arXiv:1902.05855v3 [math.AT] 17 Sep 2019

Tree decomposition of Reeb graphs, parametrized complexity, and
applications to phylogenetics

Anastasios Stefanou [1]

Abstract

Inspired by the interval decomposition of persistence modules and the extended Newick format of
phylogenetic networks, we show that, inside the larger category of ordered Reeb graphs, every Reeb graph
with n leaves and first Betti number s, is equal to a coproduct of at most 2° trees with (n + s) leaves.
Reeb graphs are therefore classified up to isomorphism by their tree decomposition. An implication
of this result, is that the isomorphism problem for Reeb graphs is fixed parameter tractable when the
parameter is the first Betti number. We propose ordered Reeb graphs as a model for time consistent
phylogenetic networks and propose a certain Hausdorff distance as a metric on these structures.

Key words. Coproducts, decomposition, complexity, Betti number, Reeb graphs, phylogenetic networks.

Acknowledgements

A. Stefanou was partially supported by the National Science Foundation through the grant NSF-CCF-1740761
TRIPODS TGDA@OSU, and also by the grant NSF DMS-1440386 Mathematical Biosciences Institute, at The
Ohio State University. The author gratefully thanks two anonymous reviewers whose feedback significantly increased
the quality of the manuscript. Furthermore, the author thankfully acknowledge F. Mémoli, E. Munch, J. Curry,
S. Kurtek, W. KhudaBukhsh, and A. Foroughipour for many helpful discussions during the course of this work.

1 Introduction

Reeb graphs encode the evolution of connected components of a space X along a real valued map f on X [3I].
Originated from Morse theory, Reeb graphs have been of particular interest to the fields of computational geometry
[13], [2], |23] ,[18], and computational topology [28], [20], [14], [3], and they have found a plethora of applications in
computer graphics and computer science [21], [24], [12], [22], [I7], [35]. See [4] for a survey. One variation of Reeb
graphs that has recently been proposed is Mapper [33] which has been quite successful on big data sets [30], [37].

1.1 Related work

de Silva et al. (2016) showed that any Reeb graph can be identified with a constructible Set-valued cosheaf on R
[16]. Thus, Reeb graphs can be thought of as generalized persistence modules in the setting of Bubenik et al. (2015)
[8]. A generalized persistence module is any functor F : P — C from a poset P to a category C [8]. When P = (R, <)
the poset of real numbers and C = vecty is the category of finite dimensional k-vector spaces, we obtain the
notion of a pointwise finite dimensional (p.f.d.) persistence module. Crawley-Boevey (2015) has shown that every
p.f.d. persistence module V : (R, <) — vect, decomposes into a direct sum of interval persistence modules [I5]. The
multiset of intervals B(V) associated to V is called the barcode of V [II]. Because of this decomposition, one can
easily check that the isomorphism complexity of p.f.d. persistence modules is polynomial.

However, this is no longer true for arbitrary generalized persistence modules. Bjerkevik et al. (2018) has shown
that the isomorphism complexity of Reeb graphs is GI-complete [6], namely deciding if two Reeb graphs are isomorphic
it is at least as hard as the graph isomorphism problem. However the graph isomorphism problem has shown to be

Istefanou.3@osu.edu; 614-688-3198
ORCID id: https://orcid.org/0000-0002-5408-9317
Mathematical Biosciences Institute; Department of Mathematics
The Ohio State University

fixed parameter tractable with respect to several parameters, such as: tree-distance width [36], tree-depth [7], and
tree-width [26]. Hence it is natural to wonder whether Reeb graphs, like graphs, are fixed parameter tractable with
respect to some topologically meaningful parameter.

On the other hand, we can think of any Reeb graph as a weighted directed acyclic graph. Weighted directed
acyclic graphs are used as the main method for modelling phylogenetic trees and networks [9], [5], [32], [25]. The
isomorphism classes of phylogenetic trees are in one to one correspondence with nested parentheses, a method known
today as the Newick format, which was already noticed by A. Cayley (1857). For general phylogenetic networks,
Cardona et al. (2008) proposed a variant of the Newick format, called the extended Newick format [I0]. The idea is:
given a fixed ordering on the children nodes of a rooted phylogenetic network with n-labelled leaves and s reticulations
(Betti number), we can represent that network as a phylogenetic tree with (n + s)-labelled leaves where some of the
leaves are allowed to have repeated nodes. A. Dress (2007) proposed a categorical approach to view phylogenetic
networks called X -nets [19].

1.2 Our contribution

Inspired by the decomposition of p.f.d. persistence modules into interval persistence modules, we show that any Reeb
graph decomposes into a coproduct of trees. The construction of each of these trees is an analogue of the extended
Newick format in the setting of arbitrary Reeb graphs (not necessary rooted). First, in Sec. 2 and 3 we mention the
basic definitions and tools from category theory [27], and the setting of Reeb graphs as studied in [I6], which we
need in order to formulate properly the tree decomposition of Reeb graphs. In Sec 4 we show that the category of
Reeb graphs with a fixed edge structure forms a thin category inside of which every Reeb graph decomposes into a
coproduct of trees. As an implication of this decomposition, we show that Reeb graph isomorphism is fixed parameter
tractable where the parameter is the first Betti number.

2 Categorical structures

Category theory is fundamentally a language that formalizes mathematical structure having the capability of bridging
together different mathematical constructions or theories. In this section we give the basic definitions and tools from
category theory that we need.

2.1 Basic definitions

Category theory is a general theory of functions. A general notion of a function is called a morphism and the notion
of a set is replaced by an object. An object can be any mathematical construction and its not necessary to be a set. In
contrast with set theory the focus is concentrated in the study of morphisms between objects rather than just study
the objects themselves. In particular, we require that morphisms between objects to have a composition operation
that is associative and unital. The structure we obtain is said to be a category. A good source for an introduction to
category theory is [27].

First we define the notion of a category. Here by a class we mean a collection of sets that is unambiguously
defined by property that all these sets share in common. A class might not be a set and if that is the case is called a
proper class.

Definition 2.1. A category C consists of

e a class ObC whose elements X, Y, ... are called objects, together with

e for each pair of objects X,Y in C a set Mor¢(X,Y), whose elements are called morphisms and denoted by
f:X — Y, and each having a unique source X and a unique target Y,

e for each object X in C an identity morphism Ix : X — X,
e a binary operation o : Mor¢(X,Y) X Mor¢(Y, Z) — Morc(X, Z), (f,g9) — go f called composition which is
associative and unital, i.e.
ho(gof)=(hog)of
folx =Iyof

for any triple of morphisms f: X - Y, g:Y > Zand h: Z — W in C.

Definition 2.2. A morphism f : X — Y is said to be an isomorphism from X to Y if there exists a morphism
g:Y — X (often called the inverse) such that go f = Ix and f o g = Iy. Two objects are said to be isomorphic if
there exists an isomorphism from X to Y.

Example 2.3. Examples of categories include:
e the category Set whose objects are sets and morphisms are functions between sets
e the category Top whose objects are topological spaces and morphisms are continuous maps.
e the category Groups whose objects are groups and morphisms are group homomorphisms
e the category Ab whose objects are abelian groups and morphisms are group homomorphisms

Definition 2.4. A category D whose objects and morphisms are in C and with the same identities and composition
operation as of C is said to be a subcategory of C.

