling, and the
growing interest in them from a topological viewpoint, we shall discuss this example in
some detail.

For a specific class of examples, we take f to be the stationary, isotropic, zero mean,
Gaussian random field on R2 with covariance function

R(x) ≡ E{f(y)f(y + x)} = e−b‖x‖
2a
, (2)

with b > 0 and a ∈ (0, 1]. The parameter b is essentially a spatial scalling parameter, while
a controls both long range correlations and the local smoothness of f . In particular, if
a = 1, then the random field has C∞ sample functions (with probability one, a qualifier
that we shall drop from now on) while, for a < 1, f is non-differentiable but continuous,
and satisfies a Hölder condition of order α, for all α ≤ a. Examples of realisations of these
processes, over the unit square [0, 1]2, for b = 100 and various a are given in Figure 1. (The
numbers on the base axes reflect the fact that the simulations are taken over a 256 × 256
subgrid of [0, 1]2.)

Turning now to persistence, Figure 2 gives three examples of theH1 persistence diagrams
of the upper level set filtration for three simulations of the random field in the bottom right
of Figure 1. (We shall typically work with H1 diagrams for this example rather than
the H0 diagrams; viz. we shall work with the topology of holes, rather than connected
components, in the excursion sets. However, everything that we shall have to say for this
case has an immediate and essentially equivalent parallel in the H0 case.) It is hard to say
much from these Figures, other than perhaps to surmise that there seems to be a repulsive
effects between points in each diagrams, a conjecture that one might put down to either
‘experience’ in looking at examples of point processes, or simple subjectivity. Certainly
there is not much that can be said about the global shape of the point cloud.

On the other hand, superimposing the points from 10,000 such simulations into one
picture for both H0 and H1 diagrams yields Figure 3, from which a global structure of
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Figure 1: Simulations of a zero mean, two-dimensional, stationary, Gaussian random field with covariance
function (2). (With thanks to Eliran Subag.) Note that lower values of a lead to higher levels of local
variability, while the global structure of the field remains quite stable.

the point clouds is very clear. (As an aside, note that in the H0 diagram, as in all future
examples, the ‘points at infinity’ in the individual persistence diagrams are not shown.)

Figure 2: H1 persistence diagrams for the excursion sets of three simulations of the Gaussian process of
Figure 1, with a = 1.

Combining the pictorial information in Figures 2 and 3 it is clear that in looking for a
model for random persistence diagrams that will cover this case, we need to find something
that allows close points in the diagrams to locally repel one another, while at the same time
complying with global constraints.

Before looking for such a model, however, we note that the ‘natural’ path would be to
rigorously derive analytic relationships between Gaussian random fields – ‘parameterised’
by their covariance functions – and the persistence diagrams of their excursion sets. How-
ever, this is beyond the capabilities of current Gaussian theory, and may well be an almost
impossible problem. For example, although much is known about the mean Euler char-
acteristics of these excursion sets, as well as some qualitative results about their shape at
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(a) (b)

Figure 3: Superimposed persistence diagrams (H0 in (a) and H1 in (b)) for excursion sets of 10,000
Gaussian random simulations. The H0 diagram contains a total of 251,330 points, while there are only
174,006 points in the H1 diagram. That is, there are of the order of 20 points in individual diagrams, as in
Figure 2.

asymptotically high and low levels, all attempts at computing exact expressions for some-
thing as topologically simple as their mean Betti numbers have, so far, met with little to
no success.

What is known comes from the Morse theory connection between topology and crit-
ical points. At least in some cases it is possible to compute precise expressions for the
mean number of critical points of Gaussian fields (cf. Adler and Taylor [2016], Chapter 6,
for a survey) and to use these and the Morse inequalities to say something about mean
Betti numbers (cf. Feldbrugge and van Engelen [2012] for a nice example of this in two
dimensions). Another observation with rigorous backing comes from the so-called ‘Slepian
models’ for Gaussian processes, that show that Gaussian critical points tend not to be close
to one another. (This is also well documented in the connections between the complex
zeroes of Gaussian processes and determinantal, planar point processes; e.g. Hough et al.
[2009].) Taking into account that each of both the birth and death coordinates of each point
in a persistence diagram is also a critical level of f , this literature validates the impression
gained from Figure 2 that there is a natural repulsion between the points. (Exceptions to
this will occur at the extreme critical points (i.e. high or low) where the classical extremal,
Poisson, limit theory of Gaussian processes leads to the Poisson-like thin spread of points
at the top of (a) of Figure 3 and at the left of (b).)

These models also explain that asymmetries present in both diagrams of Figure 3, as
well as the general shapes of the clouds.

In summary, therefore, there is significant motivation, from this example alone, to
develop a model for random persistence diagrams that include both local repulsion and
global constraints.

2.2 Sampling from non-concentric circles with different radii

As our second example we take what is basically a toy model, something more familiar in
the TDA literature. It is much simpler, at least in that it requires no previous, specific,
probabilistic knowledge in order to appreciate its subtleties, but it still exhibits nuances
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requiring the same demands of a stochastic model that arose with the random field example.
In particular, we sample from the two circles of Figure 4(a), taking 500 points sampled

uniformly at random from the smaller circle, with a radius of 0.5, and 650 points from the
larger circle, of radius of 1.2. We then compute a smoothed density function estimate for
the sample, using a Gaussian kernel with bandwidth 0.1. The result is shown in (b) of the
same figure, and in (c) we show the persistence diagram of the upper level set filtration of
this function. It contains N = 32 points of H0, these being the the black circles indicating
H0 (zero-th homology) persistence. The red triangles correspond to H1. We see two black
circles (the two connected components; for this example the ‘point at infinity’ is included,
as the point with death coordinate zero) and two red triangles (holes) somewhat isolated
from the other points in the diagram, as is to be expected.

(a) (b) (c)

Figure 4: A random sample (a) from two non-concentric circles, 500 points from the smaller circle and
650 points from the larger circle, with a kernel density estimate (b) and the persistence diagram (c) for its
upper level sets. Black dots represent H0 persistence points, and red triangles H1 points.

As in the previous example, it would be nice to be able to say something about the
stochastic makeup of both the signal and noise in the persistence diagrams of this example,
given the simple sampling that lies behind it. In fact, in this case more can be said, and
the reviews Bobrowski and Kahle [2018] and Kahle [2014], along with more recent papers
such as Bobrowski et al. [2017a,b], contain many results about the asymptotics of this kind
of scenario, but only when the number of points being sampled diverges to infinity.

Adopting the same approach as in the Gaussian random field example, Figure 5 shows
the points of 100 independent realisations of the H0 persistence diagram of Figure 4(c)
(but without the points at infinity). A pattern arises: While the local repulsion between
points which can be seen in the individual case is now blurred, the appearance of three
clearly delineated collections of points is now clear. The leftmost comes from the connected
component which is the smaller circle. (The larger circle generated the missing point at
infinity.) The remaining two groups represent the topology of noise; viz. the sampling error
which generated the irregularities in the heights of the two cones in (b).

Thus, once again, we are in a situation in which random persistence diagrams show
both local repulsion between points, but restrained in a quiet remarkable fashion by global
constraints.
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Figure 5: Superimposed persistence diagrams for 100 simulations of the example of Figure 4.

3 Modelling point processes and persistence diagrams

3.1 An infeasible Gibbs distribution

The model that we plan to adopt for persistence diagrams will, as in Adler et al. [2017]
be based on a Gibbs distribution. That is, given a finite collection X̃N = {X1, . . . , XN}
of continuous random variables, each taking values in RD, for some D ≥ 1, and with joint
probability density ϕΘ(x̃N ), dependent on a multi-dimensional parameter Θ, we assume
that ϕΘ can be naturally written in the form

ϕΘ(x̃N ) =
1

ZΘ
exp(−HΘ(x̃N )), (3)

where the ‘Hamiltonian’ HΘ : RN → R describes the ‘energy’ of configurations x̃N . The
normalisation, or partition function, ZΘ, a function of Θ, is infamously hard to evaluate,
and so we shall soon move from this model to a slightly different one.

