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Abstract: Wireless channel modeling has always been one of the most fundamental highlights of the

wireless communication research. The performance of new advanced models and technologies heavily depends

on the accuracy of the wireless CSI (Channel State Information). This study examined the randomness of

the wireless channel parameters based on the characteristics of the radio propagation environment. The

diversity of the statistical properties of wireless channel parameters inspired us to introduce the concept of

the tomographic channel model. With this model, the static part of the CSI can be extracted from the huge

amount of existing CSI data of previous measurements, which can be defined as the wireless channel feature.

In the proposed scheme for obtaining CSI with the tomographic channel model, the GMM (Gaussian Mixture

Model) is applied to acquire the distribution of the wireless channel parameters, and the CNN (Convolutional

Neural Network) is applied to automatically distinguish different wireless channels. The wireless channel

feature information can be stored offline to guide the design of pilot symbols and save pilot resources. The

numerical results based on actual measurements demonstrated the clear diversity of the statistical properties

of wireless channel parameters and that the proposed scheme can extract the wireless channel feature

automatically with fewer pilot resources. Thus, computing and storage resources can be exchanged for the

finite and precious spectrum resource.
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1 Introduction

The wireless channel is the most important feature

of wireless communication and the fundamental dif-

ference between wireless and wired communications.

Wireless channel modeling plays a very important

role in both theoretical and practical research on

modern wireless technology. Thus, channel modeling

has always held a unique appeal for wireless commu-

nication researchers. Accurate and efficient wireless

channel models help meet the demands of advanced

technologies for CSI (Channel State Information) to

achieve adequate performance in 5G and future wire-

less communication systems. In other words, the
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performance of new advanced technologies heavily

depends on the accuracy of CSI.

The common way to acquire CSI is by using pi-

lot symbols or a training sequence. A more com-

plex wireless communication system means a higher

frequency cost. Spectrum resources are limited and

precious. Thus, the pilot overhead can become in-

tolerable, especially for massive MIMO (Multiple-

Input Multiple-Output) antenna systems and UDNs

(Ultra-Dense Networks).

Different kinds of wireless channel models have

been proposed to better understand the wireless

channel. Proper wireless channel models are the ba-

sis of accurate CSI. Given the statistical properties

of channel parameters, wireless channel models can

generally be divided into deterministic and stochas-

tic models.

Deterministic models are based on the belief that

wireless channel parameters can be calculated from

the propagation environment information and prop-

agation law of the electromagnetic wave. The ray-

tracing channel model and its extensions are repre-

sentative deterministic models[1]. The ray-tracing

model can simulate almost all of the reflection,

diffraction, refraction, and scattering by using well-

known radio propagation environment information

between the transmitter and receiver. Then, the

information of almost every propagation path can

be calculated theoretically to obtain the CSI of the

channel.

GSCMs (Geometry-based Stochastic Channel

Models) are one of the most popular stochastic

models[2]. GSCMs can reproduce the stochastic

properties of different kinds of wireless channels over

time, frequency, and space. Because of the scala-

bility and reasonable complexity of GSCM, it has

been widely adopted by many common wireless chan-

nel models, such as WINNER II/+, COST2100, and

IEEE 802.11ad[3-7].

The key for deterministic models to acquire suf-

ficiently accurate CSI is sufficiently abundant infor-

mation on the radio propagation environment. In

other words, the accuracy of the CSI calculation re-

sult is closely related to the electromagnetic param-

eters that can be determined from the radio propa-

gation environment, such as the reflection coefficient

of different materials[1]. As the required level of ac-

curacy for CSI increases, the calculation process of a

deterministic model becomes more complex. Thus,

deterministic models are feasible but much too com-

plex to be practical in real wireless communication

systems. Stochastic models are more widely used

for system design and performance testing because

the reflection, diffraction, refraction, and scattering

in the radio propagation environment are completely

random[8,9]. Thus, GSCMs are simpler but do not

reveal information on the radio propagation environ-

ment. Such models cannot reflect the actual CSI in

real communication systems.