Let C be a category and let S be any subset of ObC. Then we can consider the same sets Morc¢(X,Y) of morphisms
between X,Y € S. That way we obtain a category with the same morphisms but fewer objects. We say that S forms
a full subcategory of C. In a full subcategory we only need to specify what are the objects so we often say S is the
full subcategory of C whose objects are in S. For example the category Ab is the full subcategory of Groups whose
objects are abelian groups.

Example 2.5. The type of categories we work on are the following:

e slice categories: given a category C and an object X we consider the slice category C | X whose objects are
tuples (Y, f) where Y € ObC and f € Mor¢(Y, X), and morphisms ¢ : (Y, f) — (Z, g) are ordinary morphisms
¢:Y — Z in C such that go p = f.

e thin categories: a category C is called thin if for every pair of objects X,Y in C there exists at most one
morphism f: X — Y in C. When a morphism f : X — Y exists we write X < Y. A thin category coincides
with the notion of a preorder.

Now, we define the notion of maps that preserve the structure of a category.
Definition 2.6. A functor F : C — D between categories consists of
e a function F : ObC — ObD, X — F(X), together with
e for each pair of objects X,Y in C, a function
Fxﬂy : 1\/.[01‘(;()(7 Y) — MOI‘D(F(X),F(Z))
= F[f]
such that for any object X and any morphisms f: X - Y, ¢g:Y — Z in C:

Flgo f] = Flg] o F[f]

When C = D, F is called an endofunctor. A special case is the identity endofunctor I¢ : C — C that sends each object
and morphism to itself.

The collection of all functors from a category C to a category D forms a category on its own called a functor category
and it is denoted by [C,D]: the objects are functors F : C — D and the morphisms are natural transformations
n:F=G.

Definition 2.7. A natural transformation n: F = G consists of a family of morphisms nx : F(X) — G(X) in D
one for each object X in C, such that the diagram

F(X) 25 G(X)

| [t

F[f]
F(Y) 25 G(Y)

commutes for every morphism f: X — Y in C. In the special case where each nx is an isomorphism in D, then 7 is
said to be a natural isomorphism and we write F & G.

Every time we write F = G we mean there exists a natural isomorphism 7 : F = G.

Definition 2.8. A pair of categories C, D are said to be equivalent if there exist functors F:C - D and G: D — C
such that Fo G 2 Ip and GoF = I¢. In the special case where F o G = Ip and G o F = I¢, the categories C and D
are said to be isomorphic.

2.2 Coproducts

We define the notion of a coproduct of objects in a category C. This is the dual notion of a product [27]. However,
here we focus only on the definition of coproducts since this is the only notion we use.

Definition 2.9. Let Xi,..., X, be objects in C. An object is called the coproduct of X1, Xa, ..., Xy, written [[X,
if there exist morphisms ¢; : X; — [[X4, j = 1,2, ..., n satisfying the following universal property: for any object Y’
and any pair of morphisms f; : X; =Y, 7 =1,2,...,n, there exists a unique morphism f : [X; — Y such that the
diagrams

Xj *}Lj HXz

PN

Note that by the universal property of coproducts, the morphisms ¢; are uniquely defined up to a unique natural
isomorphism. The morphisms ¢; : X; — [[X; are called coprojections.

commute for j =1,2,...,n.

Definition 2.10. An object X is said to be decomposable if it is isomorphic to a coproduct of n objects in C where
n > 2. Otherwise X is said to be indecomposable.
Example 2.11. Here we give some basic examples of categorical coproducts.

e If C is the category of all sets Set, then the coproduct is given by the disjoint union [of sets.

e If C is the category of groups Groups then the coproduct is given by the free product * of groups.

e If C is the category of abelian groups Ab then the coproduct is the direct sum @ of abelian groups.

3 Combinatorial structures

In this section we consider the setting of Reeb graphs as developed by V. de Silva et al. (2016) [16]. We define Reeb
graphs and examine how they relate to directed acyclic graphs.

3.1 Reeb graphs

The main tool we use to visualize relationships among objects is a graph. A graph G = (V,E) consists of a collection
V of objects called vertices, e.g. v1,v2,... and a set E of connections ey, ez, ... between vertices called edges.

Generally we can define a Reeb graph as a connected graph X together with a real valued map f : X — R which
is strictly monotone when restricted to edges. However with this definition we are not making precise the exact way
X can be constructed in conjunction with the map f being monotone restricted to edges. Making this more precise
is what we do in this paragraph.

First we need to talk about the general setting of R-spaces. An R-space (X, f) is a space X together with a real
valued continuous map f : X — R. A morphism of R-spaces (X, f), (Y, g)-also called a function preserving map—is
an ordinary continuous map ¢ : X — Y such that g o ¢ = f. The collection of these objects forms the slice category
Top | R. Now let us return to Reeb graphs.

Definition 3.1. A connected R-space (X, f) is said to be a Reeb graph if it is constructed by the following procedure,
which we call a structure on (X, f):
Let S = {a1 < ... < ar} be an ordered subset of R with k > 2.

e For each i =1,...,k we specify a non-empty set V, of vertices which lie over a,,

e For eachi=1,...,k — 1 we specify a non-empty set of edges E; which lie over [a;, ai+1]
e Fori=1,...,k— 1, we specify a ‘down map’ D, : E;, = V;

e Fori=1,...,k— 1, we specify an ‘upper map’ U; : E; — V;41.

The space X is the quotient U/ ~ of the disjoint union

o= (1107 * o)) TT(TE=: % o))

i=1 =1

with respect to the identifications (D;(e), a;) ~ (e,a;) and (Ui(e), air1) ~ (e,ai41), for all i = 1,...,k — 1, with the
map f being the projection onto the second factor.

Remark 3.2. Note that to every Reeb graph corresponds a unique minimal set S, known as the critical set of X [16].
We consider a definition for arbitrary set S because this allows for more flexibility: we can describe the morphisms
between Reeb graphs easily if we consider a common set S for both Reeb graphs, e.g. by considering the union of
their two S-sets.

The set V =]_[le V; is said to be a vertez-set for X and the set E =]_[f;ll E; is said to be a edge-set for If
we forget the map f associated to a Reeb graph, then topologically X forms a graph (V,E) on its own. See Fig. 1 for
an example of a Reeb graph.

Definition 3.3. A morphism of Reeb graphs (X, f) and (Y, g) is any morphism ¢ : (X, f) — (Y, g) between these
R-spaces.

Thus, the collection of all Reeb graphs forms a full subcategory Reeb of Top | R. As shown in [16] Reeb graphs
can be identified with constructible Set-valued cosheaves on R. This equivalence of categories allows for one to
consider the following combinatorial description of the morphisms of Reeb graphs.

Proposition 3.4 (Prop 3.12 in [16]). Let (X, f),(Y,g) be a pair of Reeb graphs with a common set S = {a; <
. < ag}, let VX, V¥, and EX, EY be their vertex-sets and edge-sets respectively. Any function preserving map
v : (X, f) = (Y, g) of Reeb graphs is completely determined by
e Functions ¢} : V§ — V¥
e Functions ¢f : EX — EY, satisfying the

e Consistency conditions: @’D} = Dg{cplg and 4,0‘1-/_,_1Ufg =U o forall 1 <i<k—1.