In view of the motivating examples of the previous section, we start with a Hamiltonian
component that controls global shape, by assuming that there is an underlying density
fGΘG

(x) which describes the univariate (common, marginal) density of the Xi. Under fGΘG
,

if the Xi were independent random variables, then we could write their joint density (3) as

ϕGα,ΘG
(x̃N ) =

1

ZGα,ΘG

N∏
i=1

(
fGΘG

(xi)
)α

=
1

ZGα,ΘG

exp

(
α

N∑
i=1

ln
(
fGΘG

(xi)
))

∆
=

1

ZGα,ΘG

exp
(
αHG

ΘG
(x̃N )

)
, (4)

with α = ZGΘG
= 1. Taking values of α other than α = 1 widens the family of distribu-

tions, while retaining independence, and the need for additional freedom of this form will
become clear in a moment. Note, however, that, whatever the value α, the Xi are always
independent and identically distributed under (4). Furthermore, their spatial positioning
is determined by the support of fGΘG

.
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We now turn the local interactions for which we introduce the joint densities

ϕLΘL
(x̃N ) =

1

ZLΘL

exp
(
−HL

ΘL
(x̃N )

) ∆
=

1

ZLΘL

exp

(
−

N∑
i=1

LKΘL

(
xi
∣∣N (xi)

))
(5)

where, for a K ≥ 1, and x, y ∈ RD,

LKΘL

(
y
∣∣N (x)

) ∆
=

K∑
k=1

θL(k)
∑

z∈Nk(x)

‖z − y‖, (6)

and Nk(x) is the set of the k nearest neighbours to x.
Putting all this together, and combining the parameters α, ΘG and ΘL into a single

vector Θ, and we can define a Gibbs distribution with Hamiltonian

HΘ(x̃N )) = HL
ΘL

(x̃N )− αHG
ΘG

(x̃N ), (7)

and corresponding partition function.
The probabilistic import of the combined Hamiltonian should be clear, as well as the

reason for introducing the parameter α. HL
ΘL

controls local interactions. Acting alone –

viz. without the presence of HG
ΘG

– negative values of the θL(k) encourage repulsion among

points, and positive values encourage attraction. On the other hand, taking α > 0, HG
ΘG

acts to keep the points distributed within the support of fGΘG
. The larger α is, the stronger

is this global effect.
Unfortunately, although the above model fills the requirements outlined in the previous

section, it has the drawback of all such models in that the difficulties in computing the
‘corresponding partition function’, even numerically, are formidable. In addition, it requires
that we have, a priori, a specific choice for the family of densities fGΘG

. To overcome these
issues, for both model estimation and subsequent simulation, we take the two-pronged
approach of replacing fG by a non-parametric estimate of it, based on the data x̃N , and
replacing the true Gibbs model by a pseudo-likelihood version of it.

3.2 A feasible, semi-parametric, pseudo-likelihood approach

3.2.1 Choosing the shape prior

The first step in applying the model of the previous subsection is to decide on a ‘global
shape’ density function fG (where we now drop the explicit dependence on the parameter
set ΘG).

A number of paths are possible. For example, one could adopt, a priori, a family of
candidates, to then be estimated, typically parametrically, from the data. While attractive,
this adds computational complexity to a problem that is already (as we shall see below)
computationally intensive, and so impractical from a computational viewpoint. More im-
portantly, given how little is known, theoretically, about the distributions of persistence
diagrams, it is hard to know what would form a good class of candidates.

If one is working with a specific problem in which the point set arises from a family of
experiments that have been carried out often in the past, a number of options are available.
For example, if one knew that we were dealing with a persistence diagram that arose from
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the excursion set filtration of a Gaussian process, without knowing anything additional
about the process, then the fact that persistence diagrams in this setting typically have a
shape akin to those of Figure 3 might lead one to choose a parametrised class of densities
that exhibit such behaviour, and then estimate the parameters for the particular problem.
This could be done prior to the estimation of the full model that we are about to develop, or
as part of a likelihood maximisation for the full model. Many additional methods, all based
on some sort of averaging of point processes and density estimation, are also available.

In the setting of persistence diagrams, one could, for example, work with average per-
sistence landscapes, as in Bubenik [2015a], or the Fréchet mean of a collection of diagrams,
as in Turner et al. [2014]. Any of these can exploited to obtain an estimate of fG.

However, for applications to TDA, we wish to remain in the setting of Adler et al. [2017],
in which no previous information is available, and in which only one persistence diagram
is available. As explained there, this is more often than not the situation in applications,
particularly if they are ‘Big Data’ or Cosmology applications, in which there is only one
data set.

Given this, there is little we can do beyond estimating fG by a simple, non-parametric,
density estimator, and so, for the point set x̃N , we choose the kernel density estimate (KDE)

f̂G(x) =
1

N(detΣ)1/2(2π)D/2

N∑
i=1

exp
(
− 1

2Σ−1/2(x− xi)(x− xi)′Σ−1/2
)
, x ∈ RD, (8)

where our vectors are column vectors and Σ is a symmetric, positive definite, scaling matrix.
In many cases one can take Σ to η2 times the identity matrix, where η > 0 is a bandwidth
parameter (e.g. Wand and Jones [1994]). Standard asymptotic theory indicates that, in this
case, η, or, in the general case maxk Σ(k, k), should be chosen to be of order O(N−1/(4+D))
(e.g. Silverman [1986], Wasserman [2004]). However, in most of the examples that we shall
treat later N is in the range 15–25, and so we shall need something other than asymptotic
theory to chose η or Σ.

Note that even if the points in x̃N lie in a (perhaps bounded, or even lower dimensional)
subset of RD, f̂G is defined over all of RD.

3.2.2 Moving to pseudo-likelihoods

We now turn to role of the Hamiltonian HL
ΘL

of (5) in the context of parameter estimation
for the density ϕ of (3). Unfortunately, if we retain it in its current form, parameter
estimation by a method such as direct maximum likelihood is precluded by the fact that
we neither have an analytic form for ZΘ, nor is there any way to compute it numerically in
any reasonable time frame.

The standard way around this problem, which we adopted in Adler et al. [2017], is
the pseudolikelihood approach; e.g. Besag [1974], Chalmond [2003], which originated in the
context of point cloud data with spatial dependence. In particular, this method exploits
the inherent spatial Markovianess of a Gibbs distribution to replace the overall probability
of, in our case, ϕΘ, by the (semi-parametric, due to the inclusion of the non-parametric
f̂G) pseudo-likelihood

L̃Kα,Θ(x̃N )
∆
=
∏
x∈x̃N

ϕ̂α,Θ(x), (9)
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where

ϕ̂α,Θ(x) =
(f̂G(x))α × exp

(
−LKΘ

(
x
∣∣N (x)

))∫
RD f̂G(z))α × exp

(
−LKΘ

(
z
∣∣N (x)

))
dz

=
exp

(
−LKΘ

(
x
∣∣N (x)

)
+ α ln(f̂G(x))

)
∫
RD exp

(
−LKΘ

(
z
∣∣N (x)

)
+ α ln(f̂G(z))

)
dz
. (10)

Note that the main simplification of moving from the original Gibbs distribution to the
pseudo-likelihood above is that the normalising constant/partition function now involves
the product of N integrals over RD, rather than a single, but numerically much more
demanding, integral over RND.

The remainder of the paper takes the model (9) as given, and examines parameter
estimation for it, how to use it to replicate point processes – in particular, persistence
diagrams – and how to use these tools to develop statistically sound hypothesis tests in
persistence based TDA. Evaluation of how well the procedures work will be undertaken via
numerical experiments for specific examples.

4 Modelling, estimating, and replicating persistence diagrams

4.1 Persistence diagrams

Although the development of the previous section was quite general, for the rest of the
paper we shall concentrate on its application in the setting of persistence diagrams.

The first consequence of this is that the point process of interest is now a subset of R2,
restricted to the half plane above the 45◦ line passing through the origin.

In fact, mainly for coding convenience, given a persistence diagram with points {(di, bi)}Ni=1

we define a new point set x̃N = {xi}Ni=1 = {(x(1)
i , x

(2)
i }Ni=1, defined by

x
(1)
i = di, x

(2)
i = bi − di.

