
On the hardness of finding normal surfaces

Benjamin A. Burton
The University of Queensland

bab@maths.uq.edu.au

Alexander He
The University of Queensland

a.he@uqconnect.edu.au

August 3, 2021

Abstract

For many fundamental problems in computational topology, such as unknot recognition and
3-sphere recognition, the existence of a polynomial-time solution remains unknown. A major algo-
rithmic tool behind some of the best known algorithms for these problems is normal surface theory.
However, we currently have a poor understanding of the computational complexity of problems in
normal surface theory: many such problems are still not known to have polynomial-time algorithms,
yet proofs of NP-hardness also remain scarce. We give three results that provide some insight on
this front.

A number of modern normal surface theoretic algorithms depend critically on the operation
of finding a non-trivial normal sphere or disc in a 3-dimensional triangulation. We formulate an
abstract problem that captures the algebraic and combinatorial aspects of this operation, and
show that this abstract problem is NP-complete. Assuming P 6= NP, this result suggests that any
polynomial-time procedure for finding a non-trivial normal sphere or disc will need to exploit some
geometric or topological intuition.

Another key operation, which applies to a much wider range of topological problems, involves
finding a vertex normal surface of a certain type. We study two closely-related problems that can
be solved using this operation. For one of these problems, we give a simple alternative solution
that runs in polynomial time; for the other, we prove NP-completeness.

Keywords Computational topology, 3-manifolds, Normal surfaces, Computational complexity

1 Introduction

Despite the central importance of topological problems like unknot recognition and 3-sphere recog-
nition, it remains unknown whether these problems have polynomial-time solutions. Since unknot
recognition has been shown to be in both NP (by Hass, Lagarias and Pippenger [9]) and co-NP (by
Lackenby [14], based on ideas first presented by Agol [1]), there is reason to suspect that there might
indeed exist a polynomial-time algorithm for unknot recognition. The situation for 3-sphere recog-
nition is similar, though not quite as clear-cut: Ivanov [10] and Schleimer [17] showed that 3-sphere
recognition is in NP, while Zentner [18] showed that, assuming the Generalised Riemann Hypothesis,
3-sphere recognition is in co-NP.

Although we do not yet have polynomial-time algorithms for topological problems like these, there
has been significant progress in the development of algorithms that are both simple enough to have
been implemented, and efficient enough to be useful in practice. Many of these practical algorithms
are based on normal surface theory. For instance, normal surface theory forms the foundation for
several important algorithms provided in the topological software package Regina [3, 5], including
algorithms for unknot recognition and 3-sphere recognition.

The success of normal surface theory in producing practical algorithms is due in large part to a
number of significant developments from the last two decades. Indeed, up until the early 2000s, the
role of normal surface theory was essentially confined to proving decidability of topological problems.
This is exemplified by Haken’s famous 1961 paper [8], which detailed the first ever algorithm for
unknot recognition, making unknot recognition the first of several problems to be proven decidable
using normal surface theory. In the four decades following Haken’s pioneering work, although normal

1

ar
X

iv
:1

91
2.

09
05

1v
3

 [
cs

.C
G

]
 3

1
Ju

l 2
02

1

mailto:bab@maths.uq.edu.au
mailto:a.he@uqconnect.edu.au

surface theory successfully produced algorithms for a number of topological problems, such algorithms
were generally too intricate to be implemented, and too inefficient to be useful in practice.

Given that normal surface theory had been applied to so many problems, finding a way to make
these algorithms feasible to both implement and execute was an enormous achievement. The break-
through came in 2003, when Jaco and Rubinstein introduced their theory of 0-efficiency [12], which
drew on earlier unpublished work of Casson. As part of this theory, Jaco and Rubinstein developed
the crushing procedure, which provides a computationally efficient way to simplify a 3-dimensional
triangulation T by “crushing away” a non-trivial normal sphere or disc in T . This crushing procedure
lies at the heart of many of the practical normal-surface-theoretic algorithms that have been developed
and implemented in the last two decades [3, 4, 6].

For the crushing procedure to be useful, we need to have some algorithm to find a non-trivial
normal sphere or disc (or else show that no such surface exists). The traditional approach involves
a technique known as “vertex normal surface enumeration”, and relies on the following fact: if a
triangulation contains any non-trivial normal spheres or discs, then at least one such surface must
appear as a special type of normal surface known as a vertex normal surface. Since a triangulation
always contains only finitely many vertex normal surfaces, it is enough to enumerate all vertex normal
surfaces, and then check whether any of these surfaces is a non-trivial sphere or disc. Unfortunately,
in the worst case, the number of vertex normal surfaces is exponential in the number of tetrahedra,
which makes this traditional approach computationally expensive.

As yet, no polynomial-time algorithm for finding a non-trivial normal sphere or disc is known.
However, there was some exciting progress in 2012, when the authors of [6] introduced a “tree traversal
procedure” for finding a non-trivial normal sphere or disc, which they used to give a new algorithm
for unknot recognition. This unknot recognition algorithm is notable for the following two reasons.

• First, although this algorithm theoretically requires exponential time, it is the first unknot recogni-
tion algorithm to exhibit polynomial-time behaviour under exhaustive experimentation. In partic-
ular, when the tree traversal procedure is replaced with techniques based on vertex normal surface
enumeration, the experimental running times revert to an exponential-time profile. This suggests
that the tree traversal procedure is, in some sense, “polynomial-time in practice”.

• Second, the tree traversal procedure is the only component of this unknot recognition algorithm that
requires exponential time; indeed, every other component of the algorithm is provably polynomial-
time. For the optimistic reader, this has the following consequence: if we could design a polynomial-
time procedure for finding a non-trivial normal sphere or disc, then we would immediately obtain a
polynomial-time algorithm for unknot recognition.

With this second point in mind, we have a very strong motivation to investigate whether there
exists a polynomial-time algorithm for the problem of finding a non-trivial normal sphere or disc.
Given that such an algorithm has so far been elusive, we have equally strong motivation to investigate
the possibility that this problem is actually NP-hard. Notably, a proof of NP-hardness would have
the following practical implication: if we hope to design a polynomial-time algorithm for unknot
recognition, then we will probably need to use different techniques than those used in [6]. Such a
proof would also be theoretically significant, since NP-hardness results remain rare in normal surface
theory.

Although we do not prove any results that directly relate to the problem of finding a non-trivial
normal sphere or disc, we do provide some insight by studying three related problems. For each of
these related problems, we give a “conclusive” complexity result: we either exhibit a polynomial-time
algorithm, or prove NP-completeness. In a nutshell, our three main results can be seen as “reference
points” to guide our intuition about the complexity of other problems in normal surface theory.

Our first result is directly motivated by the techniques used in [6]. In particular, the tree traversal
procedure from [6] essentially treats the task of finding a non-trivial normal sphere or disc as an
optimisation problem over a certain set of linear and combinatorial constraints. In section 3, we
introduce a particular abstract formulation of these constraints, and show that the corresponding
optimisation problem is NP-complete. This has a significant implication for anyone hoping to design
a polynomial-time algorithm for finding a non-trivial normal sphere or disc: assuming P 6= NP, our

2

result suggests that such an algorithm would need to exploit some geometric or topological ideas, not
just the linear algebra that is currently used in the tree traversal procedure.

Our other two results deal with concrete problems from normal surface theory (as opposed to
the first, more abstract result). Specifically, in section 4, we study two problems involving a type of
normal surface called a spanning central surface. Just like the problem of finding a non-trivial
normal sphere or disc, our spanning central surface problems can both be solved by enumerating vertex
normal surfaces. Motivated by this similarity, we prove the following pair of contrasting results: one
of our spanning central surface problems has a simple polynomial-time solution, while the other is
NP-complete. The upshot is that we have identified two closely-related problems that sit near the
threshold between “easy” and “hard”, one on each side.

2 Preliminaries

In computational 3-manifold topology, we need a discrete way to represent 3-manifolds. Since simplicial
complexes can often be very large, we use a more flexible structure known as a (generalised)1

triangulation; a triangulation T consists of n tetrahedra that have been “glued” together by affinely
identifying some or all of their 4n triangular faces in pairs. Such triangulations are “generalised”
because we allow two faces of the same tetrahedron to be identified. Moreover, we allow multiple
edges of a single tetrahedron to become identified (as a result of the face identifications), and likewise
with vertices.

We tacitly assume that our triangulations are connected. We also insist that our triangulations
never contain any invalid edges; an edge e is invalid if, as a result of the face identifications, e has
been identified with itself in reverse.

If the underlying topological space of a triangulation T is actually a topological 3-manifold, then we
call T a 3-manifold triangulation. One way to determine whether T is a 3-manifold triangulation
is to examine its vertex links; given a vertex v of T , the link of v is defined to be the boundary of
a small regular neighbourhood of v. A triangulation is a 3-manifold triangulation if and only if every
vertex link is either a sphere (if the vertex is internal) or a disc (if the vertex is on the boundary).

Having introduced triangulations, we devote the remainder of this section to introducing the aspects
of normal surface theory that are most relevant for our purposes; a more comprehensive overview can
be found in [9]. A normal surface in a triangulation T is a surface which:

• is properly embedded in T ;
• intersects each simplex in T transversely; and
• intersects each tetrahedron ∆ of T in a finite (and possibly empty) collection of discs, where each

disc is a curvilinear triangle or quadrilateral whose vertices lie on different edges of ∆.

The curvilinear triangles and quadrilaterals are collectively known as elementary discs. In the
literature, elementary discs are also often called “normal discs”; however, we reserve the words “normal
disc” to mean an entire normal surface that forms a disc.

Under a normal isotopy, which is defined to be an ambient isotopy that preserves every simplex in
a given triangulation, the number of times a normal surface intersects each simplex can never change.
Within each tetrahedron, the elementary discs get divided into seven equivalence classes under normal
isotopy. Each equivalence class is called an elementary disc type [9]. As illustrated in Figure 1,
there are four triangle types and three quadrilateral types in each tetrahedron.

Let T be a triangulation with n tetrahedra. Any normal surface S in T can be represented
uniquely, up to normal isotopy, by a vector v(S) ∈ Z7n that counts the number of elementary discs
of each type in each tetrahedron. The vector v(S) is called the standard vector representation
of S, and its 7n integer coordinates are called normal coordinates. The 4n coordinates that count
triangles are called triangle coordinates, and the 3n coordinates that count quadrilaterals are called
quadrilateral coordinates.

It is not immediately clear which points x ∈ Z7n actually represent normal surfaces. The most
obvious necessary condition is the non-negativity condition, which requires that the coordinates

1For brevity, we usually drop the word “generalised”.

3

Figure 1: The seven elementary disc types.

of x are all non-negative. It turns out that we only need two more necessary conditions, known as
the matching equations and the quadrilateral constraints, to obtain a list of conditions which is also
sufficient [8]. The following is a brief overview of these two conditions.

