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Abstract: Atmospheric ducts are horizontal layers that occur under certain weather conditions in the lower

atmosphere. Radio signals guided in atmospheric ducts tend to experience less attenuation and spread much

farther, i.e, hundreds of kilometers. In a large-scale deployed TD-LTE (Time Division Long Term Evolution)

network, atmospheric ducts cause faraway downlink wireless signals to propagate beyond the designed

protection distance and interfere with local uplink signals, thus resulting in a large outage probability. In this

paper, we analyze the characteristics of ADI atmospheric duct interference (Atmospheric Duct Interference)

by the use of real network-side big data from the current operated TD-LTE network owned by China Mobile.

The analysis results yield the time varying and directional characteristics of ADI. In addition, we proposed

an SVM (Support Vector Machine)-classifier based spacial prediction method of ADI by machine learning

over combination of real network-side big data and real meteorological data. Furthermore, an implementation

of ADMM (Alternating Direction Methods of Multipliers) framework is proposed to implement a distributed

SVM prediction scheme, which reduces data exchange among different regions/cities, maintains similar

prediction accuracy and is thus of a more practical use to operators.
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1 Introduction

LTE (Long-Term Evolution) is a standard for

the high-speed wireless communication for mo-

bile phones and data terminals. According to the

recent study by 5G Americas (http://www.4gameri-

cas.org/en/newsroom/press-releases/north-america-

hits-60-lte-market-share), LTE technology has owned

60% of market share in North America, and 34% in

Oceania and Asia. The number of global LTE users

has reached 1.29 billion. LTE supports both the

TDD (Time Division Duplex) and FDD (Frequency

Division Duplex) modes. By the end of July 2016,

the users’ number of TD-LTE (also known as LTE-
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TDD) reached 430 million and maintained a high

growth speed (https://www.chinatechnews.com/20

16/07/25/23806-china-mobile-now-counts-430-milli-

on-4g-users).

Furthermore, because TD-LTE uses a single fre-

quency band for both uplink and downlink trans-

missions, downlink signals from other BSs (Base Sta-

tions) may cause CCI (Co-channel Interference) on

the uplink signals of local BSs, which is denoted

by downlink-to-uplink interference. To prevent the

downlink-to-uplink interference, TD-LTE networks

are accurately synchronized and a GP (Guard Pe-

riod) is set in the special sub-frame of the TDD frame

structure. The special sub-frame has a duration of 1

ms (14 OFDM symbols) and consists of three parts:

DwPTS (Downlink Pilot Time Slot), GP and Up-

PTS (Uplink Pilot Time Slot). In GP, the system

does not transmit any information to prevent the

CCI from the downlink signals of adjacent BSs to lo-

cal cell’s uplink signals. Depending on the business

requirements, there are nine configurations of special

sub-frame in TD-LTE systems. Typically, operators

only configure 2 OFDM symbols for GP, in order to

improve the transmission efficiency. The correspond-

ing protection distance is 42 km. When GP is con-

figured with 10 OFDM symbols at most, sacrificing

a large part of transmission efficiency, the protection

distance increases by 5 times.

An atmospheric duct is a horizontal layer in the

lower atmosphere in which the vertical refractive in-

dex gradients are such that radio signals (and light

rays) are guided, and tend to propagate within the

duct boundaries. Moreover, they experience less at-

tenuation in the ducts than they would if the ducts

were not present. In 1968, Bean and Dutton[1] firstly

set up the formula of atmosphere refractivity and

proposed the presence criterion of atmospheric ducts.

Ref. [2] indicates that the ducting could lead

to a variety of effects, such as the loss of prop-

agation, altitude errors for height-finding radars,

decreased/increased detection ranges and short-

ened/extended radio horizons. In radar system,

evaporation ducting can reduce detection ranges[3].

Surface-based ducts give rise to effects including clut-

ter rings in the radar’s plan position indicator, height

errors for 3-D radar, and contamination of auto-

mated rain-rate calculations from weather radars[4].

In Ref. [5] Oraizi and Hosseinzadeh studied the ef-

fects of atmospheric duct on OFDM-Based digital

broadcasting systems. The study reveals that the

ducts amplify the strength of EM (Electromagnetic)

signal thereby causes interference effects on adjacent

services and reduces the frequency reuse distance.

As a result of the atmospheric duct effect, in TD-

LTE networks, downlink signals from a faraway BS

beyond the protection distance of the GP may in-

terfere with the uplink signals of a local BS, which

is denoted by ADI (Atmospheric Duct Interference).

Moreover, ADI severely impacts the performance of

TD-LTE networks. From the real network-side data

provided by China Mobile, one day when ADI oc-

curred in Xuzhou, Jiangsu Province, about 27.6%

of cells experienced uplink interference higher than

−90 dBm, which may totally submerge the useful

signal and block the total communication of the cell.

Therefore, ADI issues are in pressing need to be an-

alyzed and solved.

There are two main methods to detect and esti-

mate atmospheric ducts: (1) using radiosonde mea-

suring temperature, pressure and humidity with

height and computing the atmospheric modified

refractivity[2]; and (2) using radar sea clutter to fore-

cast the ocean refractive section plane[6]. Method

(1) poses the problems of a high measuring diffi-

culty, high cost and military secrecy issue, whereas

method (2) is usually used in ocean scenarios, and

is not suitable for land scenarios. Moreover, these

methods are only focused on atmospheric ducts, but

also the answers to some key questions of ADI, such

as; what are the characteristics of ADI? When will

ADI occur How does one identify and estimate ADI?

The answers to these questions are still unknown and

require in-depth analyses. Other than interference

analysis, the prediction of ADI is also an essential

problem to operators, to avoid the impact of ADI

and improve the network performance.