This (trivially invertible) transformation has the effect of moving the points in the original
persistence diagram downwards, so that the diagonal line projects onto the horizontal axis,
but still leaves a visually informative diagram, which we called the projected persistence
diagram, or PPD, in Adler et al. [2017]. The points of the PPD lie in the upper half plane
R×R+, and it is for these points that we want to apply the model of the previous section.

Since the PPD is restricted to a half plane, we shall assume that the density fG of (4)
is supported there. Similarly, the empirical density f̂G of (8) needs to be replaced by

f̄G(x)
∆
=

f̂G(x)1R×R+(x)∫
R×R+

f̂G(x) dx
. (11)

Replacing f̂G in the definition (10) of ϕ̂α,Θ by f̄G leads to the pseudolikelihood

ϕ̄α,Θ(x) =
exp

(
−LKΘ

(
x
∣∣N (x)

)
+ α ln(f̄G(x))

)∫
RD exp

(
−LKΘ

(
z
∣∣N (x)

)
+ α ln(f̄G(z))

)
dz
. (12)

with which we shall work from now on.
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4.2 Parameter estimation

There are four quite different classes of parameters to estimate in the likelihood (9): the
bandwidth parameters Σ or η, the maximal neighbourhood size K, the weighting α of the
global shape, and the local interaction parameters θ1, . . . , θK . There are also a number of
difficult numerical issues associated with their estimation, which we now describe.

As for the bandwidth parameters of (8) for estimating fG, in practice we found two
different scenarios. When the persistence diagram had a locally ‘regular’ (in a very imprecise
sense) shape, then it sufficed to take Σ to be diagonal, so that only η required estimation.
As noted above, asymptotic theory gives that η is optimally chosen to be approximately

max(σ1, σ2)N−1/6, where σ2
j is the empirical variance of the x

(j)
i . However, in practice (not

surprisingly, since our samples – persistence diagrams – did not have ‘asymptotically many’
points) we used this figure as a guide, followed by ad hoc decisions.

On the other hand, for situations in which there were important subtleties in the per-
sistence diagram, such as in the case of the Gaussian random field excursion filtration of
Section 2.1 (cf. Figure 3), estimation of the full, non-isotropic, bandwidth matrix Σ was
preferable. Since asymptotic methods require particularly large sample sizes in this case
(Silverman [1986], Wasserman [2004]) we found the data driven method of Duong [2007],
as implemented in the R package Hpi, worked well.

As for choosing the parameter K, the number of nearest neighbourhood regions for the
local part of the Hamiltonian, prior experience, not only from Adler et al. [2017] but from
decades of modelling in Statistical Mechanics, implies that it suffices to consider K ≤ 3.
Choosing among these values, and deciding which, if any, of the neighbourhoods should
be excluded from the Hamiltonian (i.e. by setting their θL value identically zero) is then
easy to do via standard statistical procedures such as those based on the Akaike or Bayes
Information Criteria, AIC and BIC, etc. (cf. Burnham and Anderson [2002].) Of course,
this procedure implies that, given an estimate f̄G as above, for each such model – i.e. for
each choice of non-zero θL – we need to maximise the pseudo-likelihood (9) over α and the
non-zero θL.

This maximisation was carried out in a two stage procedure: We searched over α by the
bisection method, and maximised the pseudo-likelihood for the θL’s using a standard non-
linear optimisation procedure. (To be more specific, the Matlab routine fminunc.) During
this stage, the integral in the denominator of (10) requires computation, which we carried
out numerically by the trapezoid method. (To be more specific, again, this was done on a
101× 101 grid. For the x(1) variable, the range extended to at least 4 standard deviations,
in each direction, from the mean, where means and standard deviations were calculated
from the original data. For the positive variable x(2), the range went from 0 to at least the
mean plus 4 standard deviations.)

As an (important) aside, note that, after considerable experimentation, we found that
it sufficed to restrict α to the interval [0, 3].

4.3 Replicating persistence diagrams

Given a pseudolikelihood as in the previous section (with known or estimated parameters),
generating simulated replications of the associated point set via Markov Chain Monte Carlo
(MCMC) is standard, and so we include now only the briefest of descriptions. (As in Adler
et al. [2017] we take a Metropolis-Hastings MCMC approach, and refer the reader to Robert
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and Casella [2004], Brooks et al. [2011] for technical background. In particular, see Robert
and Casella [2004] Sec. 10.3.3, in which the approach we take is called ‘Metropolis-within-
Gibbs’ and its properties are discussed.)

Thus, all we need to do is to show how, given an initial version x̃0 of our point
set/persistence diagram, we make the step from version x̃n to the next stage, x̃n+1. This,
as usual, is done one point at a time.

Firstly, we choose a new point in x∗ ∈ R × R+ according to the density f̄G of (11).
Note that this choice depends only on the initial state x̃0, and so can be done in advance,
before entering the MCMC procedure. (Of course, one could replace this with using x̃nN
at the n-th step rather than using only x̃0, but we found this to be numerically less stable
and produce poorer simulations. Also, as mentioned in Section 3.2.1, if there are better
estimates of fG based on prior information, then these should be used in place of f̄G.) To
choose x∗ we used a standard inverse transform method Robert and Casella [2004], Brooks
et al. [2011]. Details are given in Appendix A.1.

Next, for two points x, x∗ ∈ R × R+ define an ‘acceptance probability’, according to
which x ∈ x̃N is replaced by x∗, leading to the updated set x̃∗N , as

ρ (x, x∗) = min

{
1,

(f̄G(x∗))αe−L
K
Θ (x∗|Nx) · f̄G(x)

(f̄G(x))αe−L
K
Θ (x|Nx) · f̄G (x∗)

}
= min

{
1, e−L

K
Θ (x∗|Nx)+LKΘ (x|Nx)

(
f̄G(x)/f̄G(x∗)

)1−α}
.

Recall from (9) and (10) that the current state of the entire system, x̃N , appears in the L
terms via the sums over neighbourhoods in the local Hamiltonian.

The one-step replacement algorithm can now be described, as in Algorithm 1.

Algorithm 1 MCMC step updating diagram for x̃N

1: k = 0
2: k ← k + 1
3: Choose x∗ according to f̄G

4: Compute ρ(xk, x
∗)

5: Choose U a standard uniform variable on [0, 1]
6: if U < ρ(xk, x

∗) then set xk = x∗

7: end if
8: if k < N then go to Step 2
9: end if

To obtain approximately independent copies of the point set/persistence diagram, the
procedure dependents on three parameters, nb, nr and nR. Starting with the original
diagram, run the algorithm for a burn in period. Then, starting with the final result from
the burn in, run the algorithm a further nb times, choosing the last output of this block of
nb iterations as the first simulated diagram. Repeat nr times, each time starting with the
most recently simulated diagram; viz. the output of the previous block. Finally, replicate
the entire procedure nR times, so that we have a total of nr × nR simulated diagrams.
The optimal choice of nb, nr and nR and typically depends on the specific problem, and is
discussed in the examples below and in Adler et al. [2017] SI Appendix (Sec. 2.1).
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Recall that the procedure above is for projected persistence diagrams, but conversion

from these back to the usual diagrams is trivial, via the mapping xi → (x
(1)
i , x

(1)
i + x

(2)
i ) =

(di, bi) .

4.4 RST and statistical inference for persistence diagrams

The basic idea of, and need for, RST (Replicating Statistical Topology), as introduced in
Adler et al. [2017] is quite simple: In many applications of TDA only one original data
set is available, and so only one persistence diagram. Replicating the experiment may be
unfeasible, and as a result making statistically meaningful statements about an observed
persistence diagram is essentially impossible.

The idea behind RST is that, given a single persistence diagram, it can be modelled,
estimated, and simulated as described in the preceding sections, and on each simulated
diagram any number of meaningful statistics calculated. The MCMC replications of the
diagrams thus give a sequence of (almost) independent values of the statistic, enabling
standard statistical analysis. Precisely which statistics one chooses will depend on the
hypotheses one wants to test, and in the examples of the following section we shall look at
a number of possibilities.