Any function preserving map ¢ : (X, f) — (Y, g), since f and g are by definition the projections to the second
coordinate of X and Y respectively, is given by

o: (X, f) > (Y,9)
[(v,8)] = [(¢i (v),1)], for all v € V5, for all i = 1,..., k.
[(e,8)] = [(¢F(e),)], for all e € EX, for all i =1...,k —1f]

3.2 Reeb graphs viewed as directed acyclic graphs

If we allow the edges e of a graph G to have a direction, i.e. z = y then the resulting graph is said to be a digraph
and the edges are called directed edges or arrows. A directed path of length n on a digraph is a sequence of arrows
To —>T1 —> Ta —> T3 —> ... Tpn_1 — Tn in G. A directed path that starts and end at the same vertex is called a
directed cycle. A digraph with no directed cycles is said to be a directed acyclic graph (DAG).

With the map f: X — R, we give a direction to each edge e connecting x1 and z2 in X, by declaring e : 1 — x2
whenever f(z1) > f(z2). That way, the underlying graph (V,E) of a Reeb graph X obtains the structure of a directed
acyclic graph. Furthermore, each vertex v of X receives a real weight w(v) := f(v) via f. So, every Reeb graph can
be thought of as a vertex-weighted DAG.

Remark 3.5. Note, in particular, for Reeb graphs, because of the vertex-weight w(v) := f(v) each directed edge
e : 1 — X2 receives a strictly positive weight w(e) := f(z1) — f(z2) > 0, where f(z1) = ai+1 and f(x2) = ay, for
some i =1,...,k — 1, are consecutive critical numbers of (X, f).

Let (X, f) be a Reeb graph with critical set S = {a1,...,ar}. Let = be a vertex of X with f(z) = a;. Then
an edge e € D;*(z) (e € U;Z}) is said to be an edge incident from above (below) of z. Also the number of edges
indeg(x) = |D;*(z)| that are incident from above of x is called the indegree of x. Similarly, the number of edges
outdeg(z) = |U; Y (z)| is called the outdegree of x.

There are three cases that can happen for a node x:

e If indeg(z) < 1, then z is said to be a tree-vertex.

e If indeg(z) > 2 and with = a cycle in the Reeb graph (viewed as a DAG) closes (z is the ‘bottom’ of a cycle),
then z is said to be a reticulation-vertez.

e If indeg(z) > 2 and with z no cycles closes in the Reeb graph, then z again is said to be a tree-vertex.

2the reason we call these sets in this way, e.g. we say ‘a vertex-set’ instead of ‘the vertex-set’, is because they depend on the
choice of S.

| < |

m
s

=
—
o8]
s

3

CH |

E:x [a;,a.]
| o,
] Vax {as}

T U,
E.x [a,,a,]
Lo

VaX {a,}

Tu.

E x [a,,a,]
D.
| Vix {a,}

®» I_I\Z[

—
e
JLIES] I_Ix‘

“
e

H

F,
»|

2

o< | — [

Figure 1: An example of a Reeb graph

A vertex z such that indeg(z) = outdeg(z) = 1 is called regular. We denote by T'(X) the set of tree-vertices of X,
and by R(X) the set of all reticulation-vertices of X. If (outdeg(z) = 0) or (outdeg(z) = 1 and indeg(z) = 0), then
z is said to be a leaf. By definition, it may happen that a leaf is also a reticulation-vertex (i.e. outdeg(z) = 0 and
indeg(z) > 2).

Remark 3.6. The reason we consider this definition of leaves is so that the tree decomposition of Reeb graphs to

work for this type of reticulation vertices. This would be more clear in Ex.

We denote by L(X) the set of all leaves of X. Then, L(X) C T'(X).

Viewing Reeb graphs as DAGs is also important for computing the Betti number s = B;(X) of a Reeb graph X.
The Betti number counts the minimum number of cycles of a graph that generate all possible cycles in the graph.
By definition, a Reeb graph (X, f) is a tree if and only if it has no reticulation-vertices (and thus, no cycles). Since
X is always connected by definition, the Euler characteristic provides the formula

s = [E[- [V[+1,
Furthermore, from the theory of directed graphs we have the degree sum formula
Z indeg(z) = Zoutdeg(z) = |E|
zeV zeV

By combining these two equations we get

s=1+ Z(indeg(m) -1).

zeV
Proposition 3.7. Let r1,...,ry, be the reticulation-vertices of X with indegrees di,...,d,, > 2 respectively. Then
S = Z(dl — 1)
i=1

Proof. Thinking of X as a DAG, then if we remove for each reticulation-vertex r; all of its incident from above
edges except one, from the DAG X, then we get back a directed tree Tx = (VTX,]ETX) having the same tree-vertices
and their—incident from above—edges as in X plus another m-additional vertices, 71, ..., 7y, that now are viewed as
tree-vertices, each having indegree 1. This implies that T'(Vx) U {r1,...,7m} = V7* and > it (indegy, (7)) —1) = 0.
We compute

s=1+ Z(indeg(m) -1)

=1+ z%w(indeg(m) —1)+ %%V)(indeg(m) —-1)
=1+ > (indeg(z) —1)+0+ i(di —1)
€T (V) i=1
=1+ ZT%V)(indeg(x) -1+ i(indegTX (r) — 1) + i(di —1)
=1+) (indeg(z) — 1)+ :n (d; — 1)

— STX —+ Z(dl — 1)
=1

=O+Z(di—1)

i=1

= Z(di —1).

O

Finally, note that although any Reeb graph can be thought of as a vertex-weighted DAG, the other direction is
not true: not every vertex-weighted DAG is a Reeb graph.

Example 3.8. Consider the vertex-weighted DAG, G = (V(G), E(G),w), that has edges e1 = (z1,z2), e2 = (z2, x3)
connecting x1 with x2 and z» with x3 and an edge es = (z1,x3) connecting directly x1 with x3 with a single
edge, and such that w(z1) = 2, and w(z2) = w(zs) = 1. Then we claim that there exists no Reeb graph (X, f)
such that V(X) = V(G) and fjy(g) = w. Indeed assume the contrary there is one such f. Then f(x1) = 2 and
f(z2) = f(z3) = 1. By definition of G, there exists an edge ez : x2 — x3. By Remk. we get a strictly positive
edge-weight w(ez) > 0. Howver we compute w(ez) := f(z2) — f(x3) = w(z2) — w(zs) =1 —1 =0, a contradiction.
Hence the weighted DAG G cannot be realized as a Reeb graph. This DAG it is not consistent with ‘time’ in the
sense that the edge e2 = (x2,x3) represents a change in the nodes from z2 to x3 that happen instantaneously. In
other words the edge ez is a ‘horizontal’ edge. Reeb graphs cannot have horizontal edges, from their construction.

T1
Ty ——————— I3

4 Classifying Reeb graphs up to isomorphism

We show that inside a larger category of Reeb graphs, any Reeb graph is a coproduct of trees.