• For a collection of elementary discs to glue together to form a normal surface, they need to “match
up” across pairs of identified triangular faces. An elementary disc always meets a triangular face f
of a tetrahedron in one of three possible types of normal arcs. Each normal arc type is “parallel”
to one of the three edges of f , in the sense that the arc joins the other two edges of f . Two normal
arcs are of the same type if and only if they are related by a normal isotopy.
With this in mind, consider a triangular face f1 of a tetrahedron ∆1, and let e1 be one of the edges
of f1. Suppose f1 is identified with another face f2 of some tetrahedron ∆2. As a result of this
face identification, e1 becomes identified with an edge e2 of f2. The matching condition requires
the number of normal arcs parallel to e1 in f1 to be equal to the number of normal arcs parallel to
e2 in f2. To describe this constraint as a linear equation, we let:

– t1 be the number of triangles in ∆1 giving rise to a normal arc parallel to e1 in f1;
– q1 be the number of quadrilaterals in ∆1 giving rise to a normal arc parallel to e1 in f1;
– t2 be the number of triangles in ∆2 giving rise to a normal arc parallel to e2 in f2; and
– q2 be the number of quadrilaterals in ∆2 giving rise to a normal arc parallel to e2 in f2.

Then, we require points x ∈ Z7n to satisfy the matching equation

t1 + q1 = t2 + q2.

Figure 2 gives an example with t1 = 1, q1 = 2, t2 = 3 and q2 = 0, which clearly satisfies this
matching equation.
Since there are 4n tetrahedron faces in total, up to 2n pairs of faces can be identified. Each such
identification yields three matching equations, giving a total of at most 6n equations, with equality
if and only if all 4n faces have been paired up.

• The quadrilateral constraints require that each tetrahedron has at most one non-zero quadrilat-
eral coordinate. This condition is necessary because in each tetrahedron, any two quadrilaterals of
different types must always intersect. Such intersections need to be avoided because normal surfaces
are (by definition) embedded surfaces.

e1 e2

f1 f2

Figure 2: The matching equations assert that the number of red arcs should equal
the number of blue arcs.

4

Any vector x ∈ R7n (including non-integer vectors) is called admissible if it simultaneously
satisfies the non-negativity condition, the matching equations and the quadrilateral constraints. Haken
showed that the admissible points in Z7n are precisely the points that represent normal surfaces.

Theorem 1 (Haken). Let T be an n-tetrahedron triangulation. A vector x ∈ Z7n represents a normal
surface in T (uniquely up to normal isotopy) if and only if x is admissible [8, 9].

Notice that the matching equations, together with the non-negativity condition, give a collection of
homogeneous linear equations and inequalities over R7n. The set of solutions to these linear constraints
forms a polyhedral cone C ⊂ R7n known as the standard solution cone. We define a vertex normal
surface to be a normal surface S such that:

• v(S) lies on an extreme ray of the cone C; and
• there is no q ∈ (0, 1) such that qv(S) is an integral point in R7n.

Vertex normal surfaces were first introduced by Jaco and Oertel in 1984 (but they used the name
“fundamental edge surface”) [11]. It turns out that a normal surface S is a vertex normal surface
if and only if the integer multiples of v(S) are the only integral points x,y ∈ C that can satisfy an
equation of the form kv(S) = x + y, for some positive integer k [13].

For any vertex v of a triangulation T , the link of v can always be represented as a normal surface.
Such a surface is built from the elementary triangles that “surround” v in the triangulation (see Figure
3). Since vertex-linking normal surfaces always exist, we call a normal surface non-trivial if it does
not consist entirely of vertex links.

vertex v

S

Figure 3: Building a vertex-linking normal surface S from triangles.

If T is a one-vertex triangulation, then there is of course only one vertex-linking normal surface;
this surface must have every triangle coordinate equal to 1, and every quadrilateral coordinate equal
to 0. Any connected non-trivial normal surface in T must therefore have at least one of its triangle
coordinates set to 0. To see why, observe that if we have some non-trivial normal surface S in T
such that every triangle coordinate is non-zero, then one of the connected components of S must be
vertex-linking. But since S is non-trivial, S must also include at least one quadrilateral, and this
quadrilateral must belong to a second component of S, so S must be disconnected [6].

3 Abstract normal constraint optimisation

In section 1, we mentioned that the authors of [6] introduced the first unknot recognition algorithm
to exhibit polynomial-time behaviour under exhaustive experimentation. In particular, we noted that
almost every component of this algorithm runs in polynomial time, with the only exception being
the exponential-time tree traversal procedure for finding a non-trivial normal sphere or disc. As we
discuss in more detail shortly, this tree traversal procedure essentially consists of two subroutines,
and it is really the first subroutine that is the exponential-time bottleneck. Roughly speaking, the
bottleneck involves solving a certain combinatorial optimisation problem over normal coordinates. Our
main contribution in this section is to show that an abstract version of this optimisation problem is
NP-complete. This result suggests that if we want to design a polynomial-time algorithm for finding

5

a non-trivial normal sphere or disc, then such an algorithm would probably need to exploit some
geometric or topological ideas, not just the linear algebra that is currently used in [6].

We begin by giving a precise formulation of the aforementioned optimisation problem over normal
coordinates, as this informs how we formulate our abstract problem. Since this optimisation problem
would be somewhat unmotivated if we simply presented it without further context, we take a more
circuitous route. Specifically, we give a rough outline of the unknot recognition algorithm from [6], with
a particular focus on describing how this algorithm boils down to solving the optimisation problem in
question.

• The input for unknot recognition is a knot K embedded in the topological 3-sphere S3. To apply
normal surface theory, we convert the knot K into a 3-manifold known as the knot exterior; in
essence, the knot exterior K is the manifold that is left over after “drilling out” K from S3. The
first step of the algorithm in [6] is essentially to convert the knot K into a one-vertex triangulation
T of K.

• It turns out that the unknottedness of K can be certified by the existence of a particular normal
disc in T . Using the crushing procedure that we briefly mentioned in section 1, the problem
of determining whether T contains such a disc can essentially be boiled down to the problem
of determining whether T contains any non-trivial normal sphere or disc. (This is a dramatic
oversimplification; see [6] for a comprehensive explanation of how this works.)

• As we have already mentioned, the authors of [6] use the tree traversal procedure to find a non-
trivial normal sphere or disc in T (or else show that no such surface exists). This procedure basically
consists of two subroutines.

(1) For each choice of triangle coordinate t in T , the first subroutine searches for a (possibly
disconnected) normal surface S in T that satisfies the following two conditions.

(i) The surface S has positive Euler characteristic.
(ii) The triangle coordinate t is set to 0 in S.

If such a surface S exists, then at least one of its connected components must have positive
Euler characteristic.

(2) If subroutine (1) finds an appropriate surface S (for some choice of triangle coordinate t), the
second subroutine deletes “unwanted” elementary discs from S, until the remaining elementary
discs form a connected normal surface S′ with positive Euler characteristic. Since K ⊂ S3, and
since the projective plane cannot be embedded in S3, the surface S′ must either be a sphere or
a disc. Moreover, since T is a one-vertex triangulation, and since the triangle coordinate t is
set to 0 in S′, we see that S′ must be a non-trivial normal sphere or disc.

As mentioned earlier, subroutine (1) of the tree traversal procedure is the sole source of the
exponential running time of the unknot recognition algorithm from [6]. This subroutine essentially
treats the Euler characteristic as a linear objective function that needs to be maximised. This approach
relies on the following fact: given an n-tetrahedron triangulation T , there exists a homogeneous
linear function χ : Z7n → Z such that if S is a normal surface in T , then χ

(
v(S)

)
equals the Euler

characteristic of S. See [6] for one possible choice of χ.
Recall from section 2 that the normal surfaces in a triangulation correspond precisely to the

normal coordinate vectors that are admissible. Thus, subroutine (1) boils down to repeatedly solving
the following combinatorial optimisation problem, once for each choice of triangle coordinate t (for a
total of at most 4n repetitions, where n is the number of tetrahedra in the input triangulation).

Problem 2.
INSTANCE: An n-tetrahedron one-vertex triangulation T , and a fixed triangle coordinate t from one

of the n tetrahedra.
QUESTION: Does there exist a vector x ∈ Z7n such that χ(x) > 0, subject to the constraints that x is

admissible and t is set to 0?

We emphasise again that solving Problem 2 is the critical exponential-time bottleneck for the
unknot recognition algorithm from [6]. If we could find a polynomial-time algorithm for this problem,
then we would immediately get a polynomial-time algorithm for unknot recognition. So, with the goal

6

of gaining some insight into the computational complexity of Problem 2, we devote the remainder of
this section to:

• formulating an abstract problem that captures the algebraic and combinatorial aspects of Problem
2; and

• proving that our abstract problem is NP-hard.

As we hinted earlier, this result has a significant practical implication: assuming P 6= NP, a polynomial-
time algorithm for Problem 2 cannot rely solely on exploiting the algebraic and combinatorial aspects of
the problem; instead, such an algorithm would probably need to exploit some geometric or topological
ideas that are not captured by our abstract problem.

From now until the end of this section, we will primarily be discussing “abstract” analogues of
notions from normal surface theory, such as “abstract normal coordinates” and “abstract matching
equations”. For brevity, we will usually omit the word “abstract”. So, to avoid confusion, whenever
we need to discuss the “concrete” counterparts of these new abstract notions, we will explicitly use
descriptions such as “concrete normal coordinates” and “concrete matching equations”.

To formulate our algebraic abstraction, we start by defining an abstract tetrahedron to be a
tuple

T = (x1, x2, x3, x4, x5, x6, x7)

of seven non-negative integer variables called (abstract) normal coordinates. For i ∈ {1, 2, 3}, xi
is called an (abstract) quadrilateral coordinate. For i ∈ {4, 5, 6, 7}, xi is called an (abstract)
triangle coordinate. The quadrilateral coordinates x1, x2, x3 must satisfy the (abstract) quadri-
lateral constraint, which says that no two of these quadrilateral coordinates may be simultaneously
non-zero.

Suppose we have n abstract tetrahedra T1, . . . , Tn, where for each k = 1, . . . , n we write

Tk = (xk,1, xk,2, . . . , xk,7).

All of these coordinates together determine a vector

x = (x1,1, . . . , x1,7; x2,1, . . . , x2,7; ; xn,1, . . . , xn,7) ∈ Z7n.

Of course, not every point x ∈ Z7n determines a “valid” assignment of values to our normal coordinates.
To get a valid assignment, we require every coordinate of x to be non-negative, and we require the
quadrilateral constraint to be satisfied in each Tk, k = 1, . . . , n.

An (abstract) matching equation is an equation of the form q+ t = q′ + t′, where q and q′ are
both quadrilateral coordinates, and t and t′ are both triangle coordinates. We will call a collection M
of matching equations compatible if M satisfies the following two conditions:

• every quadrilateral coordinate appears at most four times in the equations in M ; and
• every triangle coordinate appears at most three times in the equations in M .

Note that we consider an equation of the form q + t = q + t′ to contain two occurrences of the
quadrilateral coordinate q. Similarly, an equation of the form q + t = q′ + t contains two occurrences
of the triangle coordinate t.

This notion of compatibility is motivated by two simple geometric observations. First, since a
quadrilateral gives rise to four normal arcs, a concrete quadrilateral coordinate can only be involved
in at most four concrete matching equations. Similarly, since a triangle gives rise to three normal arcs,
a concrete triangle coordinate can only be involved in at most three concrete matching equations.