The main difference between the present paper and Adler et al. [2017] is in the choice
of model. The model there was of a similar nature, in that there was a ‘local’ Hamiltonian
that described nearest neighbour interactions much as in the model of the current Section
3, but there was no attempt to capture the global structure via a term akin to the density
f̄G. To nevertheless place some restrictions on the overall shape, there was a term in the
Hamiltonian conserving the centre and the spread of the simulated diagrams. (For com-
pleteness, the earlier model is described in Appendix A.2.) While that model was a good
first step, the current model does a much better job of replicating persistence diagrams, as
the examples of the next section will all show. In particular, the stationary distributions
of the MCMC procedure are much closer to the true distributions of the persistence dia-
grams, where the latter are estimated by simulating the underlying experiment to obtain
replications. This procedure, of course, is easy to carry out for a simulation study, but, as
just noted above, typically impossible or prohibitively expensive in applications.

An alternative, and earlier, approach to replicating persistence diagrams was based on
resampling methods such as the bootstrap and jacknife, e.g. Chazal et al. [2014], Fasy et al.
[2014], Robinson and Turner [2013]. Resampling can be done either at the level of the basic
experimental data, in which case a new persistence diagram needs to be calculated for each
resampled data set, or at the level of the persistence diagram itself. Since we have already
argued in Adler et al. [2017] that RST compares favourably with these procedures, and since
the version of RST presented here improves on the earlier one, we shall say no more about
these methods in the current paper, other than to make two points in their favour. Firstly,
they can be computationally much faster than the method that we propose, for which the
parameter estimation is often delicate and the MCMC can take considerable computer time.
(Typical time differences are about a factor of 10, from seconds to minutes.) However, this
computational advantage is typically only for the case when the subsampling is at the level
of the persistence diagram. When it is at the level of the experimental data, each new data
set requires the computation of persistence diagrams, and this is usually time consuming.
The second advantage of the resampling approach is that, at least at this point of time, it
is easier to fit it into an existing framework of asymptotic statistical theory, which provides
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rigorous information about its behaviour, as various parameters tend to infinity or zero.
Whether or not one feels that this is important for applications is, to a large extent, a
question of taste, best left to the individual reader.

5 Examples

Given the lack of any theory (other than asymptotic, and even then in very special cases)
about the distributions of persistence diagrams it is, a fortiori, impossible to bring theo-
rems about the efficiency of the approach of the previous two sections for modelling them.
Furthermore, since in any application “the proof of the pudding is in the eating1”, estab-
lishing the value of the preceding sections can really only done by seeing how they work in
practice.

Thus, in the following subsections, we shall investigate a number of examples, in each
one concentrating on these aspects of model that are most relevant for the example in
question. For example, in the two motivating examples we have already seen – persistence
diagrams arising from Gaussian excursion sets and sampling from non-concentric circles –
the emphasis will be on reproducing, by simulation, high quality samples with (a reasonably
close approximation to) the true distribution (as estimated by simulation of the underlying
phenomenon). In other examples we shall combine these methods with statistical inference
to see how well our proposed procedure of Replicating Statistical Topology works in a
hypothesis testing scenarios. En passant, we shall show how and why the current model
improves on that in Adler et al. [2017].

5.1 Gaussian excursion sets

Returning now to the setting of Section 2.1, our aim for this example is to see how well we
can approximate the true distribution of the H1 persistence diagrams of Gaussian excursion
sets.

Specifically, we take the Gaussian random field on [0, 1]2 with covariance (2) (with
b = 100 and a = 1) and our main aim is to see if we can capture the shape of Figure 3(b).
To do this, we took the 600 simulations that led to this figure, along with their excursion
set persistence diagrams. We shall call these the ‘original’ diagrams. Three examples were
shown in Figure 2. For each of the original diagrams we fitted a model with pseudolikelihood
(12), and then ran a MCMC simulation as described in Section 4.3, running it for 1,000
steps, so that in the final analysis we had 600×1, 000 = 600, 000 diagrams from the MCMC
procedure. We shall call these the ‘simulated’ diagrams.

In fitting a model, we found an interesting phenomenon, summarised in Table 1: In
most of the 600 cases, a simple model with K = 1 (i.e. only one neighbourhood term in the
Hamiltonian) was chosen as optimal by AIC and BIC criteria. A natural (at least ‘natural’,
a fortiori) explanation for this comes from the numbers in Table 2.

What Table 2 shows are very strong negative correlations between α and θ2 and θ3,
and between θ1 and θ2 and θ3. (All were statistically significant with p-values less than
10−6.) The negative correlations between the estimates of α and the θi are natural in terms
of our original discussion of the model, and capture the ‘competition’ between its global
and local aspects. The second set indicates a similar competition, and indicates that by

1Originally, “al fréır de los huevos lo verá” (you will see when the eggs are fried). See de Cervantes [1615].
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Active θ parameters θ1 θ2 θ3 (θ1, θ2) (θ1, θ3) (θ2, θ3) (θ1, θ2, θ3)

Count 430 0 0 71 79 0 20
Percentage 72.7 0 0 11.8 13.2 0 3.3

Table 1: Numbers and percentages of models of different types for the Gaussian excursion set example.

playing with one of the parameters it is possible to reduce the effect of another. Precisely
quantifying this effect is what the AIC and BIC indices do, and is presumably behind the
preponderance of the model with K = 1 in Table 1. (As an aside, we note that in this
model the correlation between α and θ1 was -0.1423, with a p-value of 0.0007.)

θ1 θ2 θ3

α -0.0064 -0.3514* -0.4108*
θ1 -0.2409* -0.1822*
θ2 -0.0776

Table 2: Correlations between parameter estimates for the Gaussian excursion set example for the model
with K = 3; i.e. with three θ parameters. Statistically significant correlations are marked with asterisks.

From the point of view of general Statistical Mechanics, the discipline underlying Gibbs
distributions, the preference for the K = 1 model is consistent with experience. Near-
est neighbour models (i.e. Hamiltonians with only a single interaction term) are almost
ubiquitous as models of physical phenomena, and higher level interactions are only rarely
needed.

Further information on the stability of the parameter estimation is provided in Figure
6, which shows the empirical densities of the parameter estimates for all 600, when we fix
the model: Results for the model with K = 1 are shown in Panels (a) and (b), and for the
case K = 3 in Panels (c)-(f). In the case of the θj , we normalise its value for each diagram
by the number of points, n, in the diagram. For reasons that are currently unclear to us,
this normalisation not only produces a slightly smoother empirical density, but also makes
comparison between different examples more natural. In particular, whereas in the current
example the number of points in each diagram ranges from 11 to 23, with about 90% in
the range 14–19, in later examples (sampling from non-concentric or concentric circles, and
from a 2-sphere) the numbers are often much higher. Estimates of the θj grow with this
number, whereas the θj/n remain in the range (−5, 5). Overall, with this normalisation,
the empirical densities for the θj/n estimates, along with the corresponding ones for the
later examples, are an invitation to believe in an asymptotic normal limit for the estimates.
Such limits, while commonly observed in settings like the current one, are infamously hard
to prove.

Another interesting phenomenon, shown in Figure 6 (a) and (c) is the fact that while
the typical choice of the parameter α is around 1.5, the estimation procedure is not totally
averse to setting α = 0 (20 cases out of 600).That is, the model is prepared to do without
the global restrictions imposed by the density f̄G, but does so only rarely.

We now turn to what was our main motivation for this example: seeing if our model
can reproduce the point clouds of Figure 3. To this end, we took each of the simulations
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(a) (b)

(c) (d) (e) (f)

Figure 6: Empirical distributions of α (a) and θ1 (b) in the model with K = 1 for the Gaussian excursions
persistence diagrams. For the model with K = 3, the densities are for α (c), θ1 (d), θ2 (e) and θ3 (f). The
values of θ have all been normalized by the number of points in the diagram.

of ‘original’ diagrams just described, and, on each one, with the parameters estimated
as above, ran an MCMC simulation as in Section 4.3. Figure 7 summarises the results,
superimposing the diagrams of 600 such simulations, at 10, 50, 100, 500 and 1,000 steps
into the simulation, along with the diagrams for the original diagrams.