In this paper, we innovatively use the real

network-side big data from China Mobile to per-
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form interference analysis. We visualize the inter-

ference data using map-based methods, and obtain

the characteristics of ADI on time and space in large-

scale TDD networks. We combine the network side

big data and the meteorological data to perform the

ADI prediction. Taking the novelty of the problem

and the huge amount of data into consideration, we

employ a famous machine learning algorithm-SVM

(Support Vector Machines) to predict ADI. More-

over, because the SVM algorithm is a centralized

machine learning method, it is inefficient due to a

large amount of data gathering and exchanging. We

therefore further proposed an implementation of the

ADMM (Alternating Direction Methods of Multipli-

ers) framework, to perform a distributed SVM pre-

diction scheme. Our work fills the gap in the ADI

research of large-scale TDD mode communication,

and helps mobile operators improve the interference

coordination and network optimization performance,

under atmospheric duct scenarios.

The rest of this paper is organized as follows. In

section 2, we illustrate the impacts of ADI on TD-

LTE networks. We propose a map-based interference

visualization method in section 3. The characteris-

tics of ADI are analyzed based on the real network-

side big data in section 4. We propose an SVM-

classifier based spacial prediction method of ADI in

section 5. In section 6, a distributed SVM algo-

rithm based on the ADMM framework is proposed

to implement ADI spacial prediction in practical net-

works. Finally, we present the conclusions of this

paper in section 7.

2 Overview of ADI

2.1 The system design of TD-LTE to

prevent downlink-to-uplink interfer-

ence

TD-LTE works in time division duplex mode. Base

stations and users use the same frequency band. Dif-

ferent time slots are employed to distinguish between

uplink and downlink. In TD-LTE, there exists three

kinds of subframes: uplink, downlink and special

sub-frame. Special sub-frame consists of three parts:

DwPTS (Downlink Pilot Time Slot), GP (Guard Pe-

riod), UpPTS (Uplink Pilot Time Slot). Moreover,

the GP is located at the moment when downlink

convert to uplink to prevent the interference from

downlink signals to uplink signals. Fig. 1(a) shows

the frame structure of TDD system. The downlink

signal from an adjacent BS arrives at the GP, so it

would not interfere with local uplink signals.

To satisfy different requirements, TD-LTE sup-

ports multiple kinds of special sub-frame configura-

tions. As Tab. 1 shows. Configuration 7 is the nor-

mal setting of TD-LTE network and has 2 OFDM

symbols for GP. Therefore the protection distance

for preventing downlink-to-uplink interference is C×
Tsf×

2

14
, where C is the speed of light and Tsf is the

length of sub-frame, which is equal to 1 ms. The pro-

tection distance is then calculated as 42 km. Con-

figuration 0 has the largest GP of 10 OFDM sym-

bols and its protect distance is 214 km. Under nor-

mal circumstances, any downlink signals from dis-

tant BSs beyond the maximum protection distance

would experience enough attenuation and hardly in-

terfere with the local uplink signals.

2.2 The atmospheric ducts phenomena

Anomalous propagation conditions in the atmo-

sphere result from variations in the refractivity of

the atmosphere[2]. The refractivity is given by

N =
77.6

T

(
p+

4810e

T

)
. (1)

Here, N is the dimensionless refractivity (N -units),

T is the absolute temperature in K, p is the baromet-

ric pressure in hPa, and e is the water vapor pressure

in hPa. To consider the effect of the earth’s curva-

ture, a modified refractivity M is given as

M = N +
z

Re × 10−6
, (2)

where M is the dimensionless modified refractivity

(M -units), z is the height above the earth’s surface,

and Re is the earth’s radius. In the normal atmo-

sphere, M increases with altitude. An atmospheric
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Figure 1 Frame structure of TDD system. (a) Without ADI; (b) with ADI

Table 1 Configuration table of special sub-frame (unit: OFDM symbol)[7]

configuration ID
conventional cyclic prefix extended cyclic prefix

DwPTS GP UpPTS DwPTS GP UpPTS

0 3 10

1

3 8

1
1 9 4 8 3

2 10 3 9 2

3 11 2 10 1

4 12 1 3 7

25 3 9

2

8 2

6 8 3 9 1

7 10 2

8 11 1

duct occurs for all negative M gradients. Signals will

be trapped in the height of negative M gradients.

Fig. 2(a) shows the modified refractivity M with

altitude of surface ducts, surface-based ducts and el-

evated ducts respectively. The area of negative M

gradient is the ducting layer. Fig. 2(b) shows the real

refractivity M measured by radiosonde in Baoshan,

Shanghai, China. It can clearly ne observed that be-

tween the heights of 250 m and 320 m there exists

the ducting layer. Radio signals (and light rays) are

guided or ducted in the ducting layer, tend to prop-

agate within the duct boundaries, thus experiencing

less attenuation in the ducts than they would if the

ducts were not present.

2.3 Impact of ADI on TD-LTE networks

Under abnormal conditions, signals would propagate

in the ducting layers with little attenuation. As a

result, downlink signals from other BSs beyond the

maximum protection distance of GP may still cause

CCI (Co-Channel Interference) on local BSs’ uplink

signals. This is denoted by atmospheric duct inter-

ference, i.e. ADI. In the existing literatures, CCI

has been widely studied for a long while. According

to 3GPP, TD-LTE networks apply ICIC ( Inter Cell

Interference Cancellation Coordination) technology

to solve co-channel interference problem. Basically,

BSs generate information of interference of RB (Re-
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Figure 2 Illustration of anomalous atmospheric conditions based on modified refractivity M with altitude. (a) M with altitude

of different ducts; (b) the real M measured by radiosonde in Baoshan

source Block) and pass the information to adjacent

BSs through X2 interface to make resource alloca-

tion decisions[8]. Ref. [9] gives an overview of the

research on the CCI. A power control based time-

domain ICIC scheme is proposed in Ref. [10]. More-

over, Ref. [11] proposes a method of channel esti-

mation by estimating the interference covariance pa-

rameters. A method is presented to cancel CCI at

the mobile user side based on a realistic cell-edge sce-

nario in WiMAX system[12]. Ref. [13] proposes a CCI

cancellation strategy based on SIC (Successive In-

terference Cancellation) for communication systems.