Recall from section 2 that a triangulation yields at most 6n concrete matching equations, with
equality precisely when all 4n tetrahedron faces have been paired up. We get an analogue of this
property as an easy consequence of the compatibility conditions.

Lemma 3. Let M be a compatible collection of abstract matching equations. Then M contains at
most 6n equations. Moreover, M contains exactly 6n equations if and only if every triangle coordinate
appears in exactly three equations and every quadrilateral coordinate appears in exactly four equations.

7

Proof. Each of the 4n triangle coordinates can appear at most three times, for a total of up to
12n appearances of triangle coordinates. Since every matching equation includes two appearances of
triangle coordinates, M can contain at most 6n equations. In particular, if every triangle coordinate
appears exactly three times, then there are exactly 12n appearances of triangle coordinates, and hence
there must be exactly 6n equations.

On the other hand, suppose M contains exactly 6n equations. Since each equation contains two
appearances of triangle coordinates, there are a total of 12n appearances of triangle coordinates. But
each of the 4n triangle coordinates can only appear at most three times, so they must all appear exactly
three times. Similarly, since each equation contains two appearances of quadrilateral coordinates, there
are a total of 12n appearances of quadrilateral coordinates. So, since each of the 3n quadrilateral
coordinates can only appear at most four times, they must all appear exactly four times.

With this in mind, fix a compatible collection M of matching equations. We say that a point
x ∈ Z7n is M-admissible if:

• the coordinates of x are all non-negative;
• x satisfies the quadrilateral constraints; and
• x satisfies every equation in M .

The notion of M -admissibility mirrors the notion of admissibility discussed in section 2.
Recalling that the Euler characteristic of a normal surface S can be expressed as a homogeneous

linear function χ of the concrete normal coordinates of S, where the coefficients in χ are all integers,
we introduce the following abstraction of Problem 2.

Problem 4 (Abstract normal constraint optimisation).
INSTANCE: n abstract tetrahedra, a compatible collection M of matching equations, a homogeneous

linear function χ : Z7n → Z (which can only have integer coefficients), and a fixed triangle
coordinate t from one of the n abstract tetrahedra.

QUESTION: Does there exist a vector x ∈ Z7n such that χ(x) > 0, subject to the constraints that x is
M -admissible and t is set to 0?

This problem turns out to be NP-complete (see Theorem 8 below). Since this problem has been
deliberately formulated to mimic the key algebraic and combinatorial aspects of Problem 2, this result
therefore sheds some light on the complexity of Problem 2. Having said this, it is important to note
that Problem 4 does not capture all of the geometric and topological restrictions that are inherent to
Problem 2. Indeed, the NP-hardness part of our proof relies on being able to construct instances of
Problem 4 that violate these geometric and topological restrictions. Thus, our proof does not readily
extend to a proof that Problem 2 is NP-hard.

In detail, there are two main distinctions between Problems 2 and 4, both of which we discuss
below. Given that a polynomial-time algorithm for Problem 2 would represent a major breakthrough
in computational topology, we also discuss how these distinctions should inform future efforts to design
such an algorithm.

• First, given a triangulation T , recall that the concrete matching equations come directly from the
face identifications in T . This means that a collection of concrete matching equations must always
have a somewhat rigid combinatorial structure. Apart from our notion of compatibility, most of
this structure is not captured by our abstract matching equations.
For instance, given a concrete matching equation q + t = q′ + t′, the coordinates q and t must both
come from the same tetrahedron (and likewise for q′ and t′). This property is not required in our
abstract matching equations. Indeed, our proof of NP-hardness of Problem 4 relies on having access
to equations that violate this property; in particular, see equation (d) in the proof of Lemma 6, as
well as equations (d)–(g) in the proof of Lemma 7. Concrete matching equations also always come
in groups of three, since a face identification always yields three equations; this is another property
that is not reflected in our abstract matching equations.
The key takeaway is that the hardness of Problem 4 could well be due, in large part, to the fact
that our abstract matching equations fail to capture most of the inherent geometric properties of

8

concrete matching equations. Thus, exploiting such geometric properties could be crucial for anyone
hoping to design a polynomial-time algorithm for Problem 2.

• Second, recall that in Problem 2, the function χ carries important topological information, because
for any normal surface S, χ

(
v(S)

)
must equal the Euler characteristic of S. In contrast, Problem

4 only requires χ to be some homogeneous linear function with integer coefficients, and there is no
need for this function to have any kind of topological significance.
This distinction could well be crucial to the hardness of Problem 4, as our proof of NP-hardness
exploits the ability to choose an essentially arbitrary function χ. This also suggests that if we want
to design a polynomial-time algorithm for Problem 2, then it may not be enough to simply treat χ
as a homogeneous linear objective function, as is done in [6]; instead, we may need to exploit some
more specific properties of the Euler characteristic.

With all this in mind, we now discuss our strategy for proving that Problem 4 is NP-hard (this
is the more intricate half of our NP-completeness proof). Given that most of the constraints in
this problem are homogeneous linear constraints involving only integer coefficients, it is worth noting
that these constraints can be handled using techniques from linear programming (rather than integer
programming). More specifically, we can first use linear programming techniques to find a rational
solution q to these linear constraints, and then exploit homogeneity by scaling q to obtain the desired
integral solution x. From this perspective, the quadrilateral constraints stand out as playing a key role
in the hardness of Problem 4, since these are the only constraints that are non-linear. It is therefore
unsurprising that the quadrilateral constraints lie at the heart of our proof of NP-hardness.

More broadly, our proof strategy is to give a reduction from a variant of satisfiability called
monotone one-in-three satisfiability. This problem is well-known, but we give the following
detailed formulation anyway, so as to establish our notation.

A clause is a triple c = (u1, u2, u3) of distinct Boolean variables, and we say that c is satisfied
if exactly one of its three variables is true. Given a set C = {c1, . . . , cn} of such clauses, let V be the
set of all variables that appear in C. A truth assignment for V is a map t : V → {0, 1}, where
we interpret t(v) = 1 to mean “v is true”, and t(v) = 0 to mean “t is false”. A clause is said to be
satisfied under t if exactly one of its variables is true under t. A collection C of clauses is satisfiable
if there is a truth assignment that satisfies every clause of C in this way.

Problem 5 (Monotone one-in-three satisfiability).
INSTANCE: A collection C = {c1, . . . , cn} of clauses (where each clause ck is a triple (uk,1, uk,2, uk,3)

of distinct variables from V = {v1, . . . , vm}).
QUESTION: Is C satisfiable?

Problem 5 was proven NP-complete by Schaefer in 1978, as an application of his general dichotomy
theorem for satisfiability [16]. Note that Schaefer simply called this problem “one-in-three satisfiabil-
ity”; we include the specifier “monotone” to emphasise that the clauses never contain any negated
variables.

As mentioned above, we prove that Problem 4 is NP-hard by giving a polynomial reduction from
Problem 5. To this end, suppose we are given any collection of clauses C = {c1, . . . , cn}, where each
clause ck is a triple (uk,1, uk,2, uk,3) of distinct Boolean variables. The main idea of our reduction is
to represent each clause ck as an abstract tetrahedron Tk = (xk,i)

7
i=1, where for each i = 1, 2, 3 we

consider the variable uk,i to be “true” if and only if the quadrilateral coordinate xk,i is non-zero. For
this to work, our construction needs to enforce the following two conditions.

(1) If uk,i and u`,j are two occurrences of the same variable, then the corresponding quadrilateral
coordinates must be equal.

(2) In each Tk, at least one of the three quadrilateral coordinates xk,1, xk,2, xk,3 must be non-zero.

Recall that each Tk can only have at most one of its quadrilateral coordinates being non-zero, due
to the quadrilateral constraints. Together with condition (2), this will force exactly one quadrilateral
coordinate to be non-zero in each abstract tetrahedron Tk, which corresponds to the requirement that
exactly one variable is true in each clause ck.

9

To enforce condition (1), we introduce n− 1 abstract tetrahedra

Sk =
(
wk,i

)7
i=1
, k ∈ {1, . . . , n− 1}.

We then construct a particular collection M1 of matching equations, such that if these equations are
satisfied, then we must have xk,i = x`,j for all k, ` ∈ {1, . . . , n} and i, j ∈ {1, 2, 3} such that uk,i and
u`,j are two occurrences of the same variable. The details of this construction are captured in Lemma
6.

To enforce condition (2), we introduce n− 1 abstract tetrahedra

Uk =
(
yk,i
)7
i=1
, k ∈ {1, . . . , n− 1}.

We then construct a particular collection M2 of matching equations, such that if these equations are
satisfied, then we must have

x1,1 + x1,2 + x1,3 = x2,1 + x2,2 + x2,3 = · · · = xn,1 + xn,2 + xn,3.

This constraint, combined with a carefully chosen function χ, will be enough to enforce condition (2).
The details of this construction are captured in Lemma 7.

With these ideas in mind, we now present the proofs of Lemmas 6 and 7. We then finish this
section by applying these two lemmas to prove that abstract normal constraint optimisation
(Problem 4) is NP-complete.

Lemma 6. Given:

• a collection C = {c1, . . . , cn} of clauses (as in Problem 5);
• n abstract tetrahedra Tk = (xk,i)

7
i=1, k ∈ {1, . . . , n}; and

• n− 1 abstract tetrahedra Sk = (wk,i)
7
i=1, k ∈ {1, . . . , n− 1};

we can construct a collection M1 of matching equations such that:

• the equations in M1 are satisfied if and only if we have:

– wk,4 = wk,5 = wk,6 = wk,7 for all k ∈ {1, . . . , n− 1}, and
– xk,i = x`,j for all k, ` ∈ {1, . . . , n} and i, j ∈ {1, 2, 3} such that uk,i and u`,j are two occurrences

of the same variable;

• for all k ∈ {1, . . . , n} and i ∈ {1, 2, 3}, the quadrilateral coordinate xk,i appears at most twice among
the equations in M1;

• for all k ∈ {1, . . . , n} and i ∈ {4, 5, 6, 7}, the triangle coordinate xk,i never appears among the
equations in M1;

• for all k ∈ {1, . . . , n− 1} and i ∈ {1, 2, 3}, the quadrilateral coordinate wk,i appears twice among the
equations in M1; and

• for all k ∈ {1, . . . , n−1} and i ∈ {4, 5, 6, 7}, the triangle coordinate wk,i appears at most three times
among the equations in M1.

Moreover, this can be done in O(n2) time.

Proof. For each k ∈ {1, . . . , n− 1}, we add the matching equations

wk,1 + wk,4 = wk,1 + wk,5; (a)

wk,2 + wk,4 = wk,2 + wk,7; (b)

wk,3 + wk,6 = wk,3 + wk,7 (c)

to M1. Observe that these equations reduce to

wk,4 = wk,5 = wk,6 = wk,7.

Now, given any fixed variable v ∈ V , let uk1,i1 , uk2,i2 , . . . , ukm,im denote all the occurrences of v.
We would like to force

xkj ,ij = xkj+1,ij+1

10

for each j ∈ {1, . . . ,m− 1}, because this would imply

xk1,i1 = xk2,i2 = · · · = xkm,im .