(a) (b) (c)

(d) (e) (f)

Figure 7: (a) is a superposition of 600 ‘original’ Gaussian excursion set persistence diagrams. (b)–(f) are
similar superpositions from 600 MCMC simulations, at steps 10, 50, 100, 500, 1,000.

Two facts are immediately noticeable. The first is that the general shape in Figure 3
is, in fact, well preserved in the early stages of the simulations. The second is that, as the
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MCMC progresses, a cloud of points separates from the main collection, spreading out in
the directions of lower and higher death times. While visually striking, this phenomenon
is not as remarkable as it first seems. For example, define a ‘vertical outlier’ in a diagram
to be a point for which its distance from the diagonal is at least Q3 + 5(Q3 − Q1), where
Q1 and Q3 are the first and third quartile of all distances in the diagram. Then Table 3
shows the distribution of the 18 diagrams out of 600 which contain vertical outliers, after
500 steps of the MCMC algorithm (this was the case with the largest number of outliers
among those in Figure 7). From the point of TDA, in which many statistical tests are based
on vertical outliers (which measure the bottleneck distance of a diagram from the ‘zero’
diagram, with all points on the diagonal) the implication is that these outliers are going
to have minimal impact on most statistical tests and, even when there is an impact, it will
tend to lead to conservative tests.

Number of outliers 0 1 2 3 4 5 6 7 8 9 10 > 10

Number of diagrams 582 2 10 4 0 0 1 0 0 0 1 0

Table 3: Numbers of diagrams with a specific number of outliers among the 600 simulations of Figure 7

(e) (i.e. at 500 MCMC steps).

The same general comments can be made about the ‘horizontal spread’ in the later
diagrams of Figure 7. In any case, in applying these procedures in a RST/TDA setting,
it is clear that taking 100 steps into the MCMC procedure in order to produce random
perturbations of a given diagram, with similar statistical characteristics, is safe.

5.2 Non-concentric circles

We now return to the example of Section 2.2, coming from sampling from two non-concentric
circles. In particular, we were motivated there by the collection of H0 persistence diagrams
in Figure 5, which showed three almost disjoint clouds of points; one indicating one of the
circles (the other circle being represented by the removed ‘points at infinity’) and two being
essentially noise at two scales, corresponding to the different sized circles.

We simulated 100 samples, thus providing 100 ‘original’ persistence diagrams, one of
which is in Figure 4(c). For each of these we estimated a model, as in the previous section,
taking K = 3 for the maximum number of possible neighbourhoods contributing to the
Hamiltonian. In doing so, as in the Gaussian excursion example of the previous section,
we found very high correlations between the parameter estimates, with ρ(θ1, θ2) = −0.6772
and ρ(θ1, θ3) = −0.6948, both statistically significant with p-values of order 10−14 and
10−15, respectively. Thus it was not surprising that the optimal model (via considerations
of AIC and BIC) overall was often that with only θ1 (i.e. K = 1) and so we adopt this for
the remainder of this example.

Figure 8 shows the empirical densities of the estimates of α and θ1/n, where, as before,
n is the number of points in each diagram (without the ‘point at infinity’). As opposed to
the Gaussian excursion case, very small values of α did not appear among the estimates.

In order to see if our model can reproduce the points clouds of Figure 5, we took each of
the simulations of ‘original’ diagrams just described, and, on each one, with the parameters
estimated as above, ran an MCMC simulation as in Section 4.3. Figure 9 summarises the
results, superimposing the diagrams of 100 such simulations, at 10, 100, and 500 steps into
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(a) (b)

Figure 8: Smoothed empirical densities for the parameter estimates for the H0 persistence diagram, based
on 100 simulations of non-concentric circles. (a) α, (b) θ1/n, where n is the number of points in each
persistence diagram (with the point at infinity, as usual, removed).

.

the simulation. Again, two facts are immediately noticeable. The first, as before, is that the
general shape in Figure 5 is, in fact, well preserved in the simulations. The other, somewhat
unexpected, is the quite rapid disappearance of the small cloud at the left in Figure 5; viz.
the cloud representing ‘signal’ rather than ‘noise’ in the original diagrams. Given that the
main TDA motivation for replicating these diagrams is to detect signal points as outliers,
this is a rather advantageous phenomenon for statistical testing via persistence diagrams.

(a) (b) (c)

Figure 9: 100 superimposed simulated persistence diagrams, at (a) 10, (b) 100, and (c) 500 steps into the
MCMC routine.

The final use that we shall make of this example is related to the model developed in
the earlier paper Adler et al. [2017]. As noted in the Introduction, this model was not as
efficient for modelling complex global structure in diagrams. To show that this is indeed
the case here, consider the persistence diagram of Figure 4(c), with n = 31 points. Fitting
a model with K = 1, yields estimate α = 1.6974 and θ1 = 55.0144, or θ1/n = 1.7747; viz.
when referring to the densities in Figure 8, this is a reasonably typical case. We also fitted
the model from Adler et al. [2017], with the Hamiltonian (14), and then ran the MCMC
model as usual, for each model. The results are presented in Figure 10, which shows the
results 10, 100 and 1,000 steps into the simulation. The red circles are the points of the
original persistence diagram, the green diamonds are the points of the simulated diagram
based on the model of this paper, and the blue stars are the simulated persistence diagram
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based on the model from Adler et al. [2017]. The inability of the older model to capture
the two clusters is clear even from this simple example, a fact also confirmed by larger scale
simulations.

(a) (b) (c)

Figure 10: Comparison, for the non-concentric circles example, of MCMC persistence diagram simulations
based on the model from Adler et al. [2017] (blue stars), with that based on the model of the current paper
(green diamonds), and with the original persistence diagram (red circles). The numbers of MCMC steps are
(a) 10, (b) 100, and (c) 1,000.

5.3 Concentric circles

The next example was also investigated in Adler et al. [2017], and is based on a random
sample of n = 800 points from two concentric circles of diameters 2 and 4, with 500
points chosen from the larger circle, and 300 from the smaller one. Figure 11(a) shows a
typical sample, followed in (b) by the corresponding kernel density estimate, with bandwidth
η = 0.1, and (c) shows the persistence diagrams of the upper level set filtration for both H0

(circles) and H1 (triangles). The ‘point at infinity’ is still there, and the two components
and two circles, all of which have death height 0, are clearly represented.

(a) (b) (c)

Figure 11: A random sample from two circles: 500 points from the larger circle and 300 from the smaller
one, with a kernel density estimate and the persistence diagram for its upper level sets. Black circles are
H0 persistence points, red triangles are H1 points. Birth times are on the vertical axis.

As for the previous examples, our aim is to model the persistence diagram, in this
case only for H0, as there are not enough points in the H1 diagram. Modulo the actual
numerical values of the parameters, the procedure and results are essentially the same as for
the previous example of non-concentric circles, and so we shall not report on all the details
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of the analysis. Indicative of this similarity is Figure 12, which shows the superposition
of 100 H0 persistence diagrams, firstly from the original diagrams, based on the sampling
procedure, and then from 100 MCMC simulations of these diagrams at 10, 100, and 500
steps into the simulation.

(a) (b) (c) (d)

Figure 12: Superposition of 100 H0 persistence diagrams for the concentric circles example, for the original
diagrams in (a), and then 100 MCMC simulations at (b) 10, (c) 100, and (d) 500 steps into the simulation.

Despite the fact that there was little different in the analysis of the concentric circles
case, there is nevertheless a significant disparity between Figure 12 and Figure 9, which
shows corresponding results for the non-concentric circles case. In the previous case, the
points in the diagram separated into two distinct groups, each one corresponding to the
‘noise’ component for a different circle. There seems to be no corresponding separation in
the present case, at least in the examples in Figure 12. However, consider Figure 13.

(a) (b) (c)

(d) (e) (f)

Figure 13: (a) and (d) Persistence diagrams for concentric circles. (b) and (e) Clustering according to the
75% criterion. (c) and (f) Clustering according to the 90% criterion. In all cases clusters must contain at
least 5% of the points.