However, the current study mentioned above mainly

focus on the user-side downlink CCI. They are based

on the accurate channel estimation or the coopera-

tion of adjacent BSs. The localization techniques

widely used in wireless sensor network[14] is not suit-

able either. This is because the TDD system can not

separate signals from remote BSs from signals from

local users. Thus we can not localize interference

sources via wireless received signal strengths.

Recall that we derived the maximum protection

distance of the TD-LTE system as 214.3 km. Theo-

retically, if the synchronization of the system is per-

fect, any BSs in this range will not interfere the up-

link signals of local BS. Under normal circumstances,

the downlink signals from farther BSs would attenu-

ate to a negligible level. However, network-side data

from China Mobile shows that large-scale downlink-

to-uplink interference sometimes arises severely and

affects the network service of a large region. More-

over, the current ICIC or network optimization

methods are of no use. This is because in the sce-

nario when the atmospheric duct effect is present,

the downlink signals from other BSs that are far be-

yond the maximum protection distance of GP may

experience very little attenuation and interfere with

the uplink signals of the serving BS. This is shown

in Fig. 1(b). As a result, the CCI caused by the at-

mospheric duct, i.e. ADI, has a large impact on the

large-scale deployed TD-LTE networks. Figs. 3 and

4 show the real interference situation of the commer-

cial operated TD-LTE networks by China Mobile in

the Jiangsu Province, on May 16, 2016.

Analysis of ADI is worth studied. Current difficul-

ties are 1) the difficulty in identifying the source of

interference, due to the interference that may come

from a very remote BS; 2) the interfered regions are

very large, usually covering several cities, and the

distance of the interferences propagate on a large

scale (200 km or even farther); 3) the occurrence

time of ADI is difficult to predict. These charac-

teristics make the conventional interference analysis

and management methods unsuitable for use.

3 Map-based 100 km-scale ADI anal-

ysis method

In order to analyze the characteristics of a 100 km-

scale ADI, we obtain from China Mobile the real
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network-side interference data of the all the base sta-

tions of Jiangsu province, for the day when ADI oc-

curs.

3.1 Map-based visualization of 100 km-

scale interference data.

To begin our analysis, the first step is to visualize

the interference data. This will provide us with the

most intuitive feeling on the general interference con-

ditions. An interference map is a useful tool. The

interference map defines the RF (Radio Frequency)

power distribution in the time and space. In our pa-

per, the RF signal power can be measured at the

position of every antenna of BSs to create a map

over the whole Jiangsu province. The space domain

includes information of the latitudes and longitudes

of the BSs, the antenna heights and the angles of

sectors for each antenna.

In total, there are more than fifty thousand mea-

suring points in Jiangsu province. They are disor-

derly distributed. Therefore, we firstly rasterize the

interference level in the space domain, to convert the

data to a M ×N matrix X.

Set all elements of X 0. Let loi, lai, lei repre-

sent the longitude, latitude and interference level

of ith measuring point, respectively. Moreover, let

lomin, lomax, lamin, lamax represent respectively the

minimum and maximum values of the longitude

and latitude of Jiangsu province, respectively. Let

lemin, lemax represent the minimum and maximum

values of the interference level. And let lostep =
lomax − lomin

M
, lastep =

lamax − lamin

N
,

Xm,n =
1

K

K∑
i=1

lei · IA, B(loi, lai),

m = 0, 1, 2, · · · ,M − 1,

n = 0, 1, 2, · · · , N − 1,

(3)

where A is interval [lomin +mlostep, lomin + (m+ 1)

×lostep) and B is interval [lamin + mlastep, lamin +

(m+ 1)lastep), IA, B(x, y) is the indicator function

IA, B(x, y) =

1, if x ∈ A and y ∈ B,

0, otherwise.
(4)

Now, the space information and interference in-

formation has been merged into the same matrix.

The next step is to use interpolation to increase the

resolution of the data. Because of the positions of

actual BSs, after the rasterizing, some elements of

matrix X may have no data. In this case, spa-

tial interpolation techniques can be utilized to esti-

mate values of these points that have not been mea-

sured. The spatial interpolation techniques are tra-

ditionally used in the context of GIS (Geographic

Information Systems)[15]. We employ the Kriging

interpolation[16] which is expressed briefly as follows.

Kriging interpolation uses a weighted sum of all

known data points on the space to estimate the un-

known point.

ẑ0 =
n∑
i=1

λizi. (5)

ẑ0 is the estimation of point (x0, y0), z0 = z(x0, y0).

λi is the weights. It is calculated by the following

optimization problem

min
λi

V ar(ẑ0 − z0)

s.t. E(ẑ0 − z0) = 0. (6)

After performing rasterizing and interpolation, we

can create the interference map of the region con-

cerned, i.e. Jiangsu province. We summarize the

complete procedure of the map-based visualization

of interference data as follows.

Algorithm 1 Process of map-based visualization of inter-

ference data

1 Input the set of longitude, latitude and interference level

for each BS, lo, la, le;

2 Determining M and N . Usually M × N is approxi-

mately
1

10
of the total number of BSs approximately.