4.1 Ordered Reeb graphs

Definition 4.1. An ordered Reeb graph (X, f,<x) is an ordinary Reeb graph (X, f) such that its edge sets and its
vertex sets as in Defn. are in particular partially ordered sets (posets), i.e. (E;, <g,),i=1,...,k—1, and (V;, <y,),
i=1,...,k, and also the down maps and upper maps preserve the partial orders, i.e. U; : (Ei, <g,) = (Vit1, <v,,,),
and D; : (E;, <g;,) — (Vi,<v,), for i =1,...,k — 1. The partial orders of the edge posets and vertex posets induce a

partial order both on the disjoint union and the quotient space, namely the Reeb graph, denoted by <x. Indeed, it

is known that the category Pos of posets, just like sets, admit coequalizers and therefore quotients (see Joy of Cats,
pg 119, [1]).

Definition 4.2. We define the category Reeb®"® whose
e objects (X, f, <x) are ordered Reeb graphs.
e morphisms ¢ : (X, f, <x) — (Y, g, <y) are ordinary morphisms of Reeb graphs ¢ : (X, f) — (Y, g) that preserve
the partial orders of the edge posets and vertex posets, i.e @® : (BEF, <gx) — (BY, <gv), i =1,...,k—1, and
@Vt (VE, SV;E) — (V7 Sw), i=1,...,k, are order preserving maps. ' '

e composition is defined in the obvious way.

Any finite set A = {z1,...,2,} can be trivially thought of as a poset (4, <) by considering z; < z; < z; = x;.
Namely, the only inequalities are the identities. Thus, any Reeb graph (X, f) has its edge sets and vertex sets
trivially partially ordered, i.e. the inequalities are only the identities. Hence any Reeb graph (X, f) is an object of
Reeb™. That is, Ob(Reeb) C Ob(Reeb’"®). In particular Reeb is a full subcategory of Reeb® . Indeed, let
v : (X, f) = (Y, g) be a morphism in Reeb. Then, again trivially we can think of ¢—when restricted to the edge sets
and vertex sets respectively—as an order preserving map between trivially partially ordered sets. Therefore Reeb is
a full subcategory of Reeb?".

4.2 Ordered Reeb graphs with a fixed edge structure

Fix an ordered subset S = {a1 < ... < ax} of R. Consider an ordered Reeb graph (X, f, <x) with edge posets
(E,<g) :== (E1,<g,) [I.. .- TI(Ex-1,<g,_,), where E;, s = 1,...,k — 1, as in Defn. We call Eq = (Eq,...,Ex_1)
an edge sequence of the ordered Reeb graph (X, f) with respect to S.

Given a common set S = {a1 < ... < ax} for a pair of Reeb graphs (X, f, <x) and (Y, g, <y), we say that their
edge sequences Ef = (ET,...,E}_;) and EY = (E},...,E}_;) are equivalent, and denote it by Ex = EY, if Ef = EY,
foralli=1,...,k—1, as sets. In other words, (X, f, <x) and (Y, g, <v) have equivalent edge sequences if |E;| = |E{]
foralli=1,...,k — 1, where | - | denotes the cardinality.

Definition 4.3. Let (X, f) and (Y, g) be two Reeb graphs with common set S. We say (X, f), (Y, g) have the same
edge structure, if their edge sequences are equivalent.

Note that the relation (X,) ~ (Y, g) & (X, f), (Y, g) have the same edge structure’ forms an equivalence relation.
This equivalence relation induces a partition on the objects of Reeb, i.e. we get

Ob(Reeb) = [[[(Xa, fa)],

acA

for some index set A, where [] denotes the ~-equivalence class. This fact suggests that each of these blocks can be
turned into a category on its own.
Fix an edge-sequence E,.

Definition 4.4. We define Reeb® *[E,] the category whose

e objects (X, f, <x, ") are ordered Reeb graphs (X, f, <x) together with a family u* = {u}}*=! of bijections
pE EX 5 R, foralli=1,...,k— 1, called an E-edge labelling, or simply an edge labelling if E, is given.

e the morphisms are ordinary morphisms ¢ : (X, f, <x) = (Y, g, <y) in Reeb®" that preserve the edge-labeling,
namely p' (¢} (e)) = p*(e) foralle € Ef and all j =1,...,k — 1.

e composition is defined in the obvious way.
Lemma 4.5. The category Reeb® ?[E,] is thin.

Proof. Let @, : (X, f, <x, %) = (Y, g,<y,u") be two morphisms in Reeb’ ?[E.]. By Prop. we have to show
that the maps agree at the edge posets and vertex posets. By definition ¢ = ¢ = (NY)*1 o (1) when restricted to
edge posets, because the labellings are bijections.

Let v be a node in X, say v € Vi for some i. We claim that oy (v) = 9] (v). Now, v is either the down image or
the upper image of some edge e € EX, for some i =1,...,k — 1. So, we have two cases:

e Case 1: v = Dj(e). By Prop. We have that

e Case 2: v = Ui (e). The proof of case 2 is similar to that of Case 1 and is omitted.
O

Remark 4.6. We define the full subcategory Reeb|[Es] of Reeb %[E,] whose objects are Reeb graphs with the trivial
partial order (i.e. ordinary Reeb graphs) and with the same edge structure as E,. By definition of ~ we observe that
(X, f) and (Y, g) have the same edge structure if and only if both (X, f) and (Y, g) are objects of Reeb][E,], for some
edge-sequence E,.

4.3 Tree-decomposition

Theorem 4.7. Fix an edge-sequence E,. Let n,s > 0. Inside the larger category Reeb® ?[E,], any Reeb graph
(X, f, 1) in ReeblE,], with n leaves and Betti number B (X) = s, is a coproduct of ordered trees with (n + s)-leaves
and same [E-edge labelling, i.e.
(Xafnu‘) = H (vaTaS'ﬂ‘al‘LL
TET(X)

for some set of ordered trees 7 (X).

Proof. Let X = (X, f, 1) be a Reeb graph in Reeb[E,] with n-leaves and B1(X) = s. Let <x be its trivial partial
order. Let L(X) = {l1,..., L}, R(X) = {r1,...,rm} be its sets of leaves, and reticulation-vertices respectively. Let d;
be the indegree of the reticulation-vertex r; for all ¢ = 1,...,m. Also for any reticulation-vertex r;, i = 1,...,m, let

us denote by {eﬁ“, RN efii)} the set of all edges that are incident of r; from above it. The basic idea of the proof is

to construct a collection of ordered trees with (n + s)-leaves, and same edge labelling as X, out of X
T(X) - {(T(wl,”.,wm%f(wl Wi) S(wl,...,wm)7u) 01 S Ww; S dia for all i = 17 .. '7m}

by breaking up in all possible ways the reticulation-vertices (the bottom of the cycles) of X—without changing the
connectivity of the graph—in order to create a tree out of X, by introducing new leaves. Consider Vi-g and Ei-g and
the upper and down maps UJX and Di-g, j=1,...,k—1 as in Defn. For simplicity of the proof, we denote any
m-tuple (w1,...,wn) by w.

Let w € [T72,{1,...,d:}. We construct an ordered tree T = (Tw, fu, <w,p) with (n + s)-leaves, by changing the
structure of X so as to make an odered tree following the steps below:

1. We define
e for any j = 1,...,k — 1, the set IE}T"” = IE;g equipped with the trivial partial order <gx. That way, the edge
J

sequence (and thus the edge structure) remains the same, i.e. E}T“’ = E?, forall j =1,...,k — 1. Moreover
consider the same E-edge labelling ™ := p, as for X.

e for any j =1,...,k, the vertex poset (V}rw, <yt) wher
j

V}‘w ::Viv{H(H {e 1<t <d, anndt#wi})7
f(ri)=a;
and the partial order <;r, is given by the identities on the elements, and the additional formal inequalities
J

i <uw egi), for all 1 <t < d; with t # w;.