Obviously, there is a tradeoff between the accuracy

of CSI and the computational complexity or spec-

trum resources. For pilot-aided channel estimation,

massive antennas and complex networks cost a huge

amount of spectrum resources. Thus, new channel

models and methods for acquiring CSI are necessary

to reduce the pilot cost and improve the performance

of the communication system. Typical propagation

scenarios have their own unique radio propagation

environment. There is a trend where radio propa-

gation environment information of typical propaga-

tion scenarios is used to apply prior information to

help model a wireless channel and reduce the cost

used to determine the CSI. Some HST (High-Speed

Train) channel models divide the HST propagation

environment into different typical scenarios, such as

open space, viaducts, cutting, hilly terrain, tunnels,

and stations[10-12]. The METIS (Mobile and wireless

communications Enablers for the Twenty-twenty In-

formation Society) has introduced the METIS chan-

nel models, which consist of a map-based model,

a stochastic model, and a hybrid model combin-

ing the previous two[13-15]. The map-based model

is based on ray tracing and uses a simplified three-

dimensional geometric description of the propagation

environment. Thus, it inherently accounts for sig-

nificant propagation mechanisms such as diffraction,

specular reflection, diffuse scattering, and blocking.

They reported that the map-based model enjoys ex-
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cellent support for massive-MIMO, spherical waves,

dual mobility, and other advanced technologies. A

few studies based on the map-based model have

produced large-scale measurement results. Detailed

research on small-scale information or full CSI is

needed. Refs. [16,17] presented a general framework

for modeling and reproducing environment-specific

channel properties in V2V (Vehicle-to-Vehicle) com-

munication. In contrast to the traditional determin-

istic models or stochastic models, these new mod-

els try to introduce some deterministic pattern or

feature into the stochastic models to obtain extra

information with the purpose of acquiring CSI ac-

quisition at a lower cost. Such advances inspired us

to focus on the relationship between the radio prop-

agation environment and CSI in order to incorpo-

rate radio propagation environment information of

a wireless channel to acquire the CSI at lower cost

and with greater accuracy. However, most of these

new wireless channel models only focus on large-scale

information[18,19]. Detailed research on small-scale

information is needed.

In this study, the relationship between the radio

propagation environment and CSI and the statistical

properties of wireless channel parameters were ana-

lyzed. The diversity of wireless channel parameters

was used to help explain the concept of the tomo-

graphic channel model. The tomographic channel

model consists of static, dynamic, and disturbing

CSI[20]. Based on the tomographic channel model,

the GMM and EM (Expectation Maximization) were

applied to extract the static CSI from the existing

channel measurement campaign data. The statisti-

cal properties of the static CSI can guide the pilot

design. An online-offline scheme to acquire CSI via

the tomographic channel model is proposed. A CNN

(Convolutional Neural Network) was applied to iden-

tify different wireless channels automatically. The

numerical results of the channel measurement cam-

paigns showed that the extracted and stored wireless

channel features introduces extra information on the

radio propagation environment and helps reduce the

pilot cost. In addition, the CNN can automatically

identify different wireless channels and help decide

which relevant wireless channel features should be

used.

The paper is organized as follows. Section 2

presents the tomographic channel model and online-

offline scheme for CSI acquisition. Section 3 de-

scribes the application of the GMM-EM algorithm

to obtaining static CSI (wireless channel feature)

from the huge amount of existing wireless channel

data. Section 4 describes how the CNN was applied

to identify different wireless channels automatically.

Section 5 presents the results of repeated measure-

ments and the performance of the method.

2 Tomographic channel model

The classic multi-path channel model can be ex-

pressed as[21]

h(τ ; t) =
L∑
l=1

βl(t)δ(τ − τl), (1)

βl(t) = αl(t)e
j(2πflt+φl) = β̃l(t) · ej(2πflt), (2)

β̃l(t) = αl(t)e
jφl , (3)

fl = fc
v

c
cos θl. (4)

where L is the number of MPCs (MultiPath Com-

ponents), βl(t) is the complex amplitude and τl is

the time delay of the lth path. fl is the Doppler fre-

quency and φl is the phase of the lth path. β̃l(t) is

the complex amplitude upgraded with the phase of

the lth path. fc is the carrier frequency and θl is the

DOA (Direction of Arrival) of the lth path. c is the

speed of light and ν is the velocity of the MS (Mobile

Station). If the MS moves at a low speed (v � c),

fl ≈ 0 and βl(t) = αl(t)e
jφl . Now, the βl(t) is the

complex amplitude regardless of the change of DOA

and velocity of the MS.