Xm,n =
1

K

∑K
i=1 lei · IA, B(loi, lai). Generate X;

3 For xi,j in X, if xi,j = 0 and (i, j) in the province range,

use the nearest 30 points of (i, j) doing kriging interpola-

tion to get x̂i,j ;

4 For xi,j in X, if xi,j = 0 and (i, j) out of the province

range, xi,j = bleminc;

5 Render X using the heatmap;

6 Return interference map.
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3.2 Correlation analysis of the interfer-

ence map

In a TD-LTE system, because uplink and downlink

use the same frequency band and the channel reci-

procity is confirmed, we can naturally infer that ADI

has the property of reciprocity, which means if BS A

brings ADI to BS B, then BS B would also interfere

with BS A. Therefore, in order to address the issue

of identifying the potential interfered areas and the

interference source of ADI, we try to look for the

correlation of the interference data within the whole

Jiangsu province.

We employ the Pearson correlation coefficient to

obtain the one pair of interference objects. Firstly,

we divide the interference map into a plurality of

square regions. Then we compute the mean values

of interference levels larger than a threshold in each

square region, at different time periods. Setting the

threshold is performed to eliminate the influence of

interference-free areas.

As a result, each region has an interference vector,

in which each element represents the mean interfer-

ence level at a certain measuring time. The correla-

tion coefficients between the interference vectors of

the regions of any pair can then be computed. If the

correlation coefficient is closer to 1, the possibility of

existing atmospheric ducts between the correspond-

ing two regions is higher. In other words, we can find

certain possible pairs of interference objects.

In order to further verify our conjecture, we em-

ploy the sector angle data of all antennas of the BSs

in the Jiangsu province to analyze the directional

characteristic of ADI. Similar to the map-based vi-

sualization method of interference data, we first di-

vide the interference map into a plurality of square

regions. Thereafter, we set a global threshold and

record the information of the sector angles in each re-

gion, for all antennas with interferences larger than

the threshold. Typically, the sector angles of each

BS are around 0◦, 120◦ and 240◦. If the distribu-

tion of sector angles filtered by the threshold focus

on a certain degree, it indicates that the interfer-

ence is directional and that we can use it to find

the source direction of interference. By the combi-

nation of the results of correlation coefficients and

sector angle analysis, the ADI pair of regions can be

identified.

4 Analysis of 100 km-scale ADI

We use the network-side data of Jiangsu province,

from China Mobile, to analyze the ADI characteris-

tics. The analysis settings are as follows. The data is

collected from 244 375 antennas in Jiangsu, includ-

ing the longitudes, latitudes, antenna heights, sector

angles and interference levels. When rasterizing, we

make M = 160 and N = 160. When performing

Kriging interpolation to decrease the computational

complexity, we only use the nearest 30 points to the

target point.

According to the network-side data at different

times on May 16, 2016, provided by China Mobile,

Fig. 3 (a)∼(d) are the interference maps at 1:00 am,

7:00 am, 13:00 pm and 19:00 pm, respectively. Af-

ter interpolation, the whole map appears natural,

continuous and smooth. In Fig. 3(a), the interfer-

ence level was rising, and reached the highest level

in Fig. 3(b). Thereafter, the interference level fell,

and in Fig. 3 (c) and (d), the interference level and

distribution were normally steady and under the net-

work tolerance threshold. That means that from 1:00

am∼7:00 am on May 16, 2016, ADI may have prob-

ably occurred. From the explanation of meteorol-

ogy, usually from the midnight to the morning, the

temperature of ground drops quickly and the lower

atmosphere prone to temperature inversion. That

means that in a certain height range, the atmosphere

temperature rises in pace with the increasing height.

According to Eq. (1), the refractivity M has nega-

tive gradients and thus causes the atmospheric duct

phenomenon.

In addition, in the middle and northern regions in

Fig. 3(b), the average interference level can reach

up to −90 dBm, whereas a good quality of ser-

vice usually requires that of less than −100 dBm.

With respect to the geographical situation of Jiangsu

province, we find that these severely interfered ar-
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Figure 3 Illustration of the property of reciprocity in atmosphere duct interference. (a) 1:00; (b) 7:00; (c) 13:00; (d) 19:00

eas are mostly rural regions. It can be understood

that in the rural regions the space is very open, and

this is suitable for the propagation of electromag-

netic waves. However, in the city, a large number

of high-rise buildings would hinder the spread of the

interference signals, thus the interference level is re-

duced.

As a result: (1) ADI has a time varying character-

istic and probably occurs from the midnight to the

morning; and (2) ADI has the feature of territorial-

ity, and the rural regions have a higher probability

to suffer from ADI.

Fig. 4 shows the interference map at 2 am. We can

easily find the severe ADI regions marked by red cir-

cle, which are denoted by area1, area2 and area3, re-

spectively. Compared with the situation at 1:00am,

the interference levels of the three areas clearly in-

crease simultaneously. According to the map scale,

the distances from area1 to area2/area3 are larger

than the maximum protection distance of TD-LTE

networks, thus there exists ADI between them. The

ADI pairs of area1-area2 and area1-area3 verify our

guess of the ADI reciprocity property.
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Figure 4 Illustration of reciprocity property of atmosphere

duct interference

Furthermore, we divide the interference map into

an 8 × 8 grid, and extract interference data every

1 h from 0:00 am∼7:00 am, when the interference

phenomenon exists, in order to calculate the corre-

lation coefficients between each of the areas. We set
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the interference convex of area1 as the benchmark.

Fig. 5 shows the correlation coefficients on the map.

It can be seen that in the adjacent regions of area1,

the correlation coefficient is low. Apparently, these

regions are in the range of GP’s protection distance.

