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Abstract
We prove for non-elementary torsion-free hyperbolic groups � and all r ≥ 2 that the
higher topological complexity TCr (�) is equal to r · cd(�). In particular, hyperbolic
groups satisfy the rationality conjecture on the TC-generating function, giving an affir-
mative answer to a question of Farber and Oprea. More generally, we show that the
same conclusions hold for certain toral relatively hyperbolic groups.
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1 Introduction

Let r ≥ 2 be an integer. The higher (or sequential) topological complexity TCr (X)

of a path-connected space X was introduced by Rudyak (2010), generalising Farber’s
topological complexity (Farber 2003). The motivation for these numerical invari-
ants arises from robotics. They provide a measure of complexity for the motion
planning problem in the configuration space X with prescribed initial and final
states, as well as r − 2 consecutive intermediate states. More precisely, consider
the path-fibration p : X [0,1] → Xr that maps a path ω : [0, 1] → X to the tuple
(ω(0), ω( 1

r−1 ), . . . , ω( r−2
r−1 ), ω(1)). Then TCr (X) is defined as the minimal integer n

for which Xr can be covered by n + 1 many open subsets U0, . . . ,Un such that p
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admits a local section over each Ui . If no such n exists, one sets TCr (X) := ∞. Note
that TC2(X) recovers the usual topological complexity.

Since the higher topological complexities are homotopy invariants, one obtains
interesting invariants of groups � by setting TCr (�) := TCr (K (�, 1)), where K (�, 1)
is an Eilenberg–MacLane space. The topological complexities TCr (�) have been com-
puted for several classes of groups (see e.g. Farber et al. 2019; Farber and Mescher
2020; Dranishnikov 2020 for r = 2, Farber and Oprea 2019; Aguilar-Guzmán et al.
2021; González et al. 2016 for r ≥ 2, and references therein). In a celebrated result of
Dranishnikov (2020) (see also Farber and Mescher 2020), the topological complexity
TC2(�) of groups with cyclic centralisers, such as hyperbolic groups, was shown to
equal cd(� × �). Here cd denotes the cohomological dimension. We generalise this
result to all higher topological complexities TCr (�) for r ≥ 2, as well as to a larger
class of groups containing certain toral relatively hyperbolic groups. Recall that a col-
lection {Pi | i ∈ I } of subgroups of � is calledmalnormal, if for all g ∈ � and i, j ∈ I
we have gPi g−1 ∩ Pj = {e}, unless i = j and g ∈ Pi .

Theorem 1.1 Let r ≥ 2 and let � be a torsion-free group with cd(�) ≥ 2. Suppose
that � admits a malnormal collection of abelian subgroups {Pi | i ∈ I } satisfying
cd(Pr

i ) < cd(�r ) such that the centraliser C�(g) is cyclic for every g ∈ � that is not
conjugate into any of the Pi . Then TCr (�) = cd(�r ).

The preceding theorem was obtained for the case r = 2 by the second author in Li
(2021).

For a space X , the TC-generating function fX (t) is defined as the formal power
series

fX (t) :=
∞∑

r=1

TCr+1(X) · tr .

The TC-generating function of a group � is set to be f�(t) := fK (�,1)(t). Recall that
a group � is said to be of type F (or geometrically finite) if it admits a finite model for
K (�, 1).

Following Farber and Oprea (2019), we say that a finite CW-complex X
(resp. a group � of type F) satisfies the rationality conjecture if the TC-generating
function fX (t) (resp. f�(t)) is a rational function of the form P(t)

(1−t)2
, where P(t) is an

integer polynomial with P(1) = cat(X) (resp. P(1) = cd(�)). Here cat denotes the
Lusternik–Schnirelmann category. While a counter-example to the rationality con-
jecture for finite CW-complexes was found in Farber et al. (2020), the rationality
conjecture for groups of type F remains open. It is known to hold, e.g. for abelian
groups of type F , right-angled Artin groups, fundamental groups of closed orientable
surfaces, and Higman’s group (see Farber and Oprea 2019, Section 8). Our result
extends the class of groups for which the rationality conjecture holds as follows.

Corollary 1.2 Let � be a group as in Theorem 1.1. If � is of type F, then

f�(t) = cd(�)
(2 − t)t

(1 − t)2
.
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In particular, the rationality conjecture holds for �.

As remarked by Farber and Oprea in (2019, p. 159), it is particularly interesting to
determine the validity of the rationality conjecture for the class of hyperbolic groups.
We answer their question in the affirmative.

Corollary 1.3 The rationality conjecture holds for torsion-free hyperbolic groups.

2 Background

We recall the notion of a classifying space for a family of subgroups (see e.g. Lück
2005). A family F of subgroups of a group G is a non-empty set of subgroups that
is closed under conjugation and finite intersections. The family consisting only of the
trivial subgroup is denoted by T R. The family F〈H〉 generated by a set of subgroups
H is the smallest family containing H. For a family F of subgroups of G and a
subgroup H of G, we denote by F |H the family {L ∩ H | L ∈ F} of subgroups of
H . A classifying space EFG for the family F is a terminal object in the G-homotopy
category ofG-CW-complexeswith isotropy groups inF . Note that amodel for ET RG
is given by EG. In particular, for every familyF containing the trivial subgroup there
exists a G-map EG → EFG that is unique up to G-homotopy.

