Skip to main content
Log in

A Review of Wideband Wide-Angle Scanning 2-D Phased Array and Its Applications in Satellite Communication

  • Review paper
  • Published:
Journal of Communications and Information Networks

Abstract

In this review, research progress on the wideband wide-angle scanning two-dimensional phased arrays is summarized. The importance of the wideband and the wide-angle scanning characteristics for satellite communication is discussed. Issues like grating lobe avoidance, active reflection coefficient suppression and gain fluctuation reduction are emphasized in this review. Besides, techniques to address these issues and methods to realize the wideband wide-angle scanning phased array are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Rahmat-Samii, A. C. Densmore. Technology trends and challenges of antennas for satellite communication systems [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1191–1204.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. K. Rao. Advanced antenna technologies for satellite communications payloads [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1205–1217.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. J. Mailloux. Phased array antenna handbook [M]. Boston: Artech House, 2005.

    Google Scholar 

  4. R. Wang, B. Z. Wang, X. Ding, et al. Planar phased array with wideangle scanning performance based on image theory [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 3908–3917.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Li, S. Q. Xiao, B. Z. Wang. Investigation of using high impedance surfaces for wide-angle scanning arrays [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 2895–2901.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Q. Wen, B. Z. Wang, X. Ding. Wide-beam SIW-slot antenna for wide-angle scanning phased array [J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1638–1641.

    Article  Google Scholar 

  7. Y. Y. Bai, S. Xiao, M. C. Tang, et al. Wide-angle scanning phased array with pattern reconfigurable elements [J]. IEEE Transactions on Antennas and Propagation, 2011, 59(11): 4071–4076.

    Article  Google Scholar 

  8. S. Xiao, C. Zheng, M. Li, et al. Varactor-loaded pattern reconfigurable array for wide-angle scanning with low gain fluctuation [J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 2364–2369.

    Article  Google Scholar 

  9. X. Ding, Y. F. Cheng, W. Shao, et al. A wide-angle scanning phased array with microstrip patch mode reconfiguration technique [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4548–4555.

    Article  Google Scholar 

  10. Y. F. Cheng, X. Ding, W. Shao, et al. A novel wide-angle scanning phased array based on dual-mode pattern-reconfigurable elements [J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 396–399.

    Article  Google Scholar 

  11. Y. F. Cheng, X. Ding, W. Shao, et al. Planar wide-angle scanning phased array with pattern-reconfigurable windmill-shaped loop elements [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 932–936.

    Article  Google Scholar 

  12. X. Ding, Y. F. Cheng, W. Shao, et al. A wide-angle scanning planar phased array with pattern reconfigurable magnetic current element [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1434–1439.

    Article  MathSciNet  Google Scholar 

  13. P. J. Gibson. The Vivaldi aerial [C]//9th European Microwave Conference, Brighton, 1979: 101–105.

    Google Scholar 

  14. T. H. Chio, D. H. Schaubert. Parameter study and design of wide-band widescan dual-polarized tapered slot antenna arrays [J]. IEEE Transactions on Antennas and Propagation, 2000, 48(6): 879–886.

    Article  Google Scholar 

  15. Y. Yao, M. Liu, W. Chen, et al. Analysis and design of wideband widescan planar tapered slot antenna array [J]. IET Microwaves, Antennas & Propagation, 2010, 4(10): 1632–1638.

    Article  Google Scholar 

  16. H. Schrank, P. D. Patel. Approximate location of scan-blindness angle in printed phased arrays [J]. IEEE Antennas and Propagation Magazine, 1992, 34(5): 53–54

    Article  Google Scholar 

  17. H. Holter, T. H. Chio, D. H. Schaubert. Elimination of impedance anomalies in single-and dual-polarized endfire tapered slot phased arrays [J]. IEEE Transactions on Antennas and Propagation, 2000, 48(1): 122–124.

    Article  Google Scholar 

  18. D. H. Schaubert. A class of E-plane scan blindnesses in singlepolarized arrays of tapered-slot antennas with a ground plane [J]. IEEE Transactions on Antennas and Propagation, 1996, 44(7): 954–959.