Therefore, they will not be interfered with, even if

the atmospheric ducts exist. The regions with cor-

relation coefficients that are bigger than 0.9 are in

the middle eastern part of Jiangsu, in which area2

and area3 are located. The result coincides with that

shown in Fig. 5.
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Figure 5 Correlation coefficients between each region

Fig. 6 gives the distribution of sector angles of the

ADI pair: area1-area2. The reference direction is

north, and the rotation is clockwise. Fig. 6 (b) and

(c) show the distribution of the sector angles of the

BSs in area2 and area3, which have interference lev-

els that are larger than −100 dBm. It is clear that

the direction of 240◦ suffers much from ADI, which is

just the direction toward area1. Fig. 6(a) shows the

distribution of sector angles of BSs in area1, with in-

terference levels that are larger than −100 dBm. The

distribution focus is on 120◦ and 240◦, where 120◦ is

toward area2 and area3. The interference from 240◦

of area1 may probably come from the provinces ad-

jacent to Jiangsu, such as the Henan province and

Anhui province. The result from Fig. 6 also coincides

with that from Figs. 4 and 5, thus further verifying

the directional characteristic and reciprocity prop-

erty of ADI.

Therefore, we have: (3) ADI has a directional

characteristic and the property of reciprocity. (4)

If the correlation coefficient of the interference data

in two regions is closer to 1, the corresponding two

regions have a high probability to be pair of ADI

objects.

5 An SVM-classifier-based spacial

prediction method

5.1 Problem formulation

Support vector machine is a machine-learning algo-

rithm. It is considered to be one of the best classi-

fication algorithms. Classification means that if we

have some sets of things classified; when new data

arrives, SVM can predict which set it should belong

to. In our problem, the inputs are the information

of the BSs and weather conditions. The output is 1

or −1, which indicates whether or not the BSs will

be affected by ADI, respectively. In the binary class,

SVM classifiers often have superior accuracy rates

and considerable generation abilities. Moreover, the

SVM-classifier can find a robust hyperplane to split

the positive and negative samples.

Given a set of positive and negative samples, the

goal of SVM is to find a hyperplane to split the posi-

tive and negative samples. However, it does not just

easily split them; the principle is to make the mar-

gin between the positive and negative samples maxi-

mum. The hyperplane can be described by ωTx+b =

0. The hyperplane is decided by normal vector ω

and intercept b. Assume we have training sam-

ple collection D = {(x1, y1), (x2, y2), · · · , (xN , yN )}.
yi ∈ {+1,−1} is the label of samples. We use

this samples training to get a linear classfier (hy-

perplane): f(x) = sign(wTx + b). As Fig. 7 shows,

the margin is
2

‖ω‖
. And both positive and negative

points satisfy that yi(ω
Txi + b) > 1.

In our application, we use this classifier to predict

whether the BSs in the test set will be interfered by

ADI or not after learning the training sets of BSs.

The xi includes the network-side information of BSs

and meteorological information. Specifically, it con-

sists of latitude and longitude of BS, time, sector
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Figure 6 The distribution of sector angles. (a) area1; (b) area2; (c) area3

angles, antenna height and meteorological data.
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Figure 7 Support vector machine and margin

Maximizing the margin
2

‖ω‖
is equal to minimiz-

ing
1

2
‖ω‖2. However, in practice, it is difficult to

get a hyperplane that can compeletely separate the

different classes of samples. To make the classifier

more robust, we introduce soft margin to allow some

points not to satisfy the constraint: yi(ω
Txi+b) > 1.

Obviously, when we maximize the margin, we should

keep the samples that don’t satisfy the constraints as

few as possible.So the optimaztion problem can be

written as

min
w,b

1

2
‖ω‖2 +C

m∑
i=1

max(1− yi(ωTxi + b), 0)2, (7)

where C is constant and max(1 − yi(ωTxi + b), 0)2

is the square of hinge loss function lhinge(z) =

max(0, 1 − z). We use it to avoid overfitting and

linearly indivisible condition. By introducing slack

variables ξi > 0, Eq. (7) can be rewritten as

min
ω,b,ξi

1

2
‖ω‖2 + C

m∑
i=1

ξi.

s.t.

{
yi(ω

Txi + b) > 1− ξi
ξi > 0, i = 1, · · · ,m.

(8)

This is a quadratic programming problem. We

can use the common quadratic programming algo-

rithm to solve it. Furthermore, in Ref. [17], a novel

algorithm named SMO (Sequential Minimal Opti-

mization), which can avoid the complicated inverse

of the Hessian matrix in each iteration.

5.2 The prediction result of SVM

Our training data comes from two aspects: 1) the

network-side data containing the longitude, lati-

tude, time, sector angles, and interference indicator

(threshold of −100 dBm); and 2) meteorological data

from the China meteorological data website contain-

ing air temperature, air pressure and vapor pressure,

i.e. the three key physical factors in formula (1). In

this case, each sample consists of (xi, yi) represent-

ing the data of a BS, where yi is the interference

indicator which determines whether or not the BS is

affected by ADI under the interference threshold of

−100 dBm; and is a vector consisting of the rest of

the components, i.e., the longitude, latitude, time,

sector angles, air temperature, air pressure, vapor

pressure, etc.

The simulation is carried out under the cases

wherein the number of training sets are 2 000, 4 000,
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10 000, 20 000 and 40 000. After training, the classi-

fier is used to predict the interference indicator of a

testing set having a size that is 20% of the training

sets. A well-known KNN (K Nearest Neighbor)[18]

algorithm is used as our benchmark. In KNN an ob-

ject is classified by a majority vote of its neighbors,

with the object being assigned to the class most com-

mon among its k nearest neighbors. Here we make

k = 1, then the object is simply assigned to the class

of that single nearest neighbor.
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Figure 8 The test result of SVM. (a) Accuracy rate; (b)

recall rate.

We define the accuracy rate and recall rate as

accuracy = ncorrect/nall, recall = n1correct/n1all,

where nall is the number of all testing samples while

ncorrect is the number of all the correctly classified

testing samples, i.e. the prediction of the interference

indicator is correct. n1all is the number of all posi-

tive testing samples which means the number of all

BSs suffering ADI interference. n1correct is the num-

ber of all correctly classified positive testing samples,

i.e. the BSs suffering ADI interference are predicted

correctly. The recall rate is more important for op-

erators to improve network performance. This is be-

cause the greater the number of predicted interfered

BSs, the more measures operators can take to avoid

the impact of ADI.

