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Abstract
The use of machine learning (ML) and artificial intelligence (AI) applications in 
medicine has attracted a great deal of attention in the medical literature, but little is 
known about how to use Conformal Predictions (CP) to assess the accuracy of indi-
vidual predictions in clinical applications. We performed a comprehensive search 
in SCOPUS® to find papers reporting the use of CP in clinical applications. We 
identified 14 papers reporting the use of CP for clinical applications, and we briefly 
describe the methods and results reported in these papers. The literature reviewed 
shows that CP methods can be used in clinical applications to provide important 
insight into the accuracy of individual predictions. Unfortunately, the review also 
shows that most of the studies have been performed in isolation, without input from 
practicing clinicians, not providing comparisons among different approaches and not 
considering important socio-technical considerations leading to clinical adoption.

Keywords Artificial intelligence in medicine · Conformal Prediction, Predictive 
analytics · Uncertainty quantification

1 Introduction

The use of machine learning (ML) and artificial intelligence (AI) applications in 
medicine has attracted a great deal of attention in the medical literature. While we 
cannot provide a comprehensive list of commentaries and viewpoints published in 
the most influential medical journals, the following references provide a general 
overview of the field [1–7]. Several issues arise from this body of literature. The 
most pertinent to this review is the lack of methods enabling uncertainty quantifi-
cation (UQ), generalizability, and reproducibility of clinical machine learning. The 
current state of the art for evaluating the performance of clinical predictive models is 
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to provide values that measure overall global performance, like predictive value and 
the area under the curve [5, 8, 9]. However, while these global properties are funda-
mental in assessing the potential clinical impact that such a model may have when 
applied to a large patient population, they do not provide any information about the 
confidence in individual predictions. It is noteworthy that the model prediction for 
different individuals will have very different intervals of confidence because the dis-
tribution of the predictors does not follow normal distributions. Therefore, the qual-
ity of prediction will depend on the topology of the feature space in the proximity 
of the next prediction. Likely, the predictions for individuals in regions of smooth 
variation and well represented in the training feature space will have much larger 
confidence intervals than those for individuals from regions less represented or from 
more roughed landscapes in the training feature space. This is particularly concern-
ing when using predictive analytics for individuals of underserved populations that 
systematically are excluded from the training sets used in parametrizing predictive 
models [10, 11]. Because medical decisions based on ML predictive clinical mod-
els should be made for each individual patient and not for a population, determin-
ing confidence intervals for individual predictions of these models is critical if these 
models will be adopted in clinical settings. A promising approach to provide uncer-
tainty for each individual prediction is Conformal Prediction (CP) [12, 13]. In this 
paper, we provide a succinct discussion of CP methods followed by a discussion of 
published CP applications to clinical medical sciences.

2  Conformal Prediction

Conformal Prediction (CP) [12, 13] has been proposed as one avenue to address the 
issue of providing levels of reliability for individual predictions. As argued in ref. 
[14], CP is also appealing because it can be explained in an intuitive manner. The 
reasoning is that for a given new test instance (xn), the predicted class label (yn) will 
be a reliable prediction when (xn) is similar to the training instances, while it will be 
less reliable when the reverse is true. This is a concept that both non-computer sci-
entists and statistic experts can grasp.

To apply Conformal Prediction to a predictive or machine learning model, a cali-
bration or training set and a non-conformity measure to quantify how “strange” a 
label y is for a given instance x are necessary [21]. In this section, we give a brief 
description of CP (with more details available in refs. [19, 20]).

Given a training set (x1, y1), …, (xn − 1, yn − 1), where each xi ∈ X is a vector of 
attributes for example i and yi ∈ Y is the classification or label of that example, and 
a new unclassified example xn, the task of CP is to state something about the confi-
dence in each possible classification. CP assigns each one of the possible labels to 
the new example xn one by one and measures how likely it is for the set of examples 
(xn, y) to have been generated independently from the same probability distribution. 
The ideal case occurs when the predicted label conforms with the rest of the levels 
in the sequence, indicating that we can be confident in the prediction [20].