Since the triangle coordinates wkj ,ij+3 and wkj ,ij+4 must be equal, we can do this by adding the
equation

xkj ,ij + wkj ,ij+3 = xkj+1,ij+1
+ wkj ,ij+4

to M1, for each j ∈ {1, . . . ,m}. By doing the same thing for each variable v ∈ V , we can force
xk,i = x`,j for all k, ` ∈ {1, . . . , n} and i, j ∈ {1, 2, 3} such that uk,i and u`,j are two occurrences of the
same variable. We describe a polynomial-time procedure to add all these equations to M1.

For each fixed uk,i, where k ∈ {1, . . . , n − 1} and i ∈ {1, 2, 3}, we perform a search that finishes
by adding at most one equation to M1. More specifically, for ` ∈ {k + 1, . . . , n} and j ∈ {1, 2, 3}, we
sequentially check each u`,j to see whether uk,i and u`,j are two occurrences of the same variable. If
so, we stop searching, and add the matching equation

xk,i + wk,i+3 = x`,j + wk,i+4 (d)

to M1. After checking O(n) coordinates, we either:

• find such a u`,j , and impose the corresponding equation; or
• conclude that no such u`,j exists.

We perform this search once for each uk,i, which requires O(n2) steps in total. When this whole
procedure is finished, we get a collection M1 of matching equations that are satisfied if and only if we
have:

• wk,4 = wk,5 = wk,6 = wk,7 for all k ∈ {1, . . . , n− 1}; and
• xk,i = x`,j for all k, ` ∈ {1, . . . , n} and i, j ∈ {1, 2, 3} such that uk,i and u`,j are two occurrences of

the same variable.

Moreover, given any fixed k ∈ {1, . . . , n}, observe that:

• for each i ∈ {1, 2, 3}, the quadrilateral coordinate xk,i appears at most twice among equations of
type (d), and nowhere else in M1; and

• for each i ∈ {4, 5, 6, 7}, the triangle coordinate xk,i never appears among the equations in M1.

To see that:

• for all k ∈ {1, . . . , n − 1} and i ∈ {1, 2, 3}, the quadrilateral coordinate wk,i appears twice among
the equations in M1; and

• for all k ∈ {1, . . . , n−1} and i ∈ {4, 5, 6, 7}, the triangle coordinate wk,i appears at most three times
among the equations in M1;

consider any fixed k ∈ {1, . . . , n− 1}, and observe that:

• the quadrilateral coordinate wk,1 appears twice in an equation of type (a), and nowhere else in M1;
• the quadrilateral coordinate wk,2 appears twice in an equation of type (b), and nowhere else in M1;
• the quadrilateral coordinate wk,3 appears twice in an equation of type (c), and nowhere else in M1;
• the triangle coordinate wk,4 appears once in an equation of type (a), once in an equation of type

(b), possibly once more in an equation of type (d) (since i + 3 = 4 when i = 1), and nowhere else
in M1;

• the triangle coordinate wk,5 appears once in an equation of type (a), possibly twice more in equations
of type (d) (since i+ 3 = 5 when i = 2, and i+ 4 = 5 when i = 1), and nowhere else in M1;

• the triangle coordinate wk,6 appears once in an equation of type (c), possibly twice more in equations
of type (d) (since i+ 3 = 6 when i = 3, and i+ 4 = 6 when i = 2), and nowhere else in M1; and

• the triangle coordinate wk,7 appears once in an equation of type (b), once in an equation of type
(c), possibly once more in an equation of type (d) (since i+ 4 = 7 when i = 3), and nowhere else in
M1.

11

Lemma 7. Given:

• n abstract tetrahedra Tk = (xk,i)
7
i=1, k ∈ {1, . . . , n}; and

• n− 1 abstract tetrahedra Uk = (yk,i)
7
i=1, k ∈ {1, . . . , n− 1};

we can construct a collection M2 of matching equations such that:

• if we impose y1,5 = 0, then the equations in M2 are satisfied if and only if for all k ∈ {1, . . . , n− 1}
we have

yk,1 = yk,2 = yk,5 = yk,6 = 0, (i)

xk,4 = xk,3, (ii)

xk+1,6 = xk+1,3, (iii)

xk,5 = xk,2 + xk,3, (iv)

xk+1,7 = xk+1,2 + xk+1,3, (v)

xk,1 + xk,2 + xk,3 = xk+1,1 + xk+1,2 + xk+1,3; (vi)

• for all k ∈ {1, . . . , n} and i ∈ {1, . . . , 7}, the coordinate xk,i appears at most twice among the
equations in M2;

• for all k ∈ {1, . . . , n − 1} and i ∈ {1, 2, 3}, the quadrilateral coordinate yk,i appears at most four
times among the equations in M2; and

• for all k ∈ {1, . . . , n− 1} and i ∈ {4, 5, 6, 7}, the triangle coordinate yk,i appears at most three times
among the equations in M2.

Moreover, this can be done in O(n) time.

Proof. For each k ∈ {1, . . . , n− 2}, we add the matching equation

yk,2 + yk,6 = yk+1,1 + yk+1,5 (a)

to M2. For each k ∈ {1, . . . , n− 1}, we also add the following matching equations to M2:

yk,1 + yk,4 = yk,2 + yk,4; (b)

yk,3 + yk,5 = yk,3 + yk,6; (c)

yk,1 + xk,4 = xk,3 + yk,5; (d)

yk,1 + xk+1,6 = xk+1,3 + yk,6; (e)

yk,2 + xk,5 = xk,2 + xk,4; (f)

yk,2 + xk+1,7 = xk+1,2 + xk+1,6; (g)

xk,1 + xk,5 = xk+1,1 + xk+1,7. (h)

We claim that if we impose y1,5 = 0, then the equations in M2 are satisfied if and only if equations
(i)–(vi) are satisfied for all k ∈ {1, . . . , n− 1}. To see this, first observe that the equations of type (b)
reduce to yk,1 = yk,2 = 0, since the quadrilateral coordinates yk,1 and yk,2 cannot be simultaneously
non-zero, due to the quadrilateral constraint. This means that the equations of type (a) reduce to
yk,6 = yk+1,5. Together with the equations of type (c), which reduce to yk,5 = yk,6, we therefore have

y1,5 = y1,6 = y2,5 = y2,6 = · · · = yn−1,5 = yn−1,6.

So, by imposing y1,5 = 0, we get yk,5 = yk,6 = 0 for all k ∈ {1, . . . , n− 1}. So, we have

yk,1 = yk,2 = yk,5 = yk,6 = 0

for each k ∈ {1, . . . , n− 1}. As a result, the equations of type (d), (e), (f), (g) and (h) reduce to:

xk,4 = xk,3;

xk+1,6 = xk+1,3;

xk,5 = xk,2 + xk,4 = xk,2 + xk,3;

xk+1,7 = xk+1,2 + xk+1,6 = xk+1,2 + xk+1,3;

xk,1 + xk,2 + xk,3 = xk,1 + xk,5 = xk+1,1 + xk+1,7 = xk+1,1 + xk+1,2 + xk+1,3;

12

for all k ∈ {1, . . . , n− 1}. Thus, we recover equations (i)–(vi).
To see that for all k ∈ {1, . . . , n} and i ∈ {1, . . . , 7}, the coordinate xk,i appears at most twice

among the equations in M2, consider any fixed k ∈ {1, . . . , n} and observe that:

• the quadrilateral coordinate xk,1 appears at most twice among equations of type (h), and nowhere
else in M2;

• the quadrilateral coordinate xk,2 appears at most once in an equation of type (f), possibly once
more in an equation of type (g), and nowhere else in M2;

• the quadrilateral coordinate xk,3 appears at most once in an equation of type (d), possibly once
more in an equation of type (e), and nowhere else in M2;

• the triangle coordinate xk,4 appears at most once in an equation of type (d), possibly once more in
an equation of type (f), and nowhere else in M2;

• the triangle coordinate xk,5 appears at most once in an equation of type (f), possibly once more in
an equation of type (h), and nowhere else in M2;

• the triangle coordinate xk,6 appears at most once in an equation of type (e), possibly once more in
an equation of type (g), and nowhere else in M2; and

• the triangle coordinate xk,7 appears at most once in an equation of type (g), possibly once more in
an equation of type (h), and nowhere else in M2.

To see that:

• for all k ∈ {1, . . . , n − 1} and i ∈ {1, 2, 3}, the quadrilateral coordinate yk,i appears at most four
times among the equations in M2; and

• for all k ∈ {1, . . . , n−1} and i ∈ {4, 5, 6, 7}, the triangle coordinate yk,i appears at most three times
among the equations in M2;

consider any k ∈ {1, . . . , n− 1}, and observe that:

• the quadrilateral coordinate yk,1 only appears in equations of type (a), (b), (d) and (e), and only at
most once for each type;

• the quadrilateral coordinate yk,2 only appears in equations of type (a), (b), (f) and (g), and only at
most once for each type;

• the quadrilateral coordinate yk,3 appears twice in an equation of type (c), and nowhere else in M2;
• the triangle coordinate yk,4 appears twice in an equation of type (b), and nowhere else in M2;
• the triangle coordinate yk,5 only appears in equations of type (a), (c) and (d), and only at most

once for each type;
• the triangle coordinate yk,6 only appears in equations of type (a), (c) and (e), and only at most

once for each type; and
• the triangle coordinate yk,7 never appears in M2.

Finally, note that constructing all the equations in M2 requires O(n) steps.

Theorem 8. Abstract normal constraint optimisation (Problem 4) is NP-complete.

Proof. To show that Problem 4 is in NP, we use essentially the same ideas as those used by Hass,
Lagarias and Pippenger [9] to show that unknot recognition is in NP. Given a proposed solution x
to an instance I of Problem 4, it is easy to check whether t is set to 0 in x. However, to guarantee
that we can decide in polynomial time whether x is M -admissible and whether χ(x) > 0, we need to
bound the size of x.

To this end, consider the set C ⊂ R7n of all vectors satisfying both the non-negativity condition
and the equations from M . Note that C is a polyhedral cone, and is analogous to the standard solution
cone from the theory of concrete normal coordinates. We can then define a vertex solution (analogous
to a vertex normal surface) to be a vector x ∈ R7n such that:

• x lies on an extreme ray of the cone C;
• there is no q ∈ (0, 1) such that qx is an integral point in R7n; and
• x satisfies the quadrilateral constraints.

13

We claim that if some solution x exists for an instance I of Problem 4, then the same instance I
must have a vertex solution. Indeed, since x lies in the cone C, we can write x = q1v1+· · ·+qkvk, where
each vector vi lies on an extreme ray of C, and each coefficient qi is positive. Because everything is non-
negative, the fact that x is a solution to I immediately implies that each vi satisfies the quadrilateral
constraints, and hence that each vi is (up to scaling by a positive number) a vertex solution; similar
reasoning tells us that t must be set to 0 in each vi. Moreover, since the function χ is linear, we have

0 < χ(x) = q1χ(v1) + · · ·+ qkχ(vk),

which tells us that there must be at least one vertex solution vi satisfying χ(vi) > 0.
Thus, it suffices to bound the size of a vertex solution x for Problem 4. We can do this using

Lemma 6.1 from [9]. Although this lemma is stated in the setting of concrete matching equations, its
proof only uses algebraic properties that are captured by our abstract matching equations. We can
therefore apply this lemma in our setting, which yields the following bound: each of the 7n entries
of x can be written using at most 7n bits. This bound is enough to guarantee that we can decide in
polynomial time whether x is a solution to Problem 4, and hence completes the proof that Problem
4 is in NP.