The simulation results of the accuracy rate and re-

call rate are shown in Fig. 8 (a) and (b), respectively.

Furthermore, because the SVM classifier is a ma-

chine learning algorithm, the accuracy rate and recall

rate are approximately linearly increased when the

number of training samples is increased. In Fig. 8(a),

when the number of training samples is larger than

18 000, the accuracy rate of the SVM-classifier is bet-

ter than that of KNN algorithm. In Fig. 8(b), when

the number of training samples is larger than 14 000,

the recall rate of the SVM-classifier is better than

that of the KNN algorithm. When the number of

training samples are 40 000, the accuracy rate and

recall rate are 0.72 and 0.76, respectively. We can

therefore conclude that better performance will be

obtained when more samples are used to train the

machine.

6 Implement a distributed linear

SVM via ADMM

6.1 The forming of ADMM

Despite the result is not bad, in practice the network-

side data is managed by prefecture-level city. To

gather data is inconvenient and would require a large

amount of time. Sometimes it is difficult because

BSs may be produced by different equipment manu-

facturers.

To overcome these difficulties, we use a framework

named ADMM, proposed in Ref. [19], to implement a

distributed SVM. Moreover, ADMM introduces ad-

ditional variables to regularize the difference among

the models solved by the distributed machines.

The basic form of the ADMM problem is

min
x,z

f(x) + g(z),

s.t. Ax+Bz = c, (9)
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where f(x) and g(z) are convex. The Augmented

Lagrangian function is

Lρ(x, z, y) = f(x) + g(z) + yT(Ax+Bz − c)

+
ρ

2
‖Ax+Bz − c‖22. (10)

Recall formula (7), we now build up a z and

rewrite Eq. (7) as the form of Eq. (9). To make

the problem comfortable to decomposition, we let

{B1, · · · , Bm} be a partition of all data indices

{1, · · · , l}. By using ADMM framework, the equiva-

lent problem is

min
ω1,··· ,ωm,z

1

2
‖z‖22 + C

m∑
j=1

∑
i∈Bj

max(1− yiωT
j xi, 0)2

+
ρ

2

m∑
j=1

‖ωj − z‖22,

s.t. ωj − z = 0, j = 1, · · · ,m. (11)

Let us denote ω = {ω1, · · · , ωm} and λ =

{λ1, · · · , λm}. The Lagrangian of Eq. (11) is

L(ω,z, λ)=
1

2
‖z‖22 + C

m∑
j=1

∑
i∈Bj

max(1− yiωT
j xi, 0)2

+

m∑
j=1

(ρ
2
‖ωj − z‖22 + λTj (ωj − z)

)
,

(12)

where λ are the dual variables. ADMM consists of

the following iterations:

ωk+1 = arg min
ω

L
(
ω, zk, λk

)
, (13)

zk+1 = arg min
z

L
(
ωk+1, z, λk

)
, (14)

λk+1
j = λkj + ρ

(
ωk+1
j − zk+1

)
, j = 1, · · · ,m. (15)

L is separable in ωj , so we can solve Eq. (13) in

parallel as

ωk+1
j = arg minω′ C

∑
i∈Bj

max
(

1− yiω′
T
xi, 0

)2
+
ρ

2
‖ω′ − z‖22 + λTj (ω′ − z). (16)

Also, zk+1 has a closed form solution

zk+1 =
ρ
∑m
j=1 ω

k+1
j +

∑m
j=1 λ

k
j

mρ+ 1
. (17)

Letting µj =
λj
ρ

, we now have the ADMM itera-

tions as

ωk+1
j = arg minω C

∑
i∈Bj

max
(
1− yiωTxi, 0

)2
+
ρ

2
‖ω − zk + ukj ‖22, (18)

zk+1 =

∑m
j=1 (ωk+1

j + ukj )

m+ 1/ρ
, (19)

uk+1
j = ukj + ωk+1

j − zk+1. (20)

Here, each machine j solves the subproblem (19) in

parallel, which is only associated with data XBj =

{xi : i ∈ Bj}. Machine j also loads the data XBj

from the disk only once and stores them in the mem-

ory in the ADMM iterations. Each machine only

needs to communicate wj and uj without passing

the data.

6.2 The prediction result of ADMM-

SVM

In this simulation, the parameters are set the same

as in section 5 with the difference that the training

set was divided into four parallel subsets.
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Figure 9 ADMM-SVM vs. single-machine SVM

The simulation result is shown in Fig. 9. We can

find that both the accuracy rate and recall rate of

ADMM-SVM are approximate to that of SVM. It

means when operators want to improve the network

performance, they can implement SVM-classifier in

different cities/regions in parallel by exchanging only
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limited amount of parameters. This is more practi-

cal to perform an overall SVM-classifier of the whole

network.

7 Conclusion

In this paper, the ADI in large-scale TD-LTE net-

works was analyzed. Unlike the traditional atmo-

spheric duct detection technology in meteorology, we

started from the real network-side data provided by

China Mobile. We performed a map-based visualiza-

tion of interference data, and obtained the interfer-

ence map of Jiangsu, China. We then analyzed the

interference characteristics according to the interfer-

ence map, correlation coefficient calculation and sec-

tor angles distribution.

The data analysis results verify the atmospheric

duct phenomenon, and enable us to arrive at some

interesting conclusions about the ADI characteris-

tics:

- ADI has a time varying characteristic, probably

occurring from midnight to morning.

- ADI has the feature of territoriality, and the ru-

ral regions have higher probability of suffering from

ADI.

- ADI has a directional characteristic and the

property of reciprocity.