Figure 13 (a) and (d) show two H0 persistence diagrams, each coming from a MCMC
simulation of diagrams from concentric circles. Apart from the two points to the far left of
Figure 11 (a), corresponding to the two connected components (circles) these are ‘typical’
diagrams (although we have chosen them carefully to enhance the exposition). At first
inspection, there seems to be nothing remarkable about either of these diagrams, other
than, perhaps, a tendency for them to exhibit ‘lines’ of points parallel to the diagonal.
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In order to determine whether this tendency was real or just a visual illusion, we defined,
for each point (d, b), a ‘lifetime’ ` = b − d, and used these lifetimes in order to group the
points into clusters.

The procedure we adopted for this was hierarchical clustering, which groups data over
a variety of scales by creating a multilevel hierarchy resulting in a cluster tree or dendro-
gram. More specifically, we exploited the kmeans clustering routine of Matlab, using the
cosine distance as the distance metric. For the roots of the trees we took those points
that were at distance greater than the 75-th (or 90-th) percentile of all distances in a spe-
cific diagram. All clusters with less than 5% (or 2.5%) of the data points were ignored.
All told, with two choices for the roots and two for cluster sizes, we have the had four
choices for clustering, examples of which are shown in Figure 13. (See, for example, Hastie
et al. [2009] for more information on clustering algorithms in general, and the Matlab site
www.mathworks.com/help/stats/kmeans.html for details on the specifics.)

In Figure 13, points belonging to same cluster are marked with the same colour. Either
two or three large clusters are found, and a little thought shows from where they come.

Returning to the empirical density of Figure 11 (b), note that while the heights of the
two jagged rings there are similar (in fact we choose the sample sizes so that this would
be the case) they are not the same. The peaks of the inner ring tend, on average, to be
a little higher, and the ‘lifetime height’, or distance between them and the nearby local
minima, a little longer than the corresponding numbers for the outer ring. This is what
leads to the two clusters in, for example, Figure 13 (b) and (e). Note that in both of these
cases the lower cluster includes a large number of points close to the diagonal. In (f), using
a finer clustering, the points close to the diagonal are recognised as a separate cluster,
corresponding to what one might call ‘fine scale’ topological noise.

Figure 14 shows that this phenomenon is general, and not restricted to the two persis-
tence diagrams of Figure 13. It shows the frequency distribution of numbers of clusters over
different clustering parameters, for 100 ‘original’ persistence diagrams, and for 100 MCMC
simulations at step 1,000, one for each original diagram. In addition, we have included the
corresponding results for the MCMC simulations based on the model of Adler et al. [2017].

The success of the current procedure in matching the true cluster number distribution
is obvious, as is the improvement gained with the newer Gibbs measure incorporating the
empirical density f̄G.

(a) (b) (c) (d)

Figure 14: Distribution of numbers of clusters in the concentric circles persistence diagrams. The frequen-
cies for the observed diagrams are shown in blue (leftmost in each set of three bars) with orange (rightmost)
for results of an MCMC simulation of the model of this paper at step 1,000, while red (middle) corresponds
to the model of Adler et al. [2017]. In (a) and (b) the initial points of the cluster are taken at the 75-th
percentile, and in (c) and (d) at the 90-th. In (a) and (c) only clusters with more than 5% of the points are
kept, and in (b) and (d), 2.5%. See text for further details.
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Given the clarity of the clustering phenomenon seen in Figure 14, it is natural to ask
why this was not seen in the superpositions of Figure 12. The reason is that the ‘parallel
lines to the diagonal’ seen in Figure 14 occur at different distances from the diagonal in
different realisations, and so the structure is lost, or blurred, under the superpositions of
Figure 12.

A take home message from this is the need to study the probabilistic structure of
persistence diagrams at different scales, which is precisely what the pseudolikelihood (12)
allows for, by incorporating both local and global behaviour.

5.4 The two dimensional sphere

Our final example is also described in Agami and Adler [2017], where it is treated according
the model of Appendix A.1. It is based on a random sample of n = 1, 000 points from the
uniform distribution on the unit sphere S2 in R3, and then smoothing the data (in R3) with
a kernel density estimator of bandwidth of η = 0.1. These two steps are shown as Panels
(a) and (b) of Figure 15.

(a) (b) (c)

Figure 15: (a) Points sampled from a unit sphere. (b) The corresponding kernel density estimator, shown,
for visual clarity, at only a few quantized levels. (c) The corresponding persistence diagram for the upper
level sets of the kernel density estimate on the full sphere. Black circles are H0 persistence points, red
triangles are H1 points, and the single blue diamond is the H2 persistence point. Birth times are on the
vertical axis.

Most of the analysis here is parallel to that of the earlier examples, with the main
novelties being that the empirical density is defined over R3 rather than R2, and that the
H1 persistence diagram contains the same order of magnitude of points as found in the H0

diagram. (74 and 110 points, respectively, for the example of Figure 15 (c).) Consequently
there are more than enough points to fit a spatial model to both diagrams.

A certain (reflected) symmetry is to be expected between the H0 and H1 persistence
diagrams. At the level of Betti numbers, if set βi(u) to be the i-th Betti number of the
excursion set of the empirical density at level u, we must have, for u > 0,

β0(u) = 2 + β1(u),

since the difference β0(u)− β1(u) will always be 2, the Euler characteristic of S2. (For all
u > 0, we must have β2(u) = 0.)

That this reflected symmetry is seen in MCMC simulations of fitted models to the H0

and H1 persistence diagrams can be seen from Figure 16 which presents a (by now familiar)
summary of persistence diagram behaviour via superpositions of many diagrams.

Given this symmetry, it is also to be expected that parameter estimates and correlations
will be similar for both homologies. That this is indeed the case can be seen in the graphs
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(a) (b) (c) (d)

Figure 16: Superpositions of 100 persistence diagrams for the sphere example. (a) H0 for the original
diagrams. (b) H0 for MCMC simulations at step 500. (c) H1 for the original diagrams. (d) H1 for MCMC
simulations at step 500.

of Figure 17, which show the behaviour of the Θ estimates when a model with K = 2 is
fitted. Similarly, Table 4, based on a model with K = 3, shows similar correlations between
parameter estimates. Figure 18 shows information on cluster sizes for this example, as did
Figure 14 for the concentric circles example. It is interesting that, once again, the points
in the diagrams tend to group into a small number of well defined clusters, although for
this example we do not have a clear topological explanation for the phenomenon. How-
ever, as before, the distribution of the number of clusters is well preserved by the MCMC
simulations.

(a) (b) (c) (d)

Figure 17: Smoothed empirical densities for the two normalised parameter estimates in the pseudolikeli-
hood (12) for the H0 and H1 persistence diagrams, based on 100 simulations of a 2-sphere, in a model with
K = 2. (a) H0, θ1. (b) H0, θ2. (c) H1, θ1. (d) H1, θ2.

ρ(θ1, θ2) ρ(θ1, θ3) ρ(θ2, θ3)

H0 0.4844* 0.1848 -0.2079*
H1 0.2517* 0.1766 -0.1345

Table 4: Correlations between parameter estimates for a model with K = 2 for the sphere example and H0

and H1 persistence diagrams. The correlations are calculated over 100 simulations. Statistically significant
correlations at the 5% level are starred.

6 RST and bagplots: Detecting topology

6.1 Bagplots

The notion of bagplots goes back to the seminal paper Tukey [1975], which heuristically
introduced a notion of the ‘depth’ of a particular point, in a cloud of n points, regardless
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18: Distribution of numbers of clusters in the persistence diagrams for the spherical example.
(a)–(d) are for the H0 diagrams, and (e)–(h) for H1. Otherwise the colouring and ordering of the plots is
as in the caption to Figure 14.

of the dimension d of the Euclidean space in which they lie. Known for its originator as
the ‘Tukey depth’, it is the the minimum number of points in the full collection which lie
on one side of a hyperplane through the point. The ‘Tukey median’ of the full set is a
point maximizing the Tukey depth, and a ‘Tukey centerpoint’ is a point of depth at least
n/(d+ 1). A median must be a centerpoint, but not every centerpoint is a median. Neither
need be unique.

The most useful application of this notion of depth is that it provides points which have,
naturally, only the partial ordering of Rd with, up to ties, a total ordering. In particular,
the deeper a point is relative to the cloud, the higher its depth value. This ordering has
proved extremely powerful in extending univariate tools related to signs and ranks, order
statistics, quantiles, and outliers to the multivariate setting in a unified way. (See Serfling
[2006] for a general overview.)