To show that Problem 4 is also NP-hard, we give a reduction from monotone one-in-three
satisfiability (Problem 5). Suppose we are given any collection of clauses C = {c1, . . . , cn}, where
each clause ck is a triple (uk,1, uk,2, uk,3) of distinct Boolean variables. We construct a corresponding
instance of abstract normal constraint optimisation, as follows.

• Construct the following p = 3n− 2 abstract tetrahedra:

– Sk = (wk,i)
7
i=1, k ∈ {1, . . . , n− 1};

– Tk = (xk,i)
7
i=1, k ∈ {1, . . . , n}; and

– Uk = (yk,i)
7
i=1, k ∈ {1, . . . , n− 1}.

• Construct a collection M = M1∪M2 of matching equations, where M1 is the collection of matching
equations given in Lemma 6, and M2 is the collection of matching equations given in Lemma 7.

• Choose the homogeneous linear function χ : Z7p → Z defined by

χ(x) =
n∑

k=1

(
xk,1 + xk,2 + xk,3

)
for all

x =
(
w1,1, . . . , w1,7; . . . ; wn−1,1, . . . , wn−1,7;

x1,1, . . . , x1,7; . . . ; xn,1, . . . , xn,7;

y1,1, . . . , y1,7; . . . ; yn−1,1, . . . , yn−1,7

)
∈ Z7p.

• Fix t = y1,5.

By Lemmas 6 and 7, the entire construction requires O(n2) steps in total. To see that M is actually
a compatible collection of matching equations, recall from Lemmas 6 and 7 that:

• for each k ∈ {1, . . . , n− 1} and i ∈ {1, 2, 3}, the quadrilateral coordinate wk,i appears twice in M1,
and never appears in M2;

• for each k ∈ {1, . . . , n − 1} and i ∈ {4, 5, 6, 7}, the triangle coordinate wk,i appears at most three
times in M1, and never appears in M2;

• for each k ∈ {1, . . . , n} and i ∈ {1, 2, 3}, the quadrilateral coordinate xk,i appears at most twice in
M1, and appears at most twice in M2;

• for each k ∈ {1, . . . , n} and i ∈ {4, 5, 6, 7}, the triangle coordinate xk,i never appears in M1, and
appears at most twice in M2;

• for each k ∈ {1, . . . , n− 1} and i ∈ {1, 2, 3}, the quadrilateral coordinate yk,i never appears in M1,
and appears at most four times in M2; and

14

• for each k ∈ {1, . . . , n− 1} and i ∈ {4, 5, 6, 7}, the triangle coordinate yk,i never appears in M1, and
appears at most three times in M2.

So, it only remains to show that C is satisfiable if and only if there exists an M -admissible point
x ∈ Z7p such that χ(x) > 0 and t = 0.

• Suppose C is satisfiable. Then we can fix some truth assignment such that exactly one variable is
true in every clause in C. Consider the point

x =
(
w1,1, . . . , w1,7; . . . ; wn−1,1, . . . , wn−1,7;

x1,1, . . . , x1,7; . . . ; xn,1, . . . , xn,7;

y1,1, . . . , y1,7; . . . ; yn−1,1, . . . , yn−1,7

)
∈ Z7p

given by:

– wk,i = yk,i = 0 for all k ∈ {1, . . . , n− 1} and i ∈ {1, . . . , 7} (in particular, t = y1,5 = 0);
– xk,i = 1 for all k ∈ {1, . . . , n} and i ∈ {1, 2, 3} such that uk,i is true;
– xk,i = 0 for all k ∈ {1, . . . , n} and i ∈ {1, 2, 3} such that uk,i is false;
– xk,4 = xk,6 = xk,3 for all k ∈ {1, . . . , n}; and
– xk,5 = xk,7 = xk,2 + xk,3 for all k ∈ {1, . . . , n}.
For each k ∈ {1, . . . , n}, since exactly one of the variables uk,1, uk,2, uk,3 is true, we must have
exactly one of the quadrilateral coordinates xk,1, xk,2, xk,3 equal to 1, and the other two quadrilateral
coordinates equal to 0. In particular, this means that

xk,1 + xk,2 + xk,3 = 1

for all k ∈ {1, . . . , n}.
With this in mind, we claim that x is M -admissible. To see this, first note that every coordinate of
x is clearly non-negative. Additionally, observe that for each k ∈ {1, . . . , n − 1}, the quadrilateral
coordinates in Sk = (wk,i)

7
i=1 and Uk = (yk,i)

7
i=1 are all zero, so we can immediately see that the

quadrilateral constraints are satisfied in Sk and Uk. For Tk = (xk,i)
7
i=1, k ∈ {1, . . . , n}, recall

that exactly one of the quadrilateral coordinates xk,1, xk,2, xk,3 is equal to 1, and the other two
quadrilateral coordinates are equal to 0. Thus, the quadrilateral constraints are also satisfied in
each Tk.
It remains to show that x satisfies every equation in M = M1 ∪M2. To this end, observe that:

– for all k ∈ {1, . . . , n− 1}, we have wk,4 = wk,5 = wk,6 = wk,7 = 0; and
– given any k, ` ∈ {1, . . . , n} and i, j ∈ {1, 2, 3} such that uk,i and u`,j are two occurrences of the

same variable, uk,i is true if and only if u`,j is true, which means that xk,i = x`,j .

So, by Lemma 6, x satisfies the equations in M1. Moreover, by construction, for all k ∈ {1, . . . , n−1}
we recover equations (i)–(vi) from Lemma 7:

yk,1 = yk,2 = yk,5 = yk,6 = 0, (i)

xk,4 = xk,3, (ii)

xk+1,6 = xk+1,3, (iii)

xk,5 = xk,2 + xk,3, (iv)

xk+1,7 = xk+1,2 + xk+1,3, (v)

xk,1 + xk,2 + xk,3 = xk+1,1 + xk+1,2 + xk+1,3. (vi)

Thus, x also satisfies the equations in M2. Altogether, we see that x is indeed M -admissible.
Finally, observe that

χ(x) =

n∑
k=1

(
xk,1 + xk,2 + xk,3

)
=

n∑
k=1

1 = n > 0.

Thus, we have found an M -admissible point x ∈ Z7p such that χ(x) > 0 and t = 0.

15

• Suppose

x =
(
w1,1, . . . , w1,7; . . . ; wn−1,1, . . . , wn−1,7;

x1,1, . . . , x1,7; . . . ; xn,1, . . . , xn,7;

y1,1, . . . , y1,7; . . . ; yn−1,1, . . . , yn−1,7

)
∈ Z7p

is an M -admissible point such that χ(x) > 0 and t = 0. For each k ∈ {1, . . . , n} and i ∈ {1, 2, 3},
take the variable uk,i to be true if and only if the quadrilateral coordinate xk,i is non-zero. To
see that this gives a valid truth assignment, recall from Lemma 6 that the matching equations in
M1 ⊂M ensure that for any k, ` ∈ {1, . . . , n} and i, j ∈ {1, 2, 3}, if uk,i and u`,j are two occurrences
of the same variable, then xk,i = x`,j .
By the quadrilateral constraints, for each fixed k = 1, . . . , n, at most one of the quadrilateral
coordinates xk,1, xk,2, xk,3 is non-zero. Thus, at most one of the three variables uk,1, uk,2, uk,3 is true
in each clause ck ∈ C. We claim that no clause has all three variables false, and hence that exactly
one variable must be true in every clause. To see this, suppose instead that for some ` ∈ {1, . . . , n},
the variables u`,1, u`,2, u`,3 are all false. This means that x`,1 = x`,2 = x`,3 = 0.
Since we have forced y1,5 = t = 0, and since the matching equations in M2 ⊂M are satisfied, recall
from Lemma 7 that equation (vi) is satisfied for all k ∈ {1, . . . , n− 1}; that is, we have

xk,1 + xk,2 + xk,3 = xk+1,1 + xk+1,2 + xk+1,3

for all k ∈ {1, . . . , n− 1}. Thus, we see that

xk,1 + xk,2 + xk,3 = x`,1 + x`,2 + x`,3 = 0

for all k ∈ {1, . . . , n}. But this means that

χ(x) =
n∑

k=1

(
xk,1 + xk,2 + xk,3

)
= 0,

contradicting the initial assumption that χ(x) > 0. So, we must have a truth assignment such that
exactly one variable is true in every clause in C. In other words, C must be satisfiable.

Altogether, we conclude that our construction gives a polynomial reduction from monotone one-
in-three satisfiability (Problem 5) to abstract normal constraint optimisation (Problem
4), and hence that Problem 4 is NP-hard.

4 Detecting splitting surfaces and connected spanning central sur-
faces

In section 1, we mentioned that the problem of finding a non-trivial vertex normal sphere or disc
can be solved using vertex normal surface enumeration. This exemplifies the central role that vertex
normal surfaces play in a very wide range of algorithms based on normal surface theory. Thus, we
have a strong incentive to investigate the computational complexity of problems that can be solved
by enumerating vertex normal surfaces. In this section, we consider two closely-related problems of
this type. We show that one of these problems can be solved in polynomial time, while the other is
NP-complete.

Before we formulate these two problems, we make a brief diversion to: define the type of normal
surface that lies at the heart of both of these problems, and then discuss the significance of such
surfaces. A spanning central surface in a triangulation T is a normal surface that meets each
tetrahedron of T in precisely one elementary disc. We focus on spanning central surfaces that are con-
nected, as cutting the ambient triangulation T along such a surface can provide a useful decomposition
of the underlying 3-manifold of T .

More specifically, cutting a 3-manifold triangulation T along a connected spanning central surface
always decomposes T into one or two pieces, where each piece is homeomorphic to a regular neigh-
bourhood of some 2-dimensional complex. To illustrate why this happens, we first examine how a

16

spanning central surface S cuts through a single tetrahedron ∆. If S meets ∆ in a triangle, then this
triangle separates a vertex v of ∆ from its opposite face f , as illustrated in Figure 4a. Cutting along
S therefore divides ∆ into the following two regions:

• a tetrahedron attached to v, which we can view as a regular neighbourhood of v in ∆; and
• a truncated tetrahedron attached to f , which we can view as a regular neighbourhood of f in ∆.

On the other hand, if S meets ∆ in a quadrilateral, then this quadrilateral separates two opposite
edges e1 and e2 of ∆, as illustrated in Figure 4b. Cutting along S therefore divides ∆ into the following
two regions:

• a wedge attached to e1, which we can view as a regular neighbourhood of e1 in ∆; and
• a wedge attached to e2, which we can view as a regular neighbourhood of e2 n ∆.

(a) The pink triangle separates the blue vertex
from the blue face.