- If the correlation coefficient of the interference

data in two regions is closer to 1, the corresponding

two regions have high probability to be pair of ADI

objects.

In addition, we proposed an SVM-classifier based

spacial prediction method of ADI, by machine learn-

ing over the combination of real network-side big

data and real meteorological data. The simulation

results show that the accuracy rate and recall rate

approximately increase linearly when the number of

training samples increases. When the number of

training samples is 40 000, the accuracy rate can

reach 72%, which outperforms the conventional KNN

algorithm. Furthermore, a distributed algorithm of

the ADMM-SVM prediction scheme is proposed and

confirmed to exhibit the same performance as SVM.

It enables operators to predict the ADI in a dis-

tributed manner without huge data exchange; it only

communicates a small number of parameters, thus

making it more practical to implement.

This paper is a starting point of ADI study. There

remain many issues to be addressed in our future

work. The first has to do with the statistical charac-

teristic and modeling of ADI. The second is how to

locate the exact interference source of ADI. The cur-

rent data from China Mobile is rough from the per-

spective of the sector angles information, i.e., only

three directions. A more detailed angle information,

which may be obtained through field measurements,

is required for ADI source location identification.

The third is how to predict the occurrence of ADI in

the time domain. So far, because of the lack of me-

teorological data with altitude, our method does not

obtain a good result in predicting ADI in the time

domain. More detailed meteorological data is there-

fore a key factor in ADI time varying prediction.
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3GPP Release 8 [C]//GSM/EDGE: Evolution and Per-



Analysis and prediction of 100 km-scale atmospheric duct interference in TD-LTE networks 79

formance, Wiley, 2011: 63-99.

[9] Laster J D, Reed J H. Interference rejection in digi-

tal wireless communications [J]. IEEE signal processing

magazine, 1997, 14(3): 37-62.

[10] W. J. Lu, Q. Fan, Z. X. Li, et al. Power control based

time-domain inter-cell interference coordination scheme

in DSCNs [C]//IEEE International Conference on Com-

munications (ICC), Kuala Lumpur, Malaysia, 2016: 1-6.

[11] A. Jeremic, T. A. Thomas, A. Nehorai. OFDM chan-

nel estimation in the presence of interference [J]. IEEE

transactions on signal processing, 2004, 52(12): 3429-

3439.

[12] W. X. Xu, S. Sezginer. Co-channel interference can-

cellation in reuse-1 deployments of WiMAX system

[C]//IEEE Wireless Communications and Networking

Conference (WCNC), Paris, France, 2012: 342-346.

[13] E. C. Kim, J. Y. Kim, H. J. Choi, et al. Co-channel in-

terference cancellation based on SIC with optimal order-

ing for cooperative communication systems [C]//Digest

of Technical Papers International Conference on Con-

sumer Electronics (ICCE), Las Vegas, USA, 2010: 277-

278.

[14] G. Mao, B. D. O. Anderson, B. Fidan. Path loss expo-

nent estimation for wireless sensor network localization

[J]. Computer Networks, 2007, 51(10): 2467-2483.

[15] P. A. Burrough, R. A. McDonnell, R. McDonnell, et

al. Principles of geographical information systems [M].

Oxford: Oxford University Press, 2015.

[16] M. L. Stein. Interpolation of spatial data: some theory

for kriging [M]. New York: Springer Science+Business

Media New York, 2012.

[17] J. C. Platt. Sequential minimal optimization: a fast

algorithm for training support vector machines

[C]//Advances in Kernel Methods-support Vector

Learning, 1998: 212-223.

[18] D. T. Larose. k-nearest neighbor algorithm [C]//Dis-

covering knowledge in data: an introduction to data

mining, Wiley, 2005: 90-106.

[19] S. Boyd, N. Parikh, E. Chu, et al. Distributed optimiza-

tion and statistical learning via the alternating direction

method of multipliers [J]. Foundations and trends in ma-

chine learning, 2011, 3(1): 1-122.

About the authors

Ting Zhou was borned in Jun. 1982,

Guangdong province. She received the

B.S. degree and M.S. degree from the

Department of Electronic Engineering of

Tsinghua University in 2004 and 2006,

and PhD. degree from Shanghai Institute

of Microsystem and Information Technol-

ogy (SIMIT) of Chinese Academy of Sci-

ences (CAS) in 2011. From 2011 to 2013, she worked at

Shanghai Research Center for Wireless Communication as

a research assistant in SIMIT. From January 2014 to the

present, she is an associate professor at Shanghai Research

Center for Wireless Communication in SIMIT. She is cur-

rently mainly focuses on resource management and intelli-

gent networking of heterogeneous wireless networks. She won

2015 first prize of China Institute of Communication Tech-

nical Innovation Award and 2015 second prize of Shanghai

Science and Technology Progress Award. She has been au-

thored or co-authored over 20 papers published in journals

and conferences, and 44 granted and pending patents. (Email:

ting.zhou@mail.sim.ac.cn)

Tianyu Sun received B.S. degree in Col-

lege of Telecommunications & Informa-

tion Engineering, Nanjing University of

Posts and Telecommunications. He is

now a postgraduate student in Shanghai

Research Center for Wireless Communi-

cation. He is currently mainly research on

data mining in wireless communication.

Honglin Hu [corresponding author] re-

ceived the Ph.D. degree in communica-

tions and information systems from the

University of Science and Technology of

China, Hefei, China, in 2004. He was

with Future Radio, Siemens AG Commu-

nications, Munich, Germany, until 2005.