If the channel impulse response is assumed to be

wide sense stationary over a small-scale time or dis-

tance, the h(τ ; t) can be simplified as

h(τ) =
L∑
l=1

βlδ(τ − τl). (5)
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Theoretically, the parameters of each path and the

CSI are determined by the radio propagation en-

vironment. The radio propagation environment is

physically defined by the position and motion of

the BS (Base Station), MS, and surrounding scat-

terers. The scatterers can basically be divided into

two kinds: static and moving. Static scatterers

mainly include buildings, trees, and so on in the

radio propagation environment. Moving scatterers

mainly consist of moving people and cars. In a real

radio propagation environment, the BS and most

of the scatterers are usually static. When the MS

moves a short distance, the static scatterers change

slowly compared with the receivers motion. Previ-

ous research revealed that, because the BS and main

scatterers (e.g., outdoor buildings and indoor walls)

are static, some variables in the multi-path channel

model mainly affected by static scatterers can be

considered static[22,23]. Thus, the number of static

scatterers and the DOAs of rays from these scat-

terers, which are referred to as static parameters,

stay relatively invariable. Thus, L and θl are usually

static and τl and βl can also be regarded as static.

The velocity of the receiver ν is a dynamic parameter

and needs to be obtained with GPS (Global Posi-

tioning System) or other speed testing instruments.

Finally, the disturbing CSI refers to the reflection,

diffraction, refraction and scattering caused by scat-

terers that appear randomly and may only affect

part of the multiple paths. As mentioned above,

the main static scatterers like buildings or walls

are much taller than the MS. Thus, the power of the

paths caused by the static scatterers is much stronger

than that of the single-reflection signal from random

scatterers. Therefore, Eq. (1) can be approximately

expressed as

h(τ ; t) =

L1∑
l=1

βl(t)δ(τ − τl)

+

L2+L1∑
l=L1+1

βl(t)δ(τ − τl), (6)

where L1 is the number of MPCs of the static scat-

terers and L2 is the number of MPCs of the ran-

dom scatterers. Static scatterers make up most of

the CSI. Luckily, they are static, so they can be ex-

tracted precisely via repeated prior measurements.

This is the “feature” of the channel in each spe-

cific real propagation scenario. When the feature of

the channel is obtained, the pilot can be designed at

the main static time and frequency positions. This

means that we already know the basic structure of

the wireless channel and can put the pilot at a po-

sition where the wireless channel parameters have a

large role. Tong et al.[24] showed that a good pilot

design can help obtain a more accurate CSI.

The tomographic channel model consists of static,

dynamic, and disturbing channel information. Static

channel information is CSI caused by static scatter-

ers and can be extracted from a large amount of ex-

isting CSI data offline. The motion of the MS leads

to dynamic channel information. The velocity of the

MS can be determined with the help of GPS or other

speed-testing instruments. Thus, the dynamic chan-

nel information can be calculated. Because paths

caused by random scatterers seem rare and weak in

some propagation scenarios, disturbing channel in-

formation can be ignored or estimated by a smaller

pilot in practice.

Fig. 1 shows our online-offline scheme to acquire

CSI. First, the static parameters can be extracted

from the data of previous repeated experiments. The

SAGE (Space Alternating Generalized Expectation-

Maximization) algorithm is used to restore the multi-

path parameters; then, the GMM is applied to obtain

the distribution of the multi-path parameters based

on the EM principle. The above process is carried

out offline. With the distribution of the multi-path

parameters, prior information can help in the pilot

design. Second, we can obtain the velocity informa-

tion of the receiver with GPS or other speed-testing

instruments. With the velocity information, the dy-

namic part can be calculated. Finally, the disturb-

ing CSI can be estimated with a well-designed pilot.

Thus, the full CSI should be acquired based on the

above three steps. Note that the static multi-path

information is additive and the dynamic part is mul-

tiplicative. The disturbing CSI is always considered

additive.
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existing CSI data                   multipath data

SAGE GMM &
EM

PDF of multipath
parameters

static information of channel

dynamic
information  of

channel:
velocity of MS

full CSI

disturbing
information of

channel:
random scatters

prior information
to help pilot design

Figure 1 The scheme to acquire CSI in the tomographic channel model

3 Scheme to acquire CSI with the to-

mographic channel model

3.1 SAGE algorithm

The SAGE algorithm is often applied to parame-

ter extraction from channel measurement data. As

an extension of the EM algorithm, the SAGE algo-

rithm classifies parameters (e.g., time delay, ampli-

tude, Doppler frequency, AOA) that need to be esti-

mated into subsets to improve the convergence speed

compared with the EM algorithm[25].