    Article  Google Scholar 

  19. L. Zhang, J. A. Castaneda, N. G. Alexopoulos. Scan blindness free phased array design using PBG materials [J]. IEEE Transactions on Antennas and Propagation, 2004, 52(8): 2000–2007.

    Article  Google Scholar 

  20. G. Donzelli, F. Capolino, S. Boscolo, et al. Elimination of scan blindness in phased array antennas using a grounded-dielectric EBG material [J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6: 106–109.

    Article  Google Scholar 

  21. A. Ellgardt. A scan blindness model for single-polarized tapered-slot arrays in triangular grids [J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 2937–2942.

    Article  Google Scholar 

  22. Z. Xu, C. Zhang, T. Kaufmann, et al. Analysis of scan blindness in a linearly polarized tapered-slot phased array in triangular lattice performance improvement with parasitic notches [J]. IEEE Transactions on Antennas and Propagation, 2014, 62(8): 4057–4066.

    Article  MATH  Google Scholar 

  23. A. Ellgardt, A. Wikstrom. A single polarized triangular grid taperedslot array antenna [J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2599–2607.

    Article  Google Scholar 

  24. R.W. Kindt. Prototype design of a modular ultrawideband wavelengthscaled array of flared notches [J]. IEEE Transactions on Antennas and Propagation, 2012, 60(3): 1320–1328.

    Article  Google Scholar 

  25. H. Holter. Dual-polarized broadband array antenna with BORelements, mechanical design and measurements [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(2): 305–312.

    Article  Google Scholar 

  26. P. Hannan, D. Lerner, G. Knittel. Impedance matching a phased-array antenna over wide scan angles by connecting circuits [J]. IEEE Transactions on Antennas and Propagation, 1965, 13(1): 28–34.

    Article  Google Scholar 

  27. R. L. Xia, S. W. Qu, P. F. Li, et al. An efficient decoupling feeding network for microstrip antenna array [J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 871–874.

    Article  Google Scholar 

  28. B. A. Arand, A. Bazrkar, A. Zahedi. Design of a phased array in triangular grid with an efficient matching network and reduced mutual coupling for wide-angle scanning [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 2983–2991.

    Article  MathSciNet  Google Scholar 

  29. F. Yang, Y. Rahmat-Samii. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications [J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2936–2946.

    Article  Google Scholar 

  30. S. Xiao, M. C. Tang, Y. Y. Bai, et al. Mutual coupling suppression in microstrip array using defected ground structure [J]. IET Microwaves, Antennas & Propagation, 2011, 5(12): 1488–1494.

    Article  Google Scholar 

  31. M. C. Tang, Z. Chen, H. Wang, et al. Mutual coupling reduction using meta-structures for wideband, dual-polarized, and high-density patch arrays [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 3986–3998.

    Article  Google Scholar 

  32. K. L. Wu, C. Wei, X. Mei, et al. Array-antenna decoupling surface [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6728–6738.

    Article  Google Scholar 

  33. H. Wheeler. Simple relations derived from a phased-array antenna made of an infinite current sheet [J]. IEEE Transactions on Antennas and Propagation, 1965, 13(4): 506–514.

    Article  Google Scholar 

  34. B. A. Munk, J. Pryor. Highlights of FSS and array research at the Ohio State University ElectroScience laboratory [C]//IEEE Antennas and Propagation Society International Symposium, Columbus, 2003, 4: 586–589.

    Google Scholar 

  35. E. A. Alwan, K. Sertel, J. L. Volakis. A simple equivalent circuit model for ultrawideband coupled arrays [J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 117–120.

    Article  Google Scholar 

  36. D. Cavallo, A. Neto, G. Gerini. Analytical description and design of printed dipole arrays for wideband wide-scan applications [J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12): 6027–6031.

    Article  Google Scholar 

  37. B. Riviere, H. Jeuland, S. Bolioli. New equivalent circuit model for a broadband optimization of dipole arrays [J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1300–1304.

    Article  Google Scholar 

  38. D. Cavallo, W. H. Syed, A. Neto. Equivalent transmission line models for the analysis of edge effects in finite connected and tightly coupled arrays [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1788–1796.