In 2006, he joined the Shanghai Insti-

tute of Microsystem and Information Technology, Chinese

Academy of Sciences, Shanghai, China, where he has served

as a full professor (since 2009). He also serves as an adjunct

professor with ShanghaiTech University, Shanghai, and the

vice director of the Shanghai Research Center for Wireless

Communications (WiCO), Shanghai. He was the vice chair

of the IEEE Shanghai Section (2008-2012) and a member of

IEEE WTC/ComSoc. In addition, he served as a Techni-

cal Program Committee Member and the co-chair for many

international conferences, such as IEEE International Confer-

ence on Communications from 2006 to 2014, and the IEEE

Global Communications Conference from 2007 to 2014. He

serves as an associate editor of four international journals. He

is the leading guest editor of the IEEE Wireless Communi-

cations special issue on mobile converged networks. (Email:

honglin.hu@mail.sari.ac.cn)

Hui Xu received the B.Eng. and M.Eng.

degrees in Communication Engineering

from Shanghai Jiao Tong University,

Shanghai, China, in 2004 and 2008, re-

spectively. Hui Xu is currently a se-

nior engineer with Shanghai Institute of

Microsystem and Information Technology

(SIMIT), Chinese Academy of Sciences,



80 Journal of Communications and Information Networks

serving as the department head of CAS Key Laboratory of

Wireless Sensor Network and Communication, and the depart-

ment head of Shanghai Research Center for Wireless Commu-

nications (WiCO). Prior to that, he has served the Depart-

ment of Global Telecom Solutions Sector at MOTOROLA

(China) co., LTD, as a R&D Senior Engineer; and the De-

partment of Production Quality at Shanghai Datang Tel-

com, China, as a R&D Engineer. His research interests in-

clude wireless communication networks, software defined wire-

less networks, 5G mobile systems, intelligent transport sys-

tems, wireless testbed development and practical experiments.

(Email: hui.xu@wico.sh)

Yang Yang received the B.Eng. and

M.Eng. degrees in radio engineering from

Southeast University, Nanjing, China, in

1996 and 1999, respectively; and the

Ph.D. degree in information engineering

from The Chinese University of Hong

Kong in 2002. Dr. Yang Yang is cur-

rently a professor with Shanghai Institute

of Microsystem and Information Technology (SIMIT), Chinese

Academy of Sciences, serving as the director of CAS Key Lab-

oratory of Wireless Sensor Network and Communication, and

the director of Shanghai Research Center for Wireless Com-

munications (WiCO). He is also an adjunct professor with the

School of Information Science and Technology, ShanghaiTech

University. Prior to that, he has served the Department of

Electronic and Electrical Engineering at University College

London (UCL), United Kingdom, as a senior lecturer; the De-

partment of Electronic and Computer Engineering at Brunel

University, United Kingdom, as a lecturer; and the Depart-

ment of Information Engineering at The Chinese University

of Hong Kong as an assistant professor. His research interests

include wireless ad hoc and sensor networks, software defined

wireless networks, 5G mobile systems, intelligent transport

systems, wireless testbed development and practical experi-

ments. Dr. Yang Yang has co-edited a book on heteroge-

neous cellular networks (2013, Cambridge University Press)

and co-authored more than 100 technical papers. He has been

serving in the organization teams of about 50 international

conferences, e.g. a co-chair of Ad-hoc and Sensor Networking

Symposium at IEEE ICC’15, a co-chair of Communication

and Information System Security Symposium at IEEE Globe-

com’15. (Email: yang.yang@wico.sh)

Ilkka Harjula works as a senior scien-

tist at VTT Technical Research Centre

of Finland. He received his M.Sc. de-

gree in telecommunications from the Uni-

versity of Oulu in 2002 and Licentiate

of Technology in 2008, and is currently

working towards a Ph.D., focusing on en-

ergy and spectrum efficient technologies

for 5G systems. Ilkka has contributed to numerous national

and international R&D projects studying the communication

concepts associated with 5G systems as well as the func-

tionalities of currently dominating commercial technologies,

such as LTE, WiMAX, and WLAN. He has also authored or

co-authored over 20 journal articles, conference papers and

book chapters covering these topics. He has several pend-

ing patent applications related to 5G technologies. (Email:

Ilkka.Harjula@vtt.fi)

Yevgeni Koucheryavy is a full profes-

sor at the Tampere University of Tech-

nology (TUT), Finland. Yevgeni holds

Ph.D. degree (2004) from the TUT. He

has worked in a number of research

and development projects within differ-

ent frameworks, e.g., FP7, H2020, and

companies including Nokia, Ericsson, In-

tel and others. Within last 5 years (2012 C 2016) he man-

aged to attract over 5 mln Euros as a research funding from

the external sources. He is an expert in the Skolkovo Founda-

tion(Russia) and acts as an external reviewer for state funding

agencies of several European countries. He has authored or co-

authored over 200 papers in the field of advanced wired and

wireless networking and communications. He holds one US

patent and 3 pending. His current research interests include

various aspects in heterogeneous wireless communication net-

works and systems 5G and beyond, network and services per-

formance evaluation, the Internet of Things and its standard-

ization, nanocommunications. He is an associate technical ed-

itor of IEEE Communications Magazine, editor of IEEE Com-

munications Surveys and Tutorials and editor of IEEE Com-

munication Society Technology News. He is a senior IEEE

member. Yevgeni is a co-founder and chairman of the Board

of Finnish company YL-verkot Oy offering leading innovative

technological solutions in 5G and Industrial IIoT domains.

(Email: evgeni.kucheryavy@tut.fi)


	Introduction
	Overview of ADI
	The system design of TD-LTE to prevent downlink-to-uplink interference
	The atmospheric ducts phenomena 
	Impact of ADI on TD-LTE networks

	Map-based 100 km-scale ADI analysis method
	Map-based visualization of 100 km-scale interference data.
	Correlation analysis of the interference map

	Analysis of 100 km-scale ADI 
	An SVM-classifier-based spacial prediction method
	Problem formulation
	The prediction result of SVM

	Implement a distributed linear SVM via ADMM
	The forming of ADMM
	The prediction result of ADMM-SVM

	Conclusion