The vector Θl = (βl, θl, τl, ϕl)
T

is the set of wire-

less channel parameters. The SAGE algorithm clas-

sifies Θl into S subsets {Θs, s = 1, · · · , S}. Thus,

the log-likelihood function can be expressed as[25]

Λ(Θs;xls)

=
1

N0

[
2

∫
D0

Real
{
H(Θs|Θ̂s̄, t)

H
}
xls(t)dt

−
∫
D0

∥∥∥H(Θs|Θ̂s̄, t
∥∥∥2

dt

]
, (7)

(Θ̂s)ML(xls) = argmax{Λ(Θs;xls)}, (8)

xl is the observable data. xls is the admissible

hidden-data space with respect to Θs in the lth path.

N0 is the noise variance. D0 is the interval of obser-

vation. Θ̂s̄ is the given complementary set of Θs in

Θl.

The ML estimate of the subsets Θs instead of

Θl is needed to improve the convergence speed. L

is determined by the MDL (Minimum Description

Length) criterion. With L is identified , βl, θl, τl, φl

can be estimated off-line via SAGE algorithm. This

algorithm estimates and updates Θl iteratively until

it achieves convergence.

3.2 Gaussian mixture model

The GMM is a popular parametric density model

for approximating arbitrary continuous multivariate

PDFs (Probability Density Functions) in unsuper-

vised learning or clustering procedures[26,27]. The

GMM is made up of K multivariate Gaussian distri-

butions known as mixture components. Each com-

ponent has its own {µk,Σk} , k = 1, · · · ,K, where

µk is the mean value vector and Σk is the covari-

ance matrix of the multivariate Gaussian component.

Each mixture component also has an associated non-

negative mixing weight πk. The PDF (Probability

Density Function) for GMM can be expressed as

p(x) =

K∑
k=1

πk · N (x|µk,Σk). (9)

Θ = (β, θ, τ, φ)
T

can be regarded as four dimensional

variables. K ≈ L. The PDF of Θ can be expressed

as

p(Θ) =

L∑
l=1

πl · N (Θ|µl,Σl). (10)

3.3 EM algorithm

The next step is to estimate {πl, µl,Σl} to maximize

the log-likelihood function
∑N
i=1 p(Θi). The EM al-

gorithm can be carried out as follows[28]:
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Expectation step: estimate the probability of Θi

generated by the lth mixture Gaussian component.

γ(i, l) =
πl · N (Θi|µl,Σl)∑L
j=1 πj · N (Θi|µj ,Σj)

, (11)

πj , µj , Σj , j = 1, · · · , L need to be initialized.

Maximization Step: Estimate the πl, µl, Σl.

µl =
1

Nl

∑N
i=1 γ(i, l)Θi, (12)

Σl =
1

Nl

∑N
i=1 γ(i, l)(Θai − µl)(Θi − µl)T, (13)

πl =
Nl
N
, (14)

N is the number of training multi-path data sets.

Nl =
∑N
i=1 γ(i, l). {πl, µl,Σl} can be estimated it-

eratively.

4 Channel recognition via CNN

Deep learning enjoys excellent performance in auto-

matic speech recognition, face recognition, and text

recognition. Deep learning enables an artificial neu-

ral network to automatically extract features from

the input training data and reduce the incomplete-

ness brought by the artificial settings[29]. Fig. 2

shows a DNN.
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Figure 2 Deep neural network

A CNN is one kind of widely used deep learning

structure. A CNN is characterized by consisting of

one or more pairs of convolution and pooling layers.

The pair of a convolution layer and pooling layer is

used for feature extraction[30]. In the convolution

layer, a set of filters is applied to process small lo-

cal parts of the input data. These filters are repli-

cated along the whole input space. Neurons in the

convolution layer multiply. In the pooling layer, a

lower-resolution version of the convolution layer ac-

tivation is generated by taking the maximum filter

activation from different positions within a specified

window. The number of neurons in the pooling layer

stays the same. The fully connected layer combines

inputs from all positions to classify the overall in-

puts. A CNN has three unique concepts: local fil-

ters, max-pooling, and weight sharing. The paths

in wireless channel are always clustered. Thus, the

nearby paths can share a similar nature and influ-

ence each other. As a result, the unique charac-

teristics of a CNN allow it to extract the wireless

channel features better than other deep learning al-

gorithms. Different propagation environments lead

to different wireless channels. Based on the tomo-

graphic channel model, the static part of the CSI

data can be regarded as the wireless channel feature.