(b) The pink quadrilateral separates the blue pair
of opposite edges.

Figure 4: An elementary disc cuts a tetrahedron into two regions.

With this in mind, let T be a triangulation of a closed 3-manifold, and suppose we cut T along
a connected spanning central surface S. If S is two-sided, then T decomposes into two bounded
manifolds; otherwise, if S is one-sided, then T “unfolds” into a single bounded manifold. Due to the
way in which S cuts through each tetrahedron of T , the resulting bounded manifolds are essentially
regular neighbourhoods of 2-dimensional complexes built from triangles, edges and vertices. The
structure of these complexes can often provide insight into the structure of the original 3-manifold. In
particular, it is worth mentioning the following two special cases.

• First, suppose S is a spanning central sphere that bounds a 3-ball in T . By the preceding discussion,
deleting the interior of this 3-ball from T leaves behind a regular neighbourhood of a 2-dimensional
complex. This complex is therefore a spine of the underlying 3-manifold of T .

• Second, suppose S is a splitting surface in T , meaning that S is a spanning central surface that is
entirely composed of quadrilaterals. Splitting surfaces were originally motivated by ideas discussed
by Rubinstein in [15], with the first detailed discussion of these surfaces appearing in [2]. Since a
quadrilateral meets all four triangular faces of its ambient tetrahedron, note that S is automatically
connected (assuming that T is connected) [2]. By the preceding discussion, S separates a pair of
opposite edges in each tetrahedron of T (recall Figure 4b). Thus, if S is two-sided, then cutting along
S decomposes T into two pieces, where each piece is essentially a regular neighbourhood of a graph
built from the aforementioned edges. In other words, T decomposes into a pair of handlebodies,
which means that S realises a Heegaard splitting of the underlying 3-manifold of T . By similar
reasoning, if S is one-sided, then cutting along S “unfolds” T into a single handlebody, in which
case S realises a one-sided Heegaard splitting of the underlying 3-manifold of T .

Given the significance of splitting surfaces, and more generally the significance of connected span-
ning central surfaces, it would be useful to understand the computational complexity of the following
two problems.

Problem 9 (Splitting surface).

17

INSTANCE: A triangulation T .
QUESTION: Does T contain a splitting surface?

Problem 10 (Connected spanning central surface).
INSTANCE: A triangulation T .
QUESTION: Does T contain a connected spanning central surface?

As suggested earlier, our interest in these problems is also motivated by the fact that they can
both be solved by enumerating vertex normal surfaces. For Problem 9, this fact is a consequence of
the following result: a splitting surface is always a vertex normal surface [2]. It turns out that this
result extends to all connected spanning central surfaces, which is why Problem 10 can be solved by
enumerating vertex normal surfaces.

Proposition 11. Let T be a triangulation. If S is a connected spanning central surface in T , then S
is a vertex normal surface.

Proof. Let S be a connected spanning central surface in T . Suppose, for the sake of contradiction,
that S is not a vertex normal surface. Then there must exist two normal surfaces M and N in T ,
neither of which are multiples of S, such that kS = M +N for some positive integer k.

Since S is a spanning central surface, it meets each tetrahedron of T in exactly one elementary
disc. For each tetrahedron ∆ in T , let:

• ε∆ denote the elementary disc type in which S meets ∆; and
• m∆ denote the number of times M meets ∆ in a disc of type ε∆.

With this in mind, consider any internal face f in T that meets S, and let ∆ and ∆′ be the two (not
necessarily distinct) tetrahedra that are glued together along f . Since the spanning central surface S
passes through f , observe that the disc types ε∆ and ε∆′ must both give rise to the same normal arc
type in f . Thus, the matching equations in f force m∆ = m∆′ .

Since S is a connected surface, these equalities propagate so that we have m∆ = m∆′ for any two
(not necessarily adjacent) tetrahedra ∆ and ∆′ that meet S. But this is impossible, since we initially
assumed that M was not a multiple of S. So, we conclude that S must be a vertex normal surface.

With all this in mind, we now turn to the two main complexity results of this section. First, we
show that Problem 9 has a simple polynomial-time solution. Independently, this first result is not
particularly enlightening. Our interest in this result is mostly due to its stark contrast to the second
main result: Problem 10 is NP-complete. In essence, by allowing the surfaces of interest to have non-
zero triangle coordinates, we have turned a computationally easy problem into a computationally hard
problem. Since Problems 9 and 10 are so closely related, we can imagine that this pair of problems
“straddles” the threshold between “easy” and “hard”, with one problem lying on each side.

Our polynomial-time solution for Problem 9 is essentially just a series of three breadth-first
searches.

Theorem 12. Problem 9 has a polynomial-time algorithm. That is, given an n-tetrahedron triangu-
lation T , we can decide whether T has a splitting surface in time bounded by a polynomial in n.

Proof. First, consider any two (not necessarily distinct) tetrahedra ∆ and ∆′ that are glued together
along a triangular face f , and suppose we have a single quadrilateral q in ∆. Since quadrilaterals of
different types in ∆′ never share any normal arc types, the quadrilateral q can only match up across
f with one choice of quadrilateral in ∆′.

With this in mind, fix an initial tetrahedron ∆0 in T . A splitting surface in T must meet ∆0 in
exactly one of the three possible quadrilaterals. By propagating the above reasoning through all pairs
of adjacent tetrahedra, we see that each initial choice of quadrilateral q0 in ∆0 forces at most one
choice of quadrilateral in every other tetrahedron of T . Thus, to determine whether q0 forms part
of a splitting surface, we simply use a breadth-first search to sequentially visit each tetrahedron ∆ of
T , checking at each step whether it is possible to insert a quadrilateral in ∆ without violating any
matching equations. If we encounter some ∆ in which no such quadrilateral can be inserted, then we

18

conclude that there is no splitting surface that meets ∆0 in the quadrilateral q0. On the other hand,
if the search finishes and we find that we can insert a quadrilateral at every step, then we will have
constructed a splitting surface in T . Thus, by performing this breadth-first search once for each of the
three possible choices of quadrilateral in ∆0, we can determine in polynomial time whether T contains
a splitting surface.

The remainder of this section is devoted to proving that detecting connected spanning central sur-
faces is NP-complete. In fact, we prove a slightly stronger result: the problem remains NP-complete
even if we restrict the input to be a triangulation of an orientable 3-manifold (see Theorem 18 below).
Our proof strategy is to find a reduction from the graph-theoretic computational problem Hamil-
tonian cycle. We restrict our attention to graphs that are 3-regular, since detecting Hamiltonian
cycles remains NP-complete under this condition [7]. To avoid confusion with the vertices and edges
of triangulations, we will refer to the vertices of graphs as nodes and the edges of graphs as arcs.

Problem 13 (Hamiltonian cycle).
INSTANCE: A 3-regular graph G.
QUESTION: Does G contain a Hamiltonian cycle?

In essence, given any 3-regular graph G, our goal is to build an orientable 3-manifold triangulation
TG, such that TG contains a connected spanning central surface if and only if G contains a Hamiltonian
cycle. The key to this construction is the node gadget, a small triangulation which we use to represent
the nodes in G. More specifically, each node in G will be assigned a corresponding node gadget, and
the arcs in G will determine how we glue all the node gadgets together to form the triangulation TG.

Before we state and prove Theorem 18, we spend some time working through the construction
of the node gadget. The first step is to construct a “triangular solid torus”, which acts as a sort of
precursor to the node gadget.

Construction 14 (Triangular solid torus). To build the triangular solid torus, start with three tetra-
hedra:

• ∆0, with vertices labelled A,B,C,D;
• ∆1, with vertices labelled E,F,G,H; and
• ∆2, with vertices labelled I, J,K,L.

The idea is to form a solid torus by stacking these tetrahedra in a cycle, with ∆1 on top of ∆0, ∆2 on
top of ∆1, and ∆0 on top of ∆2. More precisely, we glue the tetrahedra together using the following
face identifications.

(1) ABD ←→ GFH
(2) EGH ←→ IKJ
(3) BCD ←→ IKL

As a result of these face identifications, observe that the triangular solid torus has three vertices, all
of which are on the boundary.

This construction is illustrated in Figure 5. In particular, note the arrows in Figure 5b, which
indicate that the “top” (face IKL) has been identified with the “bottom” (face BCD). These arrows
should be assumed to be present in all subsequent illustrations of the triangular solid torus; omitting
the arrows simply helps to declutter some of the figures that appear later on.

Because of its three-way symmetry, the triangular solid torus seems particularly suitable for sim-
ulating nodes of degree 3. To pin down this symmetry more precisely, we classify the edges of the
triangular solid torus according to their degree; the degree of an edge e in a triangulation T is the
number of times e appears as an edge of some tetrahedron in T . As illustrated in Figure 6, the
triangular solid torus has:

• three edges of degree 1, which we will call axis edges;
• three edges of degree 2, which we will call minor edges; and

19

C D

A

B F

H

G
E

K

J

I
L

(a) Tetrahedron vertex labels. (b) The triangular solid torus.

Figure 5: Construction of the triangular solid torus.

(a) The axis edges (degree 1). (b) The minor edges (degree 2). (c) The major edges (degree 3).

Figure 6: The edges of the triangular solid torus all have degree 1, 2 or 3.

• three edges of degree 3, which we will call major edges.

Note that these nine edges are all on the boundary of the triangular solid torus.
Observe that for each pair of axis edges e and e′, there is a single minor edge that joins an

endpoint of e to an endpoint of e′; similarly, there is a single major edge that joins an endpoint of
e to an endpoint of e′. These four edges bound a pair of triangular faces that glue together to form
an annulus. The two triangular faces always come from two of the three tetrahedra in the triangular
torus; we will say that the annulus “excludes” a tetrahedron ∆ if it does not include a triangular
face from ∆. As illustrated in Figure 7, the boundary of the triangular solid torus consists of three
annuli, each of which excludes a different tetrahedron. We number these annuli 0, 1, 2 so that for each
i ∈ {0, 1, 2}, annulus i excludes the tetrahedron ∆i. When discussing a particular annulus numbered
i, we will often refer to the other two annuli as annulus i+ 1 and annulus i− 1 (reducing modulo 3 if
necessary).

a

b

(a) Annulus 0 excludes ∆0.

ab

(b) Annulus 1 excludes ∆1.

a

b

(c) Annulus 2 excludes ∆2.

Figure 7: The three annuli on the boundary of the triangular solid torus.

We can number the axis edges and the vertices of the triangular solid torus in a similar way. Since
each axis edge meets a different tetrahedron, we can number them 0, 1, 2 so that axis edge i always

20

meets the tetrahedron ∆i. Moreover, each vertex only meets one of the three axis edges; we number
the vertices 0, 1, 2 so that vertex i always meets axis edge i. With this numbering, observe that for
each i ∈ {0, 1, 2}, annulus i meets axis edges i+ 1 and i− 1.