Tukey depth led naturally, in Rousseeuw et al. [1999], to the tool now know as the bag-
plot (sometimes called a starburst plot) which is a method in robust statistics for analysing
high dimensional data, analogous to the one-dimensional box plot. In dimensions d = 2 and
d = 3 it also lends itself to easy visualisation, as in Figure 19 below. Analogously to the
box plot, in these lower dimensions it allows for the visualisation of the location, spread,
skewness, and outliers of the point cloud.

A bagplot plot, for two dimensional point sets, consists of three nested, convex, polygons,
called the ‘bag’, the ‘fence’, and the ‘loop’. The points are first ordered according to Tukey
depth, from highest to lowest depth, with ranking associated at random among ties. The
inner polygon, called the bag, contains (no more than) the first 50% of the points according
to this ranking, and is defined by the convex hull of its members.

The outermost of the three polygons, called the fence, is not drawn as part of the
bagplot, but is used to construct it. It is formed by inflating the bag by an ‘inflation factor’
c > 0. (The default, based on experience, is to take c = 3). The inflation is carried out
with respect to the Tukey median, if it is uniquely defined, or, otherwise, with respect to
the center of gravity of the bag.
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Observations outside the fence are flagged as outliers. The observations that are not
marked as outliers are surrounded by the loop, the convex hull of the observations within
the fence.

Higher dimensional bagplots can be defined similarly, although it is only the three
dimensional ones that are visualisable. In this case the bagplot consists of an inner and
outer bag, with the outer bag drawn in transparent colors so that the inner bag remains
visible.

Bagplots are invariant under affine transformations of Euclidean space, and generally
robust against outliers. For details of the Matlab implementation that we used, see
physionet.org/physiotools/ecg-kit/common/LIBRA/bagplot.m, and for general imple-
mentation details see Mia and der Veeken Stephan [2008], Liu and Zuo [2015].

Figure 19 contains four examples of bagplots for persistence diagrams. The examples
were chosen to demonstrate a number of phenomena of relevance to TDA and the analysis
of the next subsection.

(a) (b) (c) (d)

Figure 19: Bagplots of persistence diagrams from the concentric circles example. See text for details.

The bags and loops are all clear in Figure 19, with the former a darker color than the
interior of the latter. Outliers are marked with stars, and the Tukey median with a plus.
All the persistence diagrams are H0 diagrams and come from the concentric circles example
of the previous section. Since the point at infinity has been removed, we would hope to
be able to identify one point of the diagram as signalling a component, and classify the
remaining points as noise. The four examples here do this with varying degrees of success.

Example (a) is what we would hope for. The single outlier at death time 0 is clearly
identified, and identifies the component we are looking for. Example (b) is reasonable.
Although there are two outliers here, the additional one is so close to the diagonal that
it is clearly a consequence of noise, and no statistical test is needed to know it is of no
consequence. In general, points of this kind, which arise due to very small, very local,
fluctuations in the empirical density of the diagram, are unavoidable but meaningless.
Example (c) also has an additional point identified as an outlier, which ‘only just’ makes
it into this category. Looking at the diagram, one would be inclined to ignore it, but
any automated statistical procedure would classify it as significant, as indeed it should.
(This, after all, is what Type I error rates are all about in Statistics.) Example (d) is
disappointing, as a rather unusual arrangement of points at the top of the diagram lead to
the ‘signal point’ being included within the fence.

The summary from Figure 19 is therefore that only in one out of four cases do bagplots
correctly identify the ‘signal point’ as an outlier. However, it turns out that situations such
as (c) and (d) actually occur rarely (i.e. with low probability) in the sampling problems
being discussed here, and so they fall, respectively, into the classes of Type I and Type II
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Errors; viz. random fluctuations that can lead to false discoveries or to failing to identify
true phenomena. Situation (b) occurs more often, but the position of the outlier, along the
diagonal, shows little in the way of consistency across different samples. Furthermore, as
we already noted, these points are so close to the diagonal that they are easily discounted.

To see how bagplotting works in practice, we now look at a specific example, combining
the technique with the replication methodology developed throughout the paper.

6.2 Bagploting for topology: An example of RST in action

We continue now with the example of Section 5.3, based on sampling from two concentric
circles. Our aim is to see how well we can detect the single ‘real’ outlier in the persistence
diagrams such as those in Figure 19 and, more importantly, how we can assign levels of
statistical significance to detections.

Some notation for this, in a very general setting (i.e. not restricted to concentric circles):
Let P = {P1, . . . , Pm} be a collection of m original persistence diagrams. In most cases,
unfortunately, we will have m = 1. Using the techniques of earlier sections, let P̂k =
{P̂k,1, . . . P̂k,n}, k = 1, . . . ,m, be a collection of n = n1 + n2 MCMC simulations associated
with the original diagram Pk, after model fitting. Let Bc = {Bc

1, . . . , B
c
m} be the collection

of m bagplots for the diagrams of P, with inflation factor c, and B̂ck = {B̂c
k,1, . . . B̂

c
k,n} the

corresponding bagplots for the diagrams of P̂k.
In most practical situations, of course, one would have only one sample persistence

diagram (m = 1), which we denote by P , one set of MCMC simulations, P̂, and one set of
bagplots, B̂ = {B̂c

1, . . . B̂
c
n}, and so we shall first develop a general statistical procedure for

identifying topological signal points in this situation.
We first need to fix some external parameters, chosen from general considerations for

the problem at hand; viz.

(i) Fix a p∗ ∈ [0, 1] as an acceptably small probability of making initial bad guesses about
how many topologically significant points there might be in the diagram. We found
that p∗ = 0.05 was a reasonable choice.

(ii) A range [C∗, C
∗] of possible values for the bag inflation factors, along with a step size

δ > 0, giving a collection Cδ = {C∗, C∗ + δ, C∗ + 2δ, . . . , C∗} of inflation factors.

(iii) An integer A, denoting an upper bound (not necessarily tight) to the number of
topologically significant points that, a priori, might be expected.

With these choices, the procedure is as follows:
The above algorithm is designed to handle a single original persistence diagram. In

the fortunate situation that replications of the underlying experiment led to a number of
diagrams, there are at least two natural approaches for adapting this algorithm. The first is
to simply apply it individually to each diagram, identifying p-values throughout, and then
combine the results with any of the standard methods of multiple testing. The second is to
exploit the fact that there are multiple diagrams, and use the original diagrams themselves,
or go a short distance into the MCMC to take mild perturbations of them, rather than the
first n1 MCMC simulations as in Algorithm 2, for computing the C∗ of (13).

The reader will certainly be able to think of other variations of the general procedure
for the multiple diagram case, and, indeed, natural adaptions of Algorithm 2. Our aim here
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Algorithm 2 Bagplot detection of topological signal in persistence diagrams.

1: For each c ∈ Cδ, and each B̂c
1, . . . B̂

c
n1

, compute the number of outliers, denoted by
Oc1, . . . , O

c
n1
, in each bagplot.

2: Choose an inflation factor C∗. One way to do this, which we found useful in practice,
is to take

C∗ = min
{
c ∈ Cδ : n−1

1

n1∑
i=1

1Oc
i≥A ≤ p∗.

}
. (13)

3: For each of the bagplots B̂C∗
n1+1, . . . B̂

C∗
n1+n2

find the points in the original diagram P
which lie beyond the fence; i.e. are outliers.

4: To each point x in the original diagram P , let f(x) be the proportion of times that
x is classified as an outlier in the previous step. Declare 1 − f(x) to be the ‘p-value
associated with x’. That is, if x is now classified as ‘topologically significant’, then
1− f(x) can be interpreted as an estimate of the probability that this classification is
incorrect.

is not to present a fully polished and tested approach, but rather to introduce the idea of
using bagplots, and to show how this fits naturally into a RST framework.

To see how well these ideas work in practice, we carried out a numerical experiment,
using the 100 samples of 800 points on concentric circles as in Section 5.3, and for each
one computed a H0 persistence diagram for its empirical density. We then followed the
procedure of Algorithm 2, with the adaption of using the 100 original diagrams to estimate
C∗, as described above. With A = 2 and p∗ = 0.05, this led to C∗ = 2.92, a little smaller
than the standard default value of 3.