The CSI data we measured under different measure-

ment conditions may contain different wireless chan-

nel features. The datasets of multi-path parameters

(e.g., time delay, amplitude, Doppler frequency) Θ =

{Θ1, · · · ,Θl, · · · ,ΘL}, Θl = (βl, θl, τl, φl)
T
, l =

1, · · · , L are the input data in the CNN for wire-

less channel feature extraction, as shown in Fig. 3.

The input data sets comprise many multi-path pa-

rameter samples. One sample is a matrix whose row

vectors can be the time delay, amplitude, or Doppler

frequency. The length of each row vector is the num-

ber of paths L. If L = 10 and the data of the time

delay, amplitude, and Doppler frequency are given,

one input data sample can be a 10× 3 matrix. The

output is the number of wireless channels to which

the input dataset belongs. For example, the input

dataset may consist of three different wireless chan-

nels, which means that the data of the wireless pa-

rameters are obtained in three different positions or

under three different measurement conditions. The

output can be three bits: 001, 010, or 100.

For the feedforward pass, the convolution layer ac-

tivations can be computed as a convolution-like oper-
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Figure 3 CNN for multi-path data

ation of each filter on the lower layer bands followed

by a nonlinear activation function f(Θ)[31],

net =
n∑
i=1

wixi + b, (15)

where xi can be any datum in Θ.

sigmoid(t) =
1

1 + e−t
(16)

f(Θ) = sigmoid(net)

=
1

1 + exp[−(
∑n
i=1 wixi + b)]

(17)

For backpropagation, the loss function is defined

to estimate the prediction error. There are many

kinds of loss functions. In our CNN, the loss func-

tion is defined E(Θ) as

E(Θ) =
1

2
‖y − f(Θ)‖22 , (18)

where y is the correct channel number and f(Θ) is

the output result of CNN.

The derivative of E(Θ) passes along the CNN

from the output layer to the input layer.

∂E

∂wi
=
∂E

∂f
· ∂f
∂net

· ∂net
∂wi

. (19)

The parameters of CNN update in the negative

gradient direction and gradually approximate the op-

timal solution with iterations. A backpropagation al-

gorithm with an appropriate learning rate can guar-

antee convergence to the local minimum but not con-

vergence to the global minimum.

5 Experimental evaluation

To verify the performance of the proposed method,

indoor and outdoor channel measurement campaigns

were carried out in and around the FIT building in

Tsinghua University, Beijing. Tab. 1 presents the

system configuration.

Table 1 System configuration of measurement campaigns

indoor outdoor

transmitter power 20 dBm 20 dBm

carrier frequency 900 MHz 900 MHz/2.4 GHz

bandwidth 20 MHz 20 MHz

transmitter Antenna Height 1 m 10 m

receiver Antenna Height 1 m 1 m

LOS/NLOS LOS LOS

The indoor channel measurement campaigns were

carried out in a meeting room. The room was 8.57 m

long and 3.91 m wide, as shown in Fig. 4. Tx and Rx

were placed on the desk in the center of the room.

The horizontal distance between Tx and Rx was 4 m.

The desk was about 1 m high. The outdoor chan-

nel measurement campaigns were carried out in the

small yard in the middle of the building. Tx was

placed outside the window on the fourth floor at a

height of about 10 m. Rx was placed in the cen-

ter of the yard in the FIT building at a height of

about 1 m. The horizontal distance between Tx and

Rx was about 39 m. Figs. 4 and 5 show the indoor
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and outdoor layouts, respectively. Throughout the

measurements, Tx and Rx stayed still.

3.91 m

8.57 m

Tx             4 m              Rx

Figure 4 Layout of the indoor experiment environment

Rx          Tx

Figure 5 Layout of the outdoor experiment environment

GMM-EM was applied to obtain the PDF of wire-

less channel parameters. Based on the channel fea-

ture, fewer but redesigned pilots were used for chan-

nel estimation. There were 64 pilot symbols in the

original system. Based on the distribution of the

paths, 48/32/24/16 pilot symbols were used. The

normalized mean square error (NMSE) was used as

an evaluation standard to compare channel estima-

tion results with the original 64 pilot symbols and

with the redesigned 48/32/24/16 pilot symbols.