Let E ⊂ F be two families of subgroups of G. We say that G satisfies condi-
tion (ME⊂F ) if every element in F\E is contained in a unique maximal element
M inF\E , and that G satisfies condition (NME⊂F ) if additionally M equals its nor-
maliser NG(M). We denote by WG(M) := NG(M)/M the Weyl group of M . The
following proposition is a special case of a construction due to (Lück and Weiermann
2012, Corollary 2.8) stated in Li (2021, Corollary 2.2).

Theorem 2.1 (Lück–Weiermann) Let G be a group and E ⊂ F be two families of
subgroups. Let {Mi | i ∈ I } be a complete set of representatives for the conjugacy
classes of maximal elements in F\E .
(i) If E = T R and G satisfies condition (MT R⊂F ), then a model for EFG is given

by the following G-pushout

∐
i∈I G ×NG (Mi ) E(NG(Mi )) EG

∐
i∈I G ×NG (Mi ) E(WG(Mi )) EFG;

(ii) If G satisfies conditions (ME⊂F ) and (NME⊂F ), then a model for EFG is given
by the following G-pushout

∐
i∈I G ×Mi EE |Mi

Mi EEG

∐
i∈I G/Mi EFG.
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The F-restricted orbit category OFG has G-sets G/H with H ∈ F as objects
and G-maps as morphisms. Let A be an OFG-module, that is a contravariant functor
from the orbit category OFG to the category of modules. The equivariant cellular
cohomology H∗

G(X; A) of a G-CW-complex X with isotropy groups in F is called
Bredon cohomology (Bredon 1967). In particular, Bredon cohomology satisfies the
Mayer–Vietoris axiom for G-pushouts. Moreover, if X is of the form G ×H Y for
a subgroup H ⊂ G and an H -CW-complex Y , then there is a natural induction
isomorphism (see e.g. Lück 2005)

H∗
G(G ×H Y ; A) ∼= H∗

H (Y ; A). (1)

Here on the right hand side, A is regarded as an OF |H H -module by restriction along
the obvious functor OF |H H → OFG.

The (higher) topological complexity TCr (�) of a group � for r ≥ 2 can be charac-
terised in terms of classifying spaces for families (Farber and Oprea 2019, Theorem
3.1), generalising a result of Farber et al. (2019, Theorem 3.3) for the case r = 2.
Consider G = �r and let D be the family of subgroups of �r that is generated by the
diagonal subgroup �(�) and the trivial subgroup.

Theorem 2.2 (Farber–Oprea) Let � be a group and r ≥ 2. Then TCr (�) equals the
infimum of integers n for which the canonical �r -map

E(�r ) → ED(�r )

is �r -equivariantly homotopic to a �r -map with values in the n-skeleton of ED(�r ).

As a consequence (Farber and Oprea 2019, Theorem 5.1), a lower bound for
TCr (�) is given by the supremum of integers n for which the canonical �r -map
E(�r ) → ED(�r ) induces a non-trivial map in Bredon cohomology

Hn
�r (ED(�r ); A) → Hn

�r (E(�r ); A)

for some OD(�r )-module A.

3 Proofs

Fix an integer r ≥ 2. Let � be a group and � : � → �r be the diagonal map. For
γ = (γ1, . . . , γr−1) ∈ �r−1 and a subset S ⊂ �, we define the subgroup Hγ,S of �r

as

Hγ,S := (γ1, . . . , γr−1, e) · �(C�(S)) · (γ −1
1 , . . . , γ −1

r−1, e).

Here C�(S) denotes the centraliser of S in �. For b ∈ �, we write Hγ,b instead of
Hγ,{b}. Denote the element e := (e, . . . , e) ∈ �r−1 and note that He,e = �(�). The
elementary proof of the following lemma is omitted.

Lemma 3.1 Let γ = (γ1, . . . , γr−1) ∈ �r−1 and S ⊂ � be a subset. The following
hold:
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(i) For g = (g1, . . . , gr ) ∈ �r , let γ ′ := (g1γ1g−1
r , . . . , gr−1γr−1g−1

r ) ∈ �r−1 and
S′ := {gr sg−1

r ∈ � | s ∈ S} ⊂ �. Then we have

g · Hγ,S · g−1 = Hγ ′,S′ ;

(ii) For δ = (δ1, . . . , δr−1) ∈ �r−1 and a subset T ⊂ �, we have

Hγ,S ∩ Hδ,T = H
γ,S∪T∪{δ−1

1 γ1,...,δ
−1
r−1γr−1};

(iii) We have

N�r (Hγ,S) = {(γ1k1hγ −1
1 , . . . , γr−1kr−1hγ −1

r−1, h) ∈ �r | h ∈ N�(C�(S)),

k1, . . . , kr−1 ∈ C�(C�(S))}.