Recall that our goal is to take any 3-regular graph G and build an orientable 3-manifold trian-
gulation TG, such that TG contains a connected spanning central surface if and only if G contains a
Hamiltonian cycle. Since G is 3-regular, a Hamiltonian cycle in G can pass through each node in
precisely three possible ways; specifically, for each node v in G, a Hamiltonian cycle in G must contain
precisely two of the three arcs incident with v. Our idea is to simulate this using spanning central
surfaces that are incident with precisely two of the three annuli on the boundary of the triangular solid
torus. This role is played perfectly by the three spanning central surfaces illustrated in Figure 8. Note
that each of these surfaces is topologically a tube. (A tube is topologically equivalent to an annulus,
but since we have already reserved the word “annulus”, we will exclusively use the word “tube” to
describe these normal surfaces.)

Figure 8: Three spanning central tubes in the triangular solid torus.

Unfortunately, the triangular solid torus also contains a number of other, unwanted spanning
central surfaces. Some of these are illustrated in Figure 9. To circumvent this issue, we construct a
“triangular pillow”, which allows us to modify the triangular solid torus in a way that eliminates all
but one of the unwanted surfaces.

Figure 9: Some unwanted spanning central surfaces in the triangular solid torus.

Construction 15 (Triangular pillow). To build the triangular pillow, start with two tetrahedra:

• ∆0, with vertices labelled A,B,C,D; and
• ∆1, with vertices labelled E,F,G,H.

We glue these tetrahedra together using the following face identifications.

(1) ABD ←→ EFG
(2) ACD ←→ EHG
(3) BCD ←→ FHG

As a result of these face identifications, observe that the triangular pillow has one internal vertex and
three boundary vertices.

21

This construction is illustrated in Figure 10. Note that the boundary faces are ABC and EFH,
with boundary edges:

• AB ∼ EF , which we label edge a;
• BC ∼ FH, which we label edge b; and
• AC ∼ EH, which we label edge c.

A

B

C D

E

F

G H

(a) Edge identifications in the triangular pillow.

a

b

c

A ∼ E

B ∼ FC ∼ H
(b) The triangular pillow.

Figure 10: Construction of the triangular pillow.

Before we explain how we use the triangular pillow to modify the triangular solid torus, it will
be useful to first understand all the spanning central surfaces in the triangular pillow. By definition,
such surfaces consist of one elementary disc in each of the tetrahedra ∆0 and ∆1. Observe that each
of the seven choices of elementary disc in ∆0 can only match up with one of the seven choices of
elementary disc in ∆1. Thus, the triangular pillow contains seven spanning central surfaces, all of
which are connected: three discs that form the links of the boundary vertices, a sphere that forms the
link of the internal vertex, and three discs built by attaching a quadrilateral in ∆0 to a quadrilateral
in ∆1.

Each spanning central disc D in the triangular pillow meets two of the three boundary edges;
we will say that D is “parallel” to the boundary edge it does not meet. For each boundary edge e
in the triangular pillow, two of the six spanning central discs are “parallel” to e; one of these discs
forms a vertex link, while the other is built from quadrilaterals. Since we really only care about how
these discs meet the boundary of the triangular pillow, we can categorise them into three “types”, as
illustrated in Figure 11.

a

b

c

(a) Disc parallel to edge a.

a

b

c

(b) Disc parallel to edge b.

a

b

c

(c) Disc parallel to edge c.

Figure 11: The three “types” of spanning central disc in the triangular pillow.

Our idea is to use the spanning central discs in the triangular pillow to mimic the normal arcs in a
triangular face. To see how this works, imagine a triangulation T in which two tetrahedron faces IJK
and LMN have been identified, and let f denote the resulting internal face in T . We can “insert” the
triangular pillow from Construction 15 by replacing the face identification IJK ←→ LMN with:

• IJK ←→ ABC; and
• EFH ←→ LMN .

22

Having done this, we can imagine that the face f has been “inflated” to become a pillow. Moreover,
we can think of the discs passing through the pillow as thickened versions of the normal arcs in f .

Observation 16. Since the triangular pillow has two discs “parallel” to each boundary edge, each
normal arc in f has two corresponding discs.

Let T ′ denote the triangulation that results from inserting the pillow into T in this way. A
connected spanning central surface S in T ′ must pass through both tetrahedra of the inserted pillow.
Moreover, since S is connected, S cannot intersect the inserted pillow in the internal vertex-linking
sphere. In other words, S must pass through the inserted pillow in one of the six possible discs. The
key takeaway is that instead of thinking of S as a connected spanning central surface in T ′, we can
essentially think of S as a connected spanning central surface in T that passes through the face f .
To put it another way, by inserting the pillow along the face f , we have eliminated all the connected
spanning central surfaces in T that do not pass through f . This idea is the key inspiration for the
node gadget.

Construction 17 (Node gadget). To build the node gadget, insert a copy of the triangular pillow
(Construction 15) between each of the three pairs of identified faces in the triangular solid torus
(Construction 14).

Observe that the node gadget has three boundary vertices and nine boundary edges, all of which
are inherited from the vertices and edges of the triangular solid torus. The nine boundary edges
inherit the classifications (axis, minor, or major) from the edges of the triangular solid torus. Thus,
the node gadget also inherits the three boundary annuli from the triangular solid torus, as well as all
the labellings that we introduced. (For reference, see Construction 14, and the paragraphs following
that construction.) In addition, note that the node gadget has three internal vertices and nine internal
edges, which come from the three inserted pillows.

In effect, we can associate the connected spanning central surfaces in the node gadget with the
connected spanning central surfaces that pass through all three internal faces of the triangular solid
torus. In fact, we claim that every connected spanning central surface in the node gadget corresponds
to one of the four “types” of surface shown in Figure 12. To see why, recall from Observation 16 that
there are two choices of disc in each of the three inserted pillows in the node gadget, which means that
each of the four surface types includes eight different surfaces; thus, the node gadget must contain
at least 32 connected spanning central surfaces. Using Regina [3, 5] to enumerate all vertex normal
surfaces, we find that the node gadget contains precisely 32 connected spanning central surfaces. Thus,
we see that the four surface types shown in Figure 12 capture all possible connected spanning central
surfaces in the node gadget.

(a) Tube (b) Tube (c) Tube (d) Möbius strip

Figure 12: There are four “types” of connected spanning central surface in the
node gadget: three types of tube, and one type of Möbius strip.

As suggested earlier, our node gadget plays a prominent role in our proof of the following theorem.

Theorem 18. Connected spanning central surface (Problem 10) is NP-complete, and remains
NP-complete even if we restrict the input to be an orientable 3-manifold triangulation.

Proof. We first show that Problem 10 is in NP. Recall that a connected spanning central surface in
an n-tetrahedron triangulation T consists of a single choice of elementary disc in each tetrahedron.

23

Such a choice of elementary discs therefore forms a linear-sized certificate. We claim that such a
certificate can be verified in polynomial time. Since T yields at most 6n matching equations, it is
straightforward to check that the certificate defines a valid normal surface. This is already enough to
verify that we have a spanning central surface. To check connectedness, fix one of the n elementary
discs d, and use a breadth-first search to visit all the elementary discs that are connected to d. The
normal surface is connected if and only if this search manages to visit all n elementary discs. Clearly,
this entire verification process can be done in polynomial time. Thus, Problem 10 is in NP.

To show that Problem 10 is NP-complete, we give a polynomial reduction from Hamiltonian
cycle (Problem 13). Let G be an arbitrary 3-regular graph. Our goal is to build a corresponding
triangulation TG, such that TG contains a connected spanning central surface if and only if G contains
a Hamiltonian cycle. In short, we do this by assigning to each node of G a copy of the node gadget,
and then using the arcs of G to determine how we glue together all our copies of the node gadget.

Letting n denote the number of nodes in G, we label the nodes in G by u0, . . . , un−1. We assign
to each node uk a corresponding copy Nk of the node gadget. To help us describe how we glue
together these copies of the node gadget, we introduce the following notation, for k ∈ {0, . . . , n − 1}
and i ∈ {0, 1, 2}.

• Let ek,i denote axis edge i in Nk.
• Let vk,i denote boundary vertex i in Nk.
• Let Ak,i denote boundary annulus i in Nk. This annulus is made up of two triangles; let T+

k,i denote

the triangle in Ak,i that has ek,i+1 as one of its edges, and let T−k,i denote the triangle in Ak,i that
has ek,i−1 as one of its edges.

As an additional aid for describing our gluing scheme, we assign a “direction” to each axis edge ek,i.
To do this, imagine an ant walking on the outside of Nk. We choose the direction so that if the ant
walks along ek,i in the assigned direction, then it will have triangle T−k,i+1 on its left and triangle T+

k,i−1

on its right. This is illustrated in Figure 13, where axis edges are drawn using red lines, and the chosen
directions are indicated using triple arrowheads.

major edge

minor edge

minor edge

major edge

vk,i

vk,i

T−k,i+1 T+
k,i−1

(a) An ant walking along ek,i in the assigned direction
will have T−

k,i+1 to its left and T+
k,i−1 to its right.

(b) The assigned directions for the three axis
edges of the node gadget.

Figure 13: We assign a “direction” to each axis edge of the node gadget.

With this in mind, we build TG by gluing together pairs of annuli in the following way. For each
arc {uk, u`} in G, choose an unglued annulus Ak,i from Nk and an unglued annulus A`,j from N`. We
glue these two annuli together by:

• identifying the triangles T+
k,i and T−`,j in such a way that the axis edges ek,i+1 and e`,j−1 get identified

with matching directions;
• identifying the triangles T−k,i and T+

`,j in such a way that the axis edges ek,i−1 and e`,j+1 get identified
with matching directions.

Observe that as a result of this gluing, the major edge in Ak,i is identified with the minor edge in A`,j

to form a new internal edge; similarly, the minor edge in Ak,i is identified with the major edge in A`,j

to form a new internal edge. Since G is 3-regular, it has a total of 3n
2 arcs, so our construction of TG

can be done in O(n) time.

24

We need to check that TG is actually a “valid” triangulation, in the sense that it does not contain
any invalid edges. It is clear that none of the internal edges of (the copies of) the node gadget are
invalid. It is also clear that the edges of TG formed by identifying major and minor edges will never be
invalid. Finally, since we always identify axis edges with matching directions, it is impossible for any
axis edge to end up being identified with itself in reverse. Thus, TG is indeed a valid triangulation.

To show that this construction gives a polynomial reduction from Problem 13 to Problem 10, we
prove that there exists a Hamiltonian cycle in G if and only if there exists a connected spanning central
surface in TG.

• Suppose G contains a Hamiltonian cycle H with node sequence(
uk0 , uk1 , . . . , ukn−1 , uk0

)
.

Thus, for each m ∈ {0, . . . , n − 1}, there must exist indices im, jm ∈ {0, 1, 2} such that the node
gadgets Nkm and Nkm+1 (where m+ 1 is calculated modulo n) are glued together along the annuli
Akm,im and Akm+1,jm . Let Tm denote the (type of) spanning central tube in Nkm that meets the
annuli Akm,im and Akm,jm−1 .
The tubes T0, . . . , Tn−1 together meet each tetrahedron of TG in precisely one elementary disc. So,
if we can show that these tubes join together to form a connected normal surface in TG, then we
will in fact have shown that these tubes form a connected spanning central surface. With this in
mind, fix any m ∈ {0, . . . , n − 1}, and observe that Tm meets the annulus Akm,im in a curve that
is “parallel” to the axis edges, in the following sense: it never meets the axis edges, and it meets
the major and minor edges once each. Similarly, Tm+1 meets Akm+1,jm in a curve that is “parallel”
to the axis edges. Since the gluing of Akm,im and Akm+1,jm always identifies axis edges with other
axis edges, we see that Tm and Tm+1 are able to “match up” to form a piece of a normal surface.
Thus, each tube in the (cyclic) sequence T0, . . . , Tn−1 matches up with the next, which results in a
connected spanning central surface in TG.