NMSE = 10 lg

∑K
k=1 | ˆh(k)− h(k)|2∑K

k=1 |h(k))|2
, (20)

h(k) is the real channel response estimated with orig-

inal 64 pilot symbols. ˆh(k) is the channel response

estimated with redesigned 48/32/24/16 pilot sym-

bols. K is the number of sample data.

Figs. 6 and 7 show the CDF of NMSE with the

redesigned 48/32/24/16 pilot symbols in the indoor

and outdoor measurements. The goal of channel es-

timation with prior information extracted from the

huge amount of existing CSI data was achieved.

Fewer pilot symbols reduced the performance. Thus,

there is a tradeoff between the accuracy of the chan-

nel estimation and the pilot cost. The outdoor prop-

agation environment changed in a more complex

manner than the indoor propagation environment.

The proposed scheme performed better in the indoor

propagation environment.
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Figure 6 CDF of NMSE in the outdoor measurement
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Figure 7 CDF of NMSE in the indoor measurement

The channel recognition performance via the CNN

was astonishing. Datasets of three different wireless

channels were input to the input layer: the outdoor

channel (channel number: 100) with a carrier fre-

quency of 900 MHz, the outdoor channel (channel

number: 010) with a carrier frequency of 2.4 GHz,

and the indoor channel (channel number: 001) with

a carrier frequency of 900 MHz. The rest of the sys-
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tem configuration was the same as that presented

in Tab. 1. Tab. 2 presents the channel recognition

results.

Table 2 Channel recognition result via CNN

hiddenlayers width epochs alpha error

CNN1 6 6,12,24 1 000 0.1 0.039 2

CNN2 4 6,12 1 000 0.1 0.044 2

CNN3 4 6,12 100 1 0.078 3

CNN4 4 6,12 100 0.1 0.045 2

CNN5 4 6,12 100 0.001 0.259 0

CNN6 4 8,16 100 1 0.058 2

hiddenlayers represents the number of hidden lay-

ers in the CNN. As noted above, the hidden layers

in a CNN come in pairs (C layer and S layer). Thus,

hiddenlayers = 4 means that there are two pairs

of convolution and sub-pooling layers. width means

the number of connections in the convolution layer.

epochs can be regarded as the training times. alpha

is the learning rate with the range of (0, 1). The

comparison between CNN1 and CNN2 showed that

the deeper CNN performed better. The compari-

son between CNN2 and CNN4 shows that training a

CNN more improves its performance. The compari-

son between CNN3 and CNN6 shows that the wider

CNN performed better. CNN3, CNN4, and CNN5

showed that alpha cannot be too big or too small.

6 Conclusions and future work

This study focused on wireless channel feature ex-

traction and recognition via a machine learning al-

gorithm. A GMM was applied to acquire the distri-

bution of wireless channel parameters, and a CNN

was applied to distinguish different wireless channels

automatically. The results based on indoor and out-

door channel measurement data showed that these

machine learning algorithms can enjoy an astonish-

ing level of performance in wireless communication.

The contribution of this study is the application of

a CNN to dealing with multi-path data. The nu-

merical results help prove the concept of the wire-

less channel feature and the idea of the tomographic

channel model. The recognition of different wireless

channels can help with applying prior information to

guide the pilot design and save pilot resources.

Research and development of wireless big data is

actively ongoing. Most wireless big data research is

on the huge amount of service data, and few stud-

ies have focused on channel data. Most research has

focused on the challenges of fast-growing big data

in wireless networks, or “wireless for big data”. In

this study, we attempted to apply machine learning

to wireless communication, which we term “big data

for wireless”.

In the future, our main focus will be carrying out

more channel measurement campaigns in different

typical propagation scenarios to build a sufficiently

complete CSI database. More deep learning algo-

rithms can be applied to deal with wireless com-

munication problems with the database, such as the

construction of the magnetic map.

References

[1] G. E. Athanasiadou, A. R. Nix. A novel 3-D indoor ray-

tracing propagation model: the path generator and eval-

uation of narrow-band and wide-band predictions [J].

IEEE transactions on vehicular technology , 2000, 49(4):

1152-1168.

[2] J. Poutanen. Geometry-based radio channel model-

ing: propagation analysis and concept development [D].

Helsinki: Aalto University, 2011.

[3] R. Verdone, A. Zanella. Pervasive mobile and ambi-

ent wireless communications: COST action 2100 [M].

Springer Science & Business Media, 2012.
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