Let F1 ⊂ D be the families of subgroups of �r defined as

D := F〈{�(�)}〉 ∪ T R;
F1 := F〈{Hγ,b | γ ∈ �r−1, b ∈ �\{e}}〉 ∪ T R.

From now on, let � be a group as in Theorem 1.1. The following properties
of centralisers in � will be used in the sequel. For b, c ∈ �\{e}, we have either
C�(b) = C�(c) or C�(b) ∩ C�(c) = {e} by (Li 2021, Lemma 3.4). By assumption
on �, the centraliser C�(b) of an element b ∈ �\{e} is infinite cyclic or isomorphic
to one of the Pi . In both cases we have N�(C�(b)) = C�(C�(b)) = C�(b) (see Li
2021, Lemma 3.5) for more details.

Lemma 3.2 Let � be a group as in Theorem 1.1 and let e = (e, . . . , e) ∈ �r−1. Then
for n = cd(�r ) and every OD(�r )-module A, we have

Hn
�r

(
�r ×He,e EF1|He,e (He,e); A

) = 0.

Proof We have that conditions (MT R⊂F1|He,e ) and (NMT R⊂F1|He,e ) hold for the
group He,e. To see this, we note that under the obvious isomorphism He,e ∼= �, the
family F1|He,e is identified with F〈{C�(b) | b ∈ �\{e}}〉 ∪ T R, using Lemma 3.1(i)
and (ii). By Theorem 2.1(ii), we obtain an He,e-pushout

∐
He,b∈M He,e ×He,b E(He,b) E(He,e)

∐
He,b∈M He,e/He,b EF1|He,e (He,e),

(2)

whereM is a complete set of representatives of conjugacy classes ofmaximal elements
in F1|He,e\T R. Since cd(He,e) < n and cd(He,b) < n − 1 for b ∈ �\{e}, the
Mayer–Vietoris sequence for H∗

He,e
(−; A) applied to the pushout (2) together with the

induction isomorphism (1) yields the lemma. ��
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Proof of Theorem 1.1 Throughout the proof let n = cd(�r ). We show that the �r -map
E(�r ) → ED(�r ) induces a surjective map Hn

�r (ED(�r ); A) → Hn
�r (E(�r ); A) for

everyOD(�r )-module A. Then the theorem follows from Theorem 2.2 and the upper
bound TCr (�) ≤ n (see e.g. Farber and Oprea 2019, (4)).

First, observe that condition (MT R⊂F1) holds, since conjugates of the subgroups
generating F1 either coincide or have trivial intersection by Lemma 3.1(i) and (ii).
Moreover, for γ ∈ �r−1 and b ∈ �\{e} there is an isomorphism N�r (Hγ,b) ∼= C�(b)r

by Lemma 3.1(iii). In particular, we have cd(N�r (Hγ,b)) < n, since

n ≥ cd(� × Z
r−1) = cd(�) + r − 1 > r

and n > cd(Pr
i ) by assumption. Then it follows from the induction isomorphism (1)

that we have

Hn
�r

(
�r ×N�r (Hγ,b) E(N�r (Hγ,b)); A

) = 0

for every OD(�r )-module A. By Theorem 2.1(i), we obtain a �r -pushout

∐
Hγ,b∈M �r ×N�r (Hγ,b) E(N�r (Hγ,b)) E(�r )

∐
Hγ,b∈M �r ×N�r (Hγ,b) E(W�r (Hγ,b)) EF1(�

r ),

(3)

whereM is a complete set of representatives of conjugacy classes ofmaximal elements
in F1\T R. Applying the Mayer–Vietoris sequence for H∗

�r (−; A) to the pushout (3)
shows that the induced map Hn

�r (EF1(�
r ); A) → Hn

�r (E(�r ); A) is surjective.
Second, observe that condition (MF1⊂D) holds, since by Lemma 3.1(i) and (ii),

two conjugates of�(�) in�r either coincide or their intersection lies inF1.Moreover,
condition (NMF1⊂D) holds by Lemma 3.1(iii), using that the centre C�(�) of � is
trivial. By Theorem 2.1(ii), we obtain a �r -pushout

�r ×He,e EF1|He,e (He,e) EF1(�
r )

�r/He,e ED(�r ).

(4)

Then Lemma 3.2 and the Mayer–Vietoris sequence for H∗
�r (−; A) applied to the

pushout (4) yield that the map Hn
�r (ED(�r ); A) → Hn

�r (EF1(�
r ); A) is surjective.

Together, the map Hn
�r (ED(�r ); A) → Hn

�r (E(�r ); A) is surjective for every
OD(�r )-module A. This finishes the proof. ��
Proof of Corollary 1.2 For groups � of type F , we have cd(�r ) = r · cd(�) by Dran-
ishnikov (2019, Corollary 2.5). The result now follows from Theorem 1.1. ��
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Proof of Corollary 1.3 The result follows from Corollary 1.2 using the fact that torsion-
free hyperbolic groups are of type F (see e.g. Bridson and Haefliger 1999, Corollary
3.26 on p. 470). ��
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