HE f(r;) # aj, for all j, then the right component of the direct sum is the emptyset and we get V']L” = V?‘.

Remark 4.8. These nontrivial innequalities formalize the idea that the vertex r; is isolated from the ‘new
vertices’ (leaf nodes) that are formed after cutting the reticulation vertex r; of X while keeping it connected
from above with the edge eE,ff. This observation is crucial since, on one hand the trees T,, are distinguised for
all choces of w, and on the other hand this makes the coproduct well defined as we will see, e.g. in Ex. [{12

e the function D;rw : Ejjrw — V?w given by

D¥(e), if D}(e) is not a reticulation-vertex

D}r“’(e)z T4, ife:egjz,for some i =1,...,m,
e, ifD;g(e):n' ande#egz,forallizl,...,m.

e the function U;Tw : IEI}T“’ — V}TH given by
T X
Uj (e) = Uj (e).
Note that since the edge sets are trivially partially ordered, as such, these functions are trivially order preserving,
: Tw . (BTw Tw Tw . (rTw T :
ie. Dyv o (B, <prw) = (V;¥, <yrw) and U 2 (E; ,gﬁgw) —= (Vjiq, gVHl) for all j.

Elw s
J J

2. T, is the quotient of the disjoint union

(ﬁlV}T’” x wi})H(ﬁ(E}rw X [aivaiJrl])

j=1

with respect to the identifications (U;T“’ (e),aj+1) ~ (e,aj+1) and (D}r“’ (e),a;) ~ (e,a;). Define f,, to be the projection
of Ty, to the second coordinate. Both the disjoint union and the resulting quotient space receive a partial order from
the partial orders on V}r’”’ and IE}TW. We denote the resulting partial order on T,, by <t .

Remark 4.9. Note also that, by definition of D™ the identifications (D}r’”’ (e),a;) ~ (e,a;) are the trivial ones

(e,aj) ~ (e,a;) whenever e # eﬁj}, for all ¢ = 1,...,m. That formally expresses the fact that the tree T, is

constructed from X by cutting the bottom of all cycles, keeping, for all 1 < i < m, only the edge eSjZ connected to

the reticulation-vertex r; and diconnecting the others.

To sum up, T, forms an an ordered tree (T, fuw, <w,) in Reeb‘”d[E.].

Furthermore, each ordered tree (Tw, fuw, <w,) is equipped with the obvious quotient map

Gw ¢ (Tw, fu, <w,p) > (X, f, <x, u), where
qE, (R s BX
e +— e, and
qX cYTe ¥
V=, for all v € VX
ei“ — 1, forall 1 <t <d; witht #w;, foralli=1,...,m.
By definition, the quotient map ¢., glues back the new vertices of the tree T, —yielded by the w-cut—to form the
original Reeb graph X. Note that no matter what the order of the new vertices is, from the cut of 7;, via the quotient
map ¢ they are glued to a single vertex r;, hence q,, trivially preserves the partial orders. Namely, g, kills the only

non-trivial innequalities r; < ey), for all t # w;, and i = 1,..., m. Moreover, by construction, T,, has the same edge
sets as X, thus making ¢, to be trivially E-labelling preserving. So indeed g, is a morphism in Reebo’"d[]E.].

Now we claim that the coproduct of all the trees (T, fuw, <w,) in Reeb”d[E.] is isomorphic to the ordered Reeb
graph (X, f, <x, u) (where, again, <x is the trivial order of the Reeb graph) with the coprojections morphisms being
the quotient maps g .
Let @uw : (Tw, fu, <w,p) = (Y, g,<y,u’) be any w-indexed family of morphisms in Reeb® ?[E,]. Then, in
particular
Pw (Twyfw, Sw) — (Yagv SY)
[(0,8)] = [(Pu,(v), 1)), for all v € V5

[(e,t)] — [(‘P]fu,j(e%t)}’ for all e € E;{’

10

for some order preserving maps (,OXJ- and go]f‘ud satisfying the consistency conditions as described in Prop. We
claim that there exists a unique morphism ¢ : (X, f, <x,pu) — (Y, g, <y, py) in Reeb® ?[E] such that each of the
diagrams

(Tw7fw, Sw,,u‘) % (X7 f: SX,/L)
o
bw !
-
(Y7g7 SY?"‘LY)

commutes. Since the category Reeb® ?[E,] is thin, all diagrams commute by default and if ¢ exists then it is unique.
Therefore, we only need to show that there exists a morphism

Y
e (X fi<x,pm) = (Y, 9, <v,)
[(v,t)] — [(cpy(v)ﬁ)], for all v € Vi-g
[(e,t)] — [(Lp;E(e), t)], for all e €]E;g,
for some order preserving maps (p}’ and @}E satisfying the consistency conditions as described in Prop.
Lets return to ¢,,. Each map 4,0]5,]- is trivially order preserving; the edge posets are just edge sets, and therefore

they have the trivial partial order given only by the identities. Since ¢, is E-edge labelling preserving, we get
gogj (e) = ()t ule), for all e € IE}T“’. Thus go]f‘mj it is independent of w. So, naturally, we define g@? by

@?(e) = gpgj(e) = (1) 'u(e), for all e €]E;g = E}rw.

Now lets focus on the order preserving maps ch,j : (V}T"J, <ytw) = (V}{, <), for j =1,..., k. We compute
j J

P (i) = puy s (DT (e8)))
= Dj ¢l (el
= D; gt (eld)),

wq

and
(e = pu (D] (ef))
= Df iy s(et”)
= D} ("),

for all 1 <t < d; with t # w;. ‘ ‘
On the other hand, the inequalities r; SVij el yield the innequalities P (1) <yv O s (). Therefore

Y E, (i Y E, (i
Djg; (egﬂz) Svy Dj¢; ().
However note that since w; was chosen in random, we can as well get the inequality
Y E, (i Y E, (i
D (er”) <yr Dje; (b)),
by formally replacing w; with ¢. Therefore we obtain the equalities
DYgi(el?) = DYt (el?), for all 1 < t,5 < d;, for alli = 1,...,m. (1)
Thus we see that _
Pu (1) = o (&), for all 1 <t < d; with ¢ # w;, (2)
and, in particular by Eqn. |1} we see that this is independent of w. So, naturally, setting go}/(n) = goxyj (r:) is well

defined.

Now, for any vertex v € V§§ which is not a reticulation-vertex, by construction of T,,, we have v € V}"“. In
particular, v € Vg“’ is either the down image of some e € IE}T“’ (via the map DT"J) or the upper image of some
eec IE}TL (via the map U™). Because of that, we can, again show that @YU,]- (v) is independent of the choice of w. So
we define ¢ (v) := ¢y, ;(v). To sum up, ¢, (v) := ¢, ;(v) is a well defined map, for all v € V7.

We claim that the maps go}’ and Lp;E satisfy the consistency conditions as described in Prop. We only need to
check the consisteny condition ¢ D} = D} ¢>. The other one is true since U;rw (e) = Uj(e) for all e € Ej_1. If we
show that o] D} = D¢}, then the map ¢ : (X, f) — (X, g) would be an actual morphism in Reeb.