    Article  MathSciNet  Google Scholar 

  39. I. Tzanidis, K. Sertel, J. L. Volakis. UWB low-profile tightly coupled dipole array with integrated balun and edge terminations [J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3017–3025.

    Article  Google Scholar 

  40. J. A. Kasemodel, C. C. Chen, J. L. Volakis. Wideband planar array with integrated feed and matching network for wide-angle scanning [J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4528–4537.

    Article  Google Scholar 

  41. E. Yetisir, N. Ghalichechian, J. L. Volakis. Ultrawideband array with 70° scanning using FSS superstrate [J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4256–4265.

    Article  MathSciNet  Google Scholar 

  42. H. Zhang, S. Yang, Y. Chen, et al. Wideband dual-polarized linear array of tightly coupled elements [J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 476–480.

    Article  Google Scholar 

  43. I. Tzanidis, K. Sertel, J. L. Volakis. Interwoven spiral array (ISPA) with a 10:1 bandwidth on a ground plane [J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 115–118.

    Article  Google Scholar 

  44. J. G. Maloney, B. N. Baker, R. T. Lee, et al. Wide scan, integrated printed circuit board, fragmented aperture array antennas [C]//IEEE International Symposium on Antennas and Propagation (APSURSI), Washington, 2011: 1965–1968.

    Chapter  Google Scholar 

  45. W. E. I. Liu, Z. N. Chen, X. Qing, et al. Miniaturized wideband metasurface antennas [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7345–7349.

    Article  Google Scholar 

  46. W. E. I. Liu, Z. N. Chen, X. Qing. Compact wideband metasurface-based circularly polarized antenna for Ka-band phased array [C]//IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Verona, 2017: 17–20.

    Chapter  Google Scholar 

  47. L. Gu, Y. W. Zhao, Q. M. Cai, et al. Scanning enhanced low-profile broadband phased array with radiator-sharing approach and defected ground structures [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5846–5854.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqiu Xiao.

Additional information

This work is supported by the National Natural Science Foundation of China (Nos. 61731005, 61331007), the Outstanding Youth Foundation of Sichuan Province (No. 2015JQ0011).

Yan Li was born in May 1992. She received her B.S. degree in electronic information science and technology from the University of Electronic Science and Technology of China, Chengdu, China, in 2013. She is now a Ph.D. candidate of UESTC. Her research interests include phased array and implantable antenna. (Email: liyanhannah@hotmail.com)

Shaoqiu Xiao [corresponding author] was born in Sept. 1975. He received his Ph.D. degree in Electromagnetic field and Microwave Technology from the University of Electronic Science and Technology of China (UESTC), Chengdu, China, in 2003. From January 2004 to June 2004, he joined UESTC as an Assistant Professor. From July 2004 to March 2006, he worked for the Wireless Communications Laboratory, National Institute of Information and Communications Technology of Japan (NICT), Singapore, as a Research Fellow with the focus on the planar antenna and smart antenna design and optimization. From July 2006 to June 2010, he worked for UESTC as an Associate Professor and now he is working for UESTC as a Professor. He visited Ecole Normale Superieure de Cachan, Paris, France, as a Senior Research Scholar in July 2015–August 2015. His current research interests include planar antenna and phased array, computational electromagnetics, microwave passive circuits and time reversal electromagnetics. He has authored/coauthored more than 240 technical journals, conference papers, books and book chapters. (Email: xiaoshaoqiu@ uestc.edu.cn)

Jiajia Guo was born in June 1991. She received her B.S. degree in Electronic Information Science and Technology from the University of Electronic Science and Technology of China (UESTC), Chengdu, China, in 2003. She is now a Ph.D. candidate of UESTC. Her research interests include phased arrays and microwave/millimeter-wave antennas. (Email: guojiajia uestc@163.com)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xiao, S. & Guo, J. A Review of Wideband Wide-Angle Scanning 2-D Phased Array and Its Applications in Satellite Communication. J. Commun. Inf. Netw. 3, 21–30 (2018). https://doi.org/10.1007/s41650-018-0001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41650-018-0001-x

Keywords

Navigation