In classification algorithms, standard non-conformity measures are often 
like uncertainty measures such as the least confidence score (1—the predicted 
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probability). For example, a non-conformity measure for a classification task could 
be the ratio of distance to the nearest neighbors with the same label by the distance 
to the nearest neighbor with different labels. Reporting prediction sets at a certain 
significance level (or several) is one way of presenting the prediction produced by 
the conformal predictor. Another way is to report the point prediction, the credibil-
ity, and the confidence. A high confidence (close to 1) means that there is no likely 
alternative to the point prediction and a low (close to 0) credibility means that the 
point prediction is unlikely [20]. In regression, the efficiency of a conformal predic-
tor is determined by the size of the predicted confidence regions. The prediction set 
is often an interval of values, and a natural measure of efficiency of such prediction 
is simply the length of the interval, with the smaller the length of the interval is 
the better it is for performance [20].

Conformal Prediction can be used in combination with any machine learning 
algorithm, and no additional parameterization is required except for the selection 
of the non-conformity measure. Another main advantage of conformal predictors is 
their validity. CPs are valid if the assumption of exchangeability is fulfilled and if 
the randomness assumption is fulfilled [26].

Conformal Prediction (CP) in computer science literature contains many articles 
where CP has been applied to various fields such as forensics, biometrics, and facial 
recognition, or where approaches towards CP aim to reduce computational complex-
ity or improve confidence values [15]. Variations of CP are described in multiple 
papers [16, 17]. However, the overall implementation of CP tends to be relatively 
similar. First, a non-conformity measure is chosen, the machine learning model is 
then trained, the trained model is applied to the test set or sequence, and the non-
conformity is evaluated. Reliable predictions can then be identified to give the sig-
nificance and confidence levels and evaluate the validity and efficiency of the gener-
ated conformal predictor. In Fig. 1 we provide a pseudocode of the typical manner 
that CP methods are implemented.

First, the non-conformity measure, A, is defined and calculated. It is usually based 
on a traditional machine learning algorithm, which can be referred to as the underly-
ing algorithm of the CP, to measure how strange or “non-conforming” each example 
is for the rest of the examples in the same set [22]. This measure assigns a numerical 

Fig.  1.  Archetypical pseudocode for CP implementation
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score αi to each example (xi, yi) indicating how different it is from all other examples, 
as shown in step 2 of the CP algorithm in Fig. 1. Training the underlying algorithm 
as the training set generates a prediction rule

After we consider a hypothesis yn = y and calculate the corresponding non-con-
formity scores α1, …, αn, we can compare αnwith the other αis by calculating:

This ratio is called the p value associated with Y, which lies between l/n and 1, 
where #{ } indicates the cardinality of the set. Here, we look at the fraction of the 
examples least different from others and form a prediction region consisting of y not 
among the most out of place when added to the bag of old examples [22]. For this 
calculation, if the p value of a given label is under a low threshold (0.10), this indicates 
the label is highly unlikely as the sets will only be generated at the most 10% of the 
time. Labels with a p value under a very low significance level can be excluded [22].

CP methods that were found in the literature are reviewed here (see the “Litera-
ture Search” section and Table  1) and reported as used in medical clinical appli-
cations included Inductive Conformal Predictors (ICP), Mondrian Conformal Pre-
dictors (MCP), Label-Conditional Mondrian Conformal Predictors (LCMCP), 
Dynamic Conformal Predictors (DCP), Inductive Confidence Machine (ICM), and 
Generalized Learning Vector Quantizer (GLVQ). A brief description of these meth-
ods is given in the following subsections. For further reading and details on these 
individual methods, the reader can refer to the work of Vovk et al. [19] or the indi-
vidual papers where these methods were mentioned (Table 1).

�i ∶= A
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)
,… ,
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(
xi+1, yi+1
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Table 1.  Methods used in Conformal Prediction Studies for medical applications

a KNN K-nearest neighbor, SVM support vector machine, DT decision tree, ANN artificial neural net-
works, GA genetic algorithms, SNG supervised neural gas
b NC score calculated by comparing the distance of the new prediction point to all records in the training 
set that have the same label to its distance to the rest of the training set
c GLVQ Generalized Learning Vector Quantizer

First author Classification method(s) a Conformal Prediction method(s)

Pereira [14, 20] KNN, Naïve Bayes, and 
ensemble classifiers

Mondrian predictors and CP with scaling

Papadopoulos [21–23] ANN Mondrian predictors, LCMCP
Alnemer [24] SVM, DT, KNN, ANN Non-conformity  scoreb

Devetyarov [25] Linear rules Mondrian predictors
Lambrou [26–28] Rule-based, GA, SVM Based on the evolved decision rule after prediction
Luo [29] SVM Dynamic Conformal Prediction
Schleif [30] SNG GLVQ c