Indeed, fix any w. Let e € E}‘“’. We have the following cases:

11

e Case 1, D} (e) is not a reticulation-vertex: We compute

go}’D;g(e) = @X,J D}T” (e) (by definition of D}Iw and because]E;{ = IE}‘”)
= D"}, ;(e) (by consistency of ¢y, ;)
= DYLP?(E).

e Case 2, D;g(e) =7r; and e = 61(2: We compute

o5 D (els)) =] (r:)
= @Yu,j (rs)
= pu; (D}‘“’ (683)) (by definition of D}‘“’)
= DY@]E,J (esz) (by consistency of 4,05,]»)
= D ¢ (el)).

J
e Case 3, Di-&(e) =r; and e # 67{2: We compute

1 Dj(€) = ¢; (i)
= @X,j (ri)
= u;(€) (by Ean. @)
= gaX}j D;r“’ (e) (by definition of D;r“’)
= Dng]E,’j (e) (by consistency of cp]fw-)
= DY@;E(e).

Hence there exists a map ¢ : (X, f) = (X,g) in Reeb. Note that since X = (X f) is trivially partially ordered,
then ¢, is trivially order preserving. Finally, by definition, we have <p;E = (u¥)! o u. Hence ¢ is E-edge labelling
preserving. Therefore ¢ is a morphism in Reeb"rd[IE.].

Remark 4.10. By definition of T, each of the leaves of T,, that have been created after the w-cut is identified with
an edge that is incident from above of a reticulation-vertex but is not equal to egjz for alli =1,...,m. Therefore the
cardinality of the set of the leaves that are additional to the n-leaves of X is exactly

m

Z(d’b - 1)7

i=1
which is equal to the first Betti number B; = s of X, because of Prop. Hence, each tree T, has (n + s)-leaves.
O

Example 4.11. Counsider a Reeb graph X = (X f) with four leaves and one cycle, and edges labelled by e1, ea, ..., es,
as shown in Fig. 2. By applying Thm. [I.7] we get two trees with 5-leaves in the tree-decomposition of X. For each of
the trees, the one additional leaf to the four leaves of X corresponds to one of the two edges es and es, respectively.
Thus there are exactly two such trees with 5-leaves.

Example 4.12. Consider a Reeb graph X = (X, f) with a single reticulation-vertex—where in this particular example
we also think of it as a leaf~three edges, and two cycles, and edges labelled by ej, ez, es, as shown in Fig. 3. By
applying Thm. [£.7] we get three trees with 4-leaves in the tree-decomposition of X. Note that the trees are in one
to one correspondece with all possibilities of isolating an edge (which is identified with the reticulation-vertex) from
the other edges, given that they are incident from above some reticulation vertex. Thus there are exactly three such
trees with 4-leaves.

5 Isomorphism complexity of Reeb graphs

Thm. [£7] can help improve our understanding of the isomorphism complexity of Reeb graphs under some fixed
parameter. Here we will refer to isomorphism complexity simply by complezity.

12

Figure 2: An example describing the tree-decomposition for n =4 and s = 1.

=
Il
-
-
A
a
"
In
[¢]
-
A
a

=
A
uJl'li
-
A
[¢]
=
A
[¢]

=)
w
o

Figure 3: An example describing the tree-decomposition for n = 1 and s = 2.

5.1 Upper bound on the complexity

Let X = (X, f) be a Reeb graph with edge-sequence E. Let Y = (Y, g) any Reeb graph. Checking whether Y has
same edge-structure as X is equivalent to checking whether Y has equivalent edge-sequence with E. This takes time
O(|E|), where |E| is the cardinality of E. Now, by Euler’s characteristic formula we have s = |E| — |V| + 1, and so
|[E| = |V| + s — 1. By definition, if two Reeb graphs (X, f), (Y, g) are isomorphic, then they have the same edge

structure. Therefore:

(Complexity of Reeb graphs) = (Complexity of Reeb graphs of same edge structure) +O(|V| + s).

13

By Thm. two Reeb graphs of same edge structure, with n leaves and Betti number B (X) = s, are isomorphic if
and only if they have the same tree-decomposition. To check for isomorphism it takes at worst, as many number of
steps as the cardinality of the set 7 (X) times the complexity of checking whether two ordered trees with (n+ s)-leaves
are isomorphic in Reebord[lE.], where E, is the edge structure of X. Namely:

(Complexity of Reeb graphs of same edge structure) = (Complexity of ordered trees) O(|T(X)]).

Now checking if two trees with (n + s)-leaves are isomorphic takes time O(n + s)ﬂ By construction, the cardinality
of T(X) of a Reeb graph X is equal to the product of indegrees of the reticulation-vertices, i.e.

T =]]a

Therefore we get

(Complexity of Reeb graphs) =0((n+s) H di) + O(|V] + s).

i=1
Now because L(X) C V and |L(X)| = n, we get n < |V|. Also since s > 0 (s = 0 if X is a tree) and |V| > 2, we have
the obvious bounds n + s < |V| + s < |V|(1 + s). Thus:

m m

(Complexity of Reeb graphs): O(|V|(1 + s) Hdl) +O(V|(1+) =0O([V|(1 + s) Hdl)

i=1 i=1

5.2 Parametrized complexity

Although this is a good bound, we would like to consider an upper bound on the isomorphism complexity that does
not depend on the indegrees of reticulation-vertices, but only depends on the number of vertices |V| and the Betti
number B;(X) = s. Since each of the indegrees of the reticulation nodes is d; > 1 we have the bound d; < 2%,
Taking the product over all these inequalities and since

m

Z(dl — l) =S,

i=1
we get
(Complexity of Reeb graphs with B;(X) = s) = O(|V|(1 + 5)2°).

Hence, the Reeb graph isomorphism problem is fixed parameter tractable when the parameter is the first Betti number
of the graph. Finally, note that the bound d; < 247! is tight: indeed, if we consider Reeb graphs with n-leaves and
Bi(X) = s, such that the indegree of each of its reticulation-vertices is 2, then the product of all the indegrees is
exactly 2°.

6 Phylogenetic networks viewed as ordered Reeb graphs

In computational phylogenetics a phylogenetic network is any rooted DAG, G, that can be used to represent the
evolutionary relationships among biological organisms, e.g. genes, often called taxa. These taxa are represented by
an ordering on the leaves of the rooted DAG.

Remark 6.1. Quite often in practice, the taxa are represented by the totaly ordered set {1 < 2 < ... < n}. However,
this is very restrictive for general phylogenetic networks. Namely, one can have a phylogenetic network where some
of its leaves are ordered in many different ways, and some of them might not be labelled at all. So it is better to
consider a partial order on the leaves.

Naturally one considers a pair of phylogenetic networks to be isomorphic if there is an isomorphism between their
underlying DAGs that also preserves the order of their corresponding taxa.