In order to summarise the results, in each of the 100 original diagrams, Pk, we ordered
the frequencies f(x) from largest to smallest, so that

f∗k (1) = maxx∈Pk
f(x), p∗k(1) = argmaxx∈Pk

f(x),

f∗k (j + 1) = max
x∈Pk\∪ji=1p

∗
k(i)

f(x), p∗k(j + 1) = argmax
x∈Pk\∪ji=1p

∗
k(i)

f(x), j ≥ 1.

Histograms for each of the sets {f∗k (j)}100
k=1 are shown in Panels (a)–(c) of Figure 20.

Alternatively, the first three rows of Table 5 show more succinct, and easier to absorb,
information. For example, looking at the first block of results (those with “ε = 0”, a
parameter that will be explained in a moment) in the table, we see that, in 93% of the
cases, the most extreme point in the original persistence diagram (which we know to be
‘real’) was assigned a p-value of less that 0.01, and in 99% of the cases a p-value of less
than 0.05. These are excellent results.

On the other hand, the second and third most extreme points (which we know to be
‘noise’) were assigned low p-values an uncomfortable number of times. For example, the
second point was assigned p-values of less than 0.01 and 0.05 in 16% and 39% of the cases,
respectively. This is far too often to be reasonable, from a practical point of view.

Studying the actual boxplots one sees immediately from where come these relatively
high p-values: from outliers of that are perhaps removed from the main bulk of points, but
extremely close to the diagonal, as in the outlier of Panel (b) of Figure 19. These are clearly
points that should not be considered informative, and so we repeated the above analysis,
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(a) ε = 0, First outlier (b) ε = 0, Second outlier (c) ε = 0, Third outlier

(d) ε = 0.001, First outlier (e) ε = 0.001, Second outlier (f) ε = 0.001, Third outlier

(g) ε = 0.002, First outlier (h) ε = 0.002, Second outlier (i) ε = 0.002, Third outlier

(j) ε = 0.005, First outlier (k) ε = 0.005, Second outlier (l) ε = 0.005, Third outlier

Figure 20: Histograms for frequencies (1 minus the p-values) of first, second, and third most significant
points in the 100 persistence diagrams from the concentric circle example. See text for details.

but, this time, ignored all outliers that were a distance of ε or less from the diagonal. Since
there is no way to know what a ‘good value’ of ε should be, we took three different values,
0.001, 0.002 and 0.005. These represent, on average, approximately 0.25%, 0.5%, and 1.25%
of the distance from the diagonal to the furthest point in the diagram. That is, all are so
close to the diagonal that no statistical test is needed to be comfortable with a decision to
ignore them.

However, it turns out that the specific value of ε chosen does not matter very much,
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ε Outlier p-value
number ≤ .01 ≤ 0.05 ≤ 0.10

0.000 1 .93 .99 1.00
2 .16 .39 .72
3 .03 .11 .38

0.001 1 .92 .99 1.00
2 .14 .28 .58
3 .02 .06 .19

0.002 1 .92 .99 1.00
2 .12 .27 .54
3 .02 .05 .16

0.005 1 .92 .99 1.00
2 .11 .21 .47
3 .01 .02 .09

Table 5: Frequency at which p-values were found for the first, second, and third most significant points in
the 100 persistence diagrams from the concentric circle example. See text for details.

as long as it is non-zero. Panels (d)–(l) of Figure 20 contain histograms corresponding
to (a)–(c), arising from a repetition of the experiment described above, but with outliers
close to the diagonal removed, for each of the three non-zero values of ε. Similarly, the last
three blocks of Table 5 summarise the decisions one would reach based on these results. The
result is that the rate at which the true outlier is identified is essentially unchanged, the rate
at which ‘false’ outliers are identified as ‘true topological signal’ is significantly reduced,
for both the second and third outlier, all p-values, and all values of ε. Perhaps most
importantly, from the point of view of practice, is that the results are basically insensitive
to the specific value of ε.

In summary, despite the fact that the bagplot based RST procedure here is rather
involved, with quite a lot of wishful thinking along the way, in practice it seems to work
remarkably well.

A Appendices

A.1 Simulating from f̄G

While the MCMC calculations of the paper are well summarised in Algorithm 1 of Section
4.3, sampling from the distribution f̄G(x) of (11) itself requires some care. While reasonably
straightforward, there are numerical subtleties, and so for completeness we describe the full
procedure here.

Recall that f̄G(x) is just the kernel density estimate f̂G, restricted to R × R+, and
normalised. To sample from it, we first denote by R the smallest rectangular subset of the
half plane which includes the set {x ∈ R × R+ : f̄G(x) > ε}, for some ε > 0 that is case
specific. Then divide R into I1× I2 equal sized rectangles Iij , where I1 and I2 are typically
of the order of 100, but, again, case specific.

The second step involves assigning probabilities to these rectangles, which, a prior, could
be done by integrating f̄G over each one. However, noting the original empirical density f̂G

comes from a Gaussian kernel, considerable computational time is saved by first defining
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its integrated version

F̂G(x)
∆
=

1

n

n∑
i=1

ΦΣ(x− xi),

where ΦΣ is the Gaussian (cumulative) distribution function corresponding to the Gaussian
kernel in the definition of f̂G. Extend F̂G to a measure on rectangles in the usual way, and
define the probabilities (which now sum to 1)

pij =
F̂G(Iij)∑I1

i=1

∑I2
j=1 F̂

G(Iij)
.

By taking any linear enumeration of the indices (i, j) it is now trivial to chose a rectangle
at random, according to these probabilities, by the inverse transform method (e.g. Robert
and Casella [2004], Brooks et al. [2011]).

Having chosen a rectangle, we now chose a point uniformly, at random, from it. This is
the value x∗ taken for Step 3 of Algorithm 1.

A.2 The model of Adler et al. [2017]

The model originally developed in Adler et al. [2017], as with the one used in the current
paper, was a Gibbs distribution, and so can be described through its Hamiltonian, as below,
retaining the notation of Section 3. We shall do this only for projected persistence diagrams,
so that each point x in the diagram is of the form x = (x(1), x(2)) ∈ R× R+.

Define

σ2
H =

∑
x∈x̃N

(
x(1) − x̄(1)

)2
, σ2

V =
∑
x∈x̃N

(
x(2)

)2
,

where x̄(1) = N−1
∑N

i=1 x
(1)
i , so σ2

H is the variance of the horizontal points. On the other
hand, σ2

V is square of the L2 norm of the vertical points, rather than the centred variance
(because of the non-negativeness of the x(2)).

For integral K > 0, a collection Θ = (θH , θV , θ1, . . . θK) of R-valued parameters, and a
δ > 0, define the Hamiltonian

HK
δ,Θ(x̃N ) = θHσ

2
H + θV σ

2
V + δ−2

K∑
k=1

θk

N∑
i=1

∑
z∈Nk(xi)

‖z − xi‖1{‖z−x‖≤δ}. (14)

With this Hamiltonian replacing the one defined by (7) the remaining development in Adler
et al. [2017] – in particular that of an appropriate pseudolikelihood model – is parallel to
that in Section 3.

We note though the main differences between the models. The first is the parameter δ,
which limits nearest neighbour interactions only to those neighbours that are closer than δ.
This had a mild numerically stabilising effect in the model defined by (14), that, for reasons
that are not entirely clear, disappeared in the model of the current paper. Consequently,
we no longer use it. The first two terms in the Hamiltonian, involving second moments,
were intended to play the role that the empirical density f̄G plays in the current paper;
viz. they controlled the overall shape of the random diagrams, and worked “against” the
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control resulting from the nearest neighbour interactions. However, as shown by most of
the examples in Section 5 – in particular the Gaussian excursion set and non-concentric
circles examples – these terms were not able to capture many of the subtleties found in
persistence diagrams. Furthermore, as the MCMC simulations progressed, the simulated
diagrams had a tendency to move towards the diagonal, in a fashion that was inconsistent
with their overall use.
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