• Conversely, suppose TG contains a connected spanning central surface S. Such a surface S must
pass through each copy of the node gadget in either:

– one of the three possible types of spanning central tube; or
– the one possible type of spanning central Möbius strip.

We claim that S actually cannot meet any of the node gadgets in the one type of Möbius strip. To
see why, first observe that the Möbius strip meets the axis edges and major edges of the node gadget
once each, but never meets any of the minor edges (see Figure 14). With this in mind, suppose for
the sake of contradiction that S intersects some Nk, k ∈ {0, . . . , n− 1}, in the Möbius strip. Recall
that the annulus Ak,0 must be glued to some other annulus A`,i in such a way that:

– axis edges are identified with other axis edges; and
– major edges are identified with minor edges.

Since the Möbius strip in Nk meets the axis edges and the major edges of Ak,0, we see that S must
intersect N` in a surface that meets the axis edges and the minor edge of A`,i. This is impossible,
since the three types of tube in N` never meet any axis edges, and the one type of Möbius strip in
N` never meets any minor edges.
The upshot is that S must be built entirely out of tubes. So, for each k ∈ {0, . . . , n − 1}, let Tk
denote the tube in which S meets Nk. Because each tube Tk meets two of the three boundary
annuli of Nk, we can think of Tk as a path through Nk that joins these two annuli. Since the
tubes T0, . . . , Tn−1 must all “match up” to form the connected spanning central surface S, we can
therefore think of S as a path that visits each node gadget in TG exactly once, before returning to
the beginning. This corresponds to a Hamiltonian cycle in G.

Altogether, we have given a polynomial reduction from Hamiltonian cycle (Problem 13) to con-
nected spanning central surface (Problem 10), which shows that Problem 10 is NP-complete.

We finish this proof by showing that TG always represents an orientable 3-manifold, which implies
that Problem 10 remains NP-complete even if we restrict the input to be an orientable 3-manifold

25

(a) The Möbius strip meets every
axis edge.

(b) The Möbius strip never meets
any of the minor edges.

(c) The Möbius strip meets every
major edge.

Figure 14: The unwanted Möbius strip meets every axis edge and every major
edge, but never meets any minor edges.

triangulation. Orientability of TG follows immediately from the following observation: in our construc-
tion of TG, we always identified triangular faces with opposite orientations. Thus it suffices to show
that TG is a 3-manifold triangulation, and we can do this by showing that the link of every vertex in
TG is a sphere.

Since every vertex in TG is formed by identifying some number of boundary vertices from the
node gadgets N0, . . . ,Nn−1, we start by taking a closer look at the surfaces that form the links of the
boundary vertices of the node gadget. These surfaces, all of which are discs, are illustrated in Figure
15. For each k ∈ {0, . . . , n− 1} and i ∈ {0, 1, 2}, let Dk,i denote the disc that forms the link of vertex
vk,i. As shown in Figure 16, the disc Dk,i meets two annuli in Nk, thus dividing its boundary into two
pieces: a curve c+

k,i = ∂Dk,i ∩ Ak,i+1, and a curve c−k,i = ∂Dk,i ∩ Ak,i−1. We assign directions to these
curves so that if an ant on the outside of the node gadget walks in the assigned direction, then the
vertex vk,i always remains on the ant’s right-hand side. These assigned directions are indicated using
triple arrowheads in Figure 16.

(a) The link of boundary vertex 0. (b) The link of boundary vertex 1. (c) The link of boundary vertex 2.

Figure 15: The three vertex-linking discs in the node gadget.

With all this in mind, consider any particular vertex v in TG. Fix k0 ∈ {0, . . . , n − 1} and
i0 ∈ {0, 1, 2} such that vk0,i0 is one of the vertices that has been identified to form v. By construction
of TG, the annulus Ak0,i0−1 is identified with some other annulus Ak1,i1+1, which causes the vertices
vk0,i0 and vk1,i1 to be identified. Observe that as a result of this identification, the vertex-linking discs
Dk0,i0 and Dk1,i1 get glued together in such a way that the curves c−k0,i0 and c+

k1,i1
are identified with

opposite directions.
Continuing inductively, for each m ∈ {0, 1, . . .}, the annulus Akm,im−1 is identified with some

other annulus Akm+1,im+1−1, which causes the vertices vkm,im and vkm+1,im+1 to be identified. This
identification subsequently causes the vertex-linking discs Dkm,im and Dkm+1,im+1 to be glued together
in such a way that the curves c−km,im

and c+
km+1,im+1

are identified with opposing directions. Altogether,
we get a sequence Dk0,i0 , Dk1,i1 , . . . of discs that are glued together in the manner shown in Figure 17.

Eventually, there must be some M such that AkM ,iM−1 is identified with Ak0,i0+1. The link of

26

Figure 16: The boundary of the disc Dk,i is divided into the curves c+
k,i (red) and

c−k,i (blue). An ant walking along the boundary of Dk,i in the assigned direction
will always have vertex vk,i to its right.

· · · · · ·Dk0,i0 Dk1,i1 Dk2,i2

Figure 17: Each disc in the sequence Dk0,i0 , Dk1,i1 , . . . is glued to the next, in such
a way that for all m ∈ {0, 1, . . .}, the curves c−km,im

and c+
km+1,im+1

are identified
with opposing directions.

v is therefore precisely the surface formed by gluing together all the discs Dk0,i0 , . . . , DkM ,iM . Since
the curves c−kM ,iM

and c+
k0,i0

are identified with opposing directions, observe that this vertex-linking
surface is a sphere.

The same argument applies to every vertex of TG, so we conclude that TG is a 3-manifold triangu-
lation. As we mentioned earlier, this shows that Problem 10 remains NP-complete even if we restrict
the input to be an orientable 3-manifold triangulation.

5 Discussion

As discussed in section 1, our underlying motivation for studying Problems 4, 9 and 10 was to gain
insight into the computational complexity of the problem of finding a non-trivial normal sphere or
disc. In particular, our proofs of NP-hardness for Problems 4 and 10 illustrate two possible approaches
for proving that finding a non-trivial normal sphere or disc is NP-hard; indeed, our two NP-hardness
proofs are by-products of our investigations into each of these approaches. Here, we briefly discuss
some of the obstacles that we would need to overcome to make either of these approaches successful.

First, recall that Problem 4 is an abstraction of the concrete problem of finding a non-trivial normal
sphere or disc. As discussed in section 3, our proof that the abstract problem is NP-hard relies heavily
on constructions that violate some of the geometric and topological restrictions that are inherent to the
concrete problem. One potential strategy for proving that the concrete problem is also NP-hard would
therefore be to come up with new constructions that do not violate these geometric and topological
restrictions. However, with these much stricter requirements, we can reasonably expect that any such
constructions would need to be much more intricate than what we used in section 3.

Alternatively, we could try to prove that finding a non-trivial normal sphere or disc is NP-hard by
coming up with a “gadget proof”, similar to how we proved that finding a connected spanning central
surface is NP-hard. However, spanning central surfaces are much easier to work with in this context
because they are “determined locally”, in the following sense: a normal surface intersecting several
gadgets is a spanning central surface (within the whole triangulation) if and only if the intersection

27

with each gadget is itself a spanning central surface (within the gadget). This allows us to construct
a triangulation with relatively little concern about what it will end up looking like globally, since we
only ever need to analyse what happens locally. In contrast, spheres and discs are not determined
locally. We know that if a sphere or disc intersects multiple gadgets, then the intersection with each
gadget must itself be a surface with genus 0. But the converse does not hold: it is very easy to get
a surface of positive genus from piecing together a collection of genus 0 surfaces. For this reason,
a “gadget proof” for the NP-hardness of finding a non-trivial normal sphere or disc would probably
need to be significantly more complicated than the one we used in section 4.

References

[1] Ian Agol. Knot genus is NP, 2002. Conference presentation.

[2] Benjamin A. Burton. Minimal triangulations and normal surfaces. PhD thesis, The University
of Melbourne, 2003.

[3] Benjamin A. Burton. Computational topology with Regina: Algorithms, heuristics and imple-
mentations. In Geometry and Topology Down Under, volume 597 of Contemporary Mathematics,
pages 195–224. American Mathematical Society, 2013.

[4] Benjamin A. Burton. A new approach to crushing 3-manifold triangulations. Discrete and Com-
putational Geometry, 52(1):116–139, 2014.

[5] Benjamin A. Burton, Ryan Budney, William Pettersson, et al. Regina: Software for low-
dimensional topology. https://regina-normal.github.io, 1999–2017.

[6] Benjamin A. Burton and Melih Özlen. A fast branching algorithm for unknot recognition with
experimental polynomial-time behaviour. Mathematical Programming, 2012. In press.

[7] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1979.

[8] Wolfgang Haken. Theorie der Normalflächen. Acta Mathematica, 105:245–375, 1961.

[9] Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of knot
and link problems. Journal of the ACM, 46(2):185–211, 1999.

[10] Sergei V. Ivanov. The computational complexity of basic decision problems in 3-dimensional
topology. Geometriae Dedicata, 131(1):1–26, 2008.

[11] William Jaco and Ulrich Oertel. An algorithm to decide if a 3-manifold is a Haken manifold.
Topology, 23(2):195–299, 1984.

[12] William Jaco and J. Hyam Rubinstein. 0-efficient triangulations of 3-manifolds. Journal of
Differential Geometry, 65(1):61–168, 2003.

[13] William Jaco and Jeffrey L. Tollefson. Algorithms for the complete decomposition of a closed
3-manifold. Illinois Journal of Mathematics, 39(3):358–406, 1995.

[14] Marc Lackenby. The efficient certification of knottedness and Thurston norm. arXiv Mathematics
e-prints, 2016. arXiv:1604.00290.

[15] J. Hyam Rubinstein. One-sided Heegaard splittings of 3-manifolds. Pacific Journal of Mathe-
matics, 76(1):185–200, 1978.

[16] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, pages 216–226, New York, 1978. Association
for Computing Machinery.

28

https://regina-normal.github.io

[17] Saul Schleimer. Sphere recognition lies in NP. In Michael Usher, editor, Low-dimensional and
symplectic topology, volume 82 of Proceedings of symposia in pure mathematics, pages 183–213.
American Mathematical Society, 2011.

[18] Raphael Zentner. Integer homology 3-spheres admit irreducible representations in SL(2,C). Duke
Mathematical Journal, 167(9):1643–1712, 2018.

29

	1 Introduction
	2 Preliminaries
	3 Abstract normal constraint optimisation
	4 Detecting splitting surfaces and connected spanning central surfaces
	5 Discussion