5Tt is known from basic graph theory that checking if two trees with k-leaves are isomorphic takes O(k) steps

14

6.1 Time consistent phylogenetic networks

In many applications, phylogenetic networks are equipped with a time assignment on the nodes or vertices, which
we can think of as a height function f : G — R on the graph G. The time assignment map f is often required to
be time consistent which essentially means that the time stamp of any ‘non-root node’ should be strictly larger than
the time stamp of its ‘parent node’. See [25], pg 167. This is exactly what Reeb graphs satisfy as we emphasized in
Ex [3:8] Moreover, if we restrict to ordered Reeb graphs, then these structures can be thought of as vertex weighted
DAGs (see Sec. such that their edge sets and vertex sets are partially ordered in a compative way. So we believe
that ordered rooted Reeb graphs whould serve as a natural mathematical model for time consistent phylogenetic
networks. By thinking of a time consistent phylogenetic network as an ordered Reeb graph, we can also consider its
tree decomposition, given by Thm. @ Since the phylogenetic network is rooted and has its leaves partially ordered,
by construction, each of the trees T, yielded by the network’s tree decomposition, would have their leaves partially
ordered. Therefore, each tree T, is a phylogenetic tree.

6.2 Hausdorff distance

Among many distance metrics, we can utilize the ¢P-cophenetic metrics, dp, for 1 < p < oo, for comparing a pair
of phylogenetic trees [9, [29]. Lets focus on dos (for p = 00). The idea is that, via the cophenetic map [34], any
phylogenetic tree with n ordered leaves, {1 < ... < n}, can be identified with a single point in the [n(n 4+ 1)/2]-
dimensional Euclidean space. The (3, j)-th coordinate of the point, where i < j, corresponds to the time-stamp of
the least common ancestor of the leaves i,j in the phylogenetic tree [29]. Then, we simply consider the £°°-norm
for comparing a pair of phylogenetic trees with n ordered leaves. By the tree decompostion of Thm. [f.7, we can
thus identify any time consistent phylogenetic network with n ordered leaves, and first Betti number s, as a finite
subset of the the [(n + s)(n + s + 1)/2]-dimensional Euclidean space. Hence, we can utilize the Hausdorff distance
for comparing a pair of phylogenetic networks.

Definition 6.2. Let (X, dx) be any metric space, and let A, B be any subsets of X. The Hausdor[f distance of A, B
is
du(A,B) = max{rgleajc min dx(a,b), max min dx(a,b)}.

Example 6.3. Consider the pair N1, N2 of time consistent phylogenetic networks as in Fig. 4, modelled as ordered
Reeb graphs, and having the non-trivial partial order on their leaves, 1 < 2.

Figure 4: A pair of time consistent phylogenetic networks, each having 2 leaves and 1 cycle.
Also assume 0 < a < b<c<dand c—b<b—a<d-—_casin Fig. 4. It is easy to check that, if we forget the

non-trivial order on the leaves of N1, N2, then these networks are isomorphic as ordinary Reeb graphs. However they
are not order-preserving isomorphic. We do this by showing that the Hausdorff distance—with respect to doo—of the

15

—al
b
e
_d__

YORLY

() QO —
Z)
U 83
4l —0Q— C)

Figure 5: The additional leaf in each tree corresponds to an edge incident from above the reticulation vertex.

tree decompositions of N1, N2 is non-zero. Let T(N1) = {T1,T2} and T (N2) = {73,741} be the tree decompositions

of N1 and N3 as in Fig. 5. We have

d b a c a b
deo(T1,T3) = - ¢ a — - d a H =d—c,
. . c . . C oo
d b a c b a
doo(T1,Ty) = - c oa | = - d a H =d—cg,
. . c . . C oo
d a a c a b
doo (T2, T5) = - ¢ b — - d a H =d—c,
. . C . . C oo
d a c b a
doo (T2, Ty) = c b — - d a H =d-—c,
C . . c oo

since ¢ — b < b —a < d — c. Hence, we obtain

du(T(N1), T(N2)) = max{ max { mi£14 doo(Ti,Tj)},smax { min doo(Ti,Tj)}}

1<i<2°3<y <j<4T1<i<2

=d—c>0.

Remark 6.4. Assume A, B are finite. By definition, the Hausdorff distance between A, B can be computed in at
most |A| - |B|-many steps. That means, in particular, that computing the Hausdorff distance of a pair of phylogenetic
networks with n leaves and first Betti number s, takes O(|V|?(1 + s)?4°) time. Namely, computing the Hausdorff
distance is fixed parameter tractable when the parameter is the first Betti number.

7 Concluding remarks

In this manuscript we showed that Reeb graphs are classified up to isomorphism by their tree-decomposition, we
constructed upper bounds for their isomorphism complexity, and showed that the isomorphism problem for Reeb
graphs is fixed parameter tractable when the parameter is the first Betti number. We proposed Reeb®™® as model for
phylogenetic networks. Moreover, we proposed the use of Hausdorff distance as a metric for phylogenetic networks
with n leaves and first Betti number s. We speculate that our results, on one hand would further our understanding
of both the structure and isomorphism complexity of Reeb graphs, and on the other hand they will enhance the
existing methods on phylogenetic networks by providing new insights on how to do statistics and data analysis on
these structures.

Future work: It is in the author’s interests to apply properly the notion of Hausdorff distance to define a
metric on time consistent phylogenetic networks. In order to do that some restrictions on the ordered Reeb graphs
(phylogenetic networks) may need to be considered in addition to requiring a fixed number of leaves and cycles,
e.g. we may need to assume in particular a total order on the leaves and reticulation vertices. Also a natural question
to ask is whether there exist other tree decompositions for general ordered Reeb graphs, perhaps with fewer tree
factors, and how do they look like.

Furthermore, just like Reeb graphs can be identified with nice enough cosheaves on R valued in the category Set
of all sets [16], it seems that ordered Reeb graphs can be identified with constructible cosheaves F : Int — Pos on
R valued in the category Pos of all posets. If this speculation is true then one can define a notion of interleaving
distance for ordered Reeb graphs—in the sense of Bubenik et al. [§]-and thus phylogenetic networks in particular. The
interleaving distance will thus be a metric on the collection of arbitrary phylogenetic networks, i.e. not just the ones
with fixed number of leaves and first Betti number. This would give an advantage for one to use the interleaving
metric over the Hausdorff distance as a metric for phylogenetic networks. By Rem. computing the Hausdorff
distance of a pair of phylogenetic networks is fixed paremeter tractable when the parameter is the first Betti number,
but we do not know whether this is the case also for the interleaving distance. In the near future the author wishes to
work towards the sheaf-theoretic aspects of ordered Reeb graphs and their implications to phylogenetics, e.g defining
an intelreaving metric for the comparison of arbitrary time consistent phylogenetic networks.

8 Conflict of Interest Statement

The author states that there is no conflict of interest.

17

References

(1]

2]

3l

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

JIRI Adamek. Herrlich and h., strecker, ge, abstract and concrete categories. the joy of cats. Pure and Applied
Mathematics, A Wiley-Interscience Publication. John Wiley € Sons, Inc., New York, ziv, 1990.

Pankaj K Agarwal, Herbert Edelsbrunner, John Harer, and Yusu Wang. Extreme elevation on a 2-manifold.
Discrete & Computational Geometry, 36(4):553-572, 2006.

Ulrich Bauer, Elizabeth Munch, and Yusu Wang. Strong Equivalence of the Interleaving and Functional Dis-
tortion Metrics for Reeb Graphs. In Lars Arge and Janos Pach, editors, 31st International Symposium on
Computational Geometry (SoCG 2015), volume 34 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 461-475, Dagstuhl, Germany, 2015. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Silvia Biasotti, Daniela Giorgi, Michela Spagnuolo, and Bianca Falcidieno. Reeb graphs for shape analysis and
applications. Theoretical computer science, 392(1-3):5-22, 2008.

Louis J Billera, Susan P Holmes, and Karen Vogtmann. Geometry of the space of phylogenetic trees. Advances
in Applied Mathematics, 27(4):733-767, 2001.

Héavard Bakke Bjerkevik and Magnus Bakke Botnan. Computational Complexity of the Interleaving Distance.
In Bettina Speckmann and Csaba D. Téth, editors, 3/th International Symposium on Computational Geom-
etry (SoCG 2018), volume 99 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1-13:15,
Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Adam Bouland, Anuj Dawar, and Eryk Kopczyniski. On tractable parameterizations of graph isomorphism. In
International Symposium on Parameterized and FEzact Computation, pages 218-230. Springer, 2012.

Peter Bubenik, Vin De Silva, and Jonathan Scott. Metrics for generalized persistence modules. Foundations of
Computational Mathematics, 15(6):1501-1531, 2015.

Gabriel Cardona, Arnau Mir, Francesc Rosselld, Lucia Rotger, and David Sanchez. Cophenetic metrics for
phylogenetic trees, after Sokal and Rohlf. BMC bioinformatics, 14(1):3, 2013.

Gabriel Cardona, Francesc Rossello, and Gabriel Valiente. Extended newick: it is time for a standard represen-
tation of phylogenetic networks. BMC bioinformatics, 9(1):532, 2008.

Gunnar Carlsson, Afra Zomorodian, Anne Collins, and Leonidas J Guibas. Persistence barcodes for shapes.
International Journal of Shape Modeling, 11(02):149-187, 2005.

Frédéric Chazal and Jian Sun. Gromov-hausdorff approximation of metric spaces with linear structure. arXiv
preprint larXw:1305.1172, 2013.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using poincaré and lefschetz
duality. Foundations of Computational Mathematics, 9(1):79-103, 2009.

Kree Cole-McLaughlin, Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Valerio Pascucci. Loops in
reeb graphs of 2-manifolds. Discrete & Computational Geometry, 32(2):231-244, 2004.

William Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules. Journal of Algebra
and its Applications, 14(05):1550066, 2015.

Vin De Silva, Elizabeth Munch, and Amit Patel. Categorified reeb graphs. Discrete & Computational Geometry,
55(4):854-906, 2016.

Tamal K Dey, Fengtao Fan, and Yusu Wang. An efficient computation of handle and tunnel loops via reeb
graphs. ACM Transactions on Graphics (TOG), 32(4):32, 2013.

Barbara Di Fabio and Claudia Landi. The edit distance for reeb graphs of surfaces. Discrete & Computational
Geometry, 55(2):423-461, 2016.

Andreas Dress. The category of x-nets. In Networks: from biology to theory, pages 3—22. Springer, 2007.

Herbert Edelsbrunner, John Harer, and Amit K Patel. Reeb spaces of piecewise linear mappings. In Symposium
on Computational Geometry, pages 242-250, 2008.

18

http://arxiv.org/abs/1305.1172

21]

22]

23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

31]

32]

[33]

[34]

[35]

[36]

37]

Francisco Escolano, Edwin R Hancock, and Silvia Biasotti. Complexity fusion for indexing reeb digraphs. In
International Conference on Computer Analysis of Images and Patterns, pages 120-127. Springer, 2013.

Xiaoyin Ge, Issam I Safa, Mikhail Belkin, and Yusu Wang. Data skeletonization via reeb graphs. In Advances
in Neural Information Processing Systems, pages 837-845, 2011.

William Harvey, Yusu Wang, and Rephael Wenger. A randomized o (m log m) time algorithm for computing reeb
graphs of arbitrary simplicial complexes. In Proceedings of the twenty-sizth annual symposium on Computational
geometry, pages 267-276. ACM, 2010.

Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L Kunii. Topology matching for fully
automatic similarity estimation of 3d shapes. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 203-212. ACM, 2001.

Daniel H Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic networks: concepts, algorithms and appli-
cations. Cambridge University Press, 2010.

Daniel Lokshtanov, Marcin Pilipczuk, Michat Pilipczuk, and Saket Saurabh. Fixed-parameter tractable canon-
ization and isomorphism test for graphs of bounded treewidth. SIAM Journal on Computing, 46(1):161-189,
2017.

Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science & Business Media,
2013.

Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. Interleaving distance between merge trees. Discrete
and Computational Geometry, 49(22-45):52, 2013.

Elizabeth Munch and Anastasios Stefanou. The £°°-cophenetic metric for phylogenetic trees as an interleaving
distance. arXiv preprint arXiv:1803.07609, 2018.

Monica Nicolau, Arnold J Levine, and Gunnar Carlsson. Topology based data analysis identifies a subgroup of
breast cancers with a unique mutational profile and excellent survival. Proceedings of the National Academy of
Sciences, 108(17):7265-7270, 2011.

Georges Reeb. Sur les points singuliers d’une forme de pfaff completement integrable ou d’une fonction numerique
[on the singular points of a completely integrable pfaff form or of a numerical function]. Comptes Rendus Acad.
Sciences Paris, 222:847-849, 1946.

Charles Semple, Mike A Steel, Richard A Caplan, Mike Steel, et al. Phylogenetics, volume 24. Oxford University
Press on Demand, 2003.

Gurjeet Singh, Facundo Mémoli, and Gunnar E Carlsson. Topological methods for the analysis of high dimen-
sional data sets and 3d object recognition. In SPBG, pages 91-100, 2007.

Robert R Sokal and F James Rohlf. The comparison of dendrograms by objective methods. Tazon, pages 33-40,
1962.

Zoé Wood, Hugues Hoppe, Mathieu Desbrun, and Peter Schréder. Removing excess topology from isosurfaces.
ACM Transactions on Graphics (TOG), 23(2):190-208, 2004.

Koichi Yamazaki, Hans L. Bodlaender, Babette De Fluiter, and Dimitrios M Thilikos. Isomorphism for graphs of
bounded distance width. In Italian Conference on Algorithms and Complezity, pages 276—287. Springer, 1997.

Yuan Yao, Jian Sun, Xuhui Huang, Gregory R Bowman, Gurjeet Singh, Michael Lesnick, Leonidas J Guibas,
Vijay S Pande, and Gunnar Carlsson. Topological methods for exploring low-density states in biomolecular
folding pathways. The Journal of chemical physics, 130(14):04B614, 2009.

19

http://arxiv.org/abs/1803.07609

	1 Introduction
	1.1 Related work
	1.2 Our contribution

	2 Categorical structures
	2.1 Basic definitions
	2.2 Coproducts

	3 Combinatorial structures
	3.1 Reeb graphs
	3.2 Reeb graphs viewed as directed acyclic graphs

	4 Classifying Reeb graphs up to isomorphism
	4.1 Ordered Reeb graphs
	4.2 Ordered Reeb graphs with a fixed edge structure
	4.3 Tree-decomposition

	5 Isomorphism complexity of Reeb graphs
	5.1 Upper bound on the complexity
	5.2 Parametrized complexity

	6 Phylogenetic networks viewed as ordered Reeb graphs
	6.1 Time consistent phylogenetic networks
	6.2 Hausdorff distance

	7 Concluding remarks
	8 Conflict of Interest Statement