Balasubramanian [31] SVM Computed with respect to both class levels
Bellotti [32] SVM Inductive Confidence Machine
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2.1  Inductive Conformal Prediction (ICP)

The original CP technique requires training the underlying algorithm for each possible 
classification of every new test example, often making it computationally complex and 
inefficient. Inductive Conformal Predictors (ICPs) was created to address this issue by 
training the underlying algorithm only once, making it more computationally efficient 
than previous CP methods for algorithms with long training times. ICPs split the train-
ing set into two smaller sets, often referred to as the proper training set and a calibra-
tion set. The proper training set is used to train the underlying algorithm to generate a 
prediction rule, and the calibration set is used to calculate the p value of each possible 
classification [22].

2.2  Mondrian Conformal Prediction (MCP)

In Mondrian Conformal Prediction (MCP), each label or class is treated separately and 
the confidence in the assignment of a given instance to the classes considered is evalu-
ated independently. Using the predictions for the calibration set, each class generates a 
list of non-conformity scores. For example, in medical diagnosis, certain patients may 
be easier to correctly classify than others which would result in an overall error rate 
higher in certain groups of patients that may be harder to classify or an error rate lower 
in patients easier to classify [26]. MCP guarantees the error rate within these groups by 
splitting training sets into categories and setting a significance for each category, with 
the categories either based on features or a combination of features. MCP also com-
pares the non-conformity score only among those within the same category and not 
across all training sets, making it a good choice for imbalanced data sets [26]. Label-
Conditional Mondrian Conformal Prediction (LCMCP) is a special case of MCP in 
which the category of each example is determined by its label or classification [24].

2.3  Inductive Confidence Machine (ICM)

The Confidence Machine is a relatively new classification and prediction frame-
work that originates from work on the algorithmic randomness theory and is 
based on a given underlying induction rule [22]. Computational efficiency is 
almost as good as the underlying algorithm for ICMs, and although there is some 
loss in the quality of confidence, the loss is often not too serious. The outputs of 
the ICM also have a clearer probabilistic interpretation [18].

2.4  Generalized Learning Vector Quantizer (GLVQ)

Generalized Learning Vector Quantizer (GLVQ) and variants are success-
ful prototype-based learning algorithms [31]. A common property among these 
variants is the existence of distances used in the cost function to optimize the 
prototype positions. To transform GLVQ into a conformal predictor, a non-
conformity measure is determined. For prototype-based networks, a measure of 
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non-conformity for a given sample is the sample margin as the distance of the 
data point to the closest prototype with the same class normalized by the distance 
of this item to the closest prototype with an alternative class [31].

2.5  Dynamic Conformal Prediction (DCP)

Dynamic Conformal Prediction (DCP) was designed in ref. [30]. CP’s time com-
plexity and lack of adaptation make it unsuitable for many real applications. To 
overcome these shortcomings, DCP was proposed. It provides multiple advan-
tages over CP, such as dealing with multi-testing samples and a new form of 
confidence based on the idea of conformity score. It was designed to provide 
higher accuracy and a lower computational complexity. In DCP, the set of train-
ing samples is iteratively updated after a pre-specified time. The system continu-
ously brings in new training samples and deserts older training samples, essen-
tial for time-varying systems where the system or data may change over time. 
After processing using the base classifier, the prediction gives the label and the 
confidences in prediction of the testing samples. However, DCP and CP differ in 
terms of confidence prediction. DCP only utilizes credibility, not confidence, and 
instead a new confidence measure is designed and used in DCP. The new form of 
confidence proposed for DCP is not influenced by the distribution of data points, 
making it useful for imbalanced data sets [30].

Variations of Conformal Prediction are described in multiple papers [16, 17]. 
These papers show the confidence values obtained by CPs, their usefulness in 
practice for various applications, and how their algorithm can often perform bet-
ter than standard CP algorithms. Two books also show milestones in the related 
CP literature. One is Algorithmic Learning in a Random World, written by Vovk 
et  al. [18], which explains the theoretical fundamentals of CP. A more recent 
book, Conformal Prediction for reliable machine learning by Balasubramanian 
et al. [19], shows the practical applications and adaptations of CP to real-world 
problems.

3  Literature Search

We have searched for Conformal Prediction articles with medical science applica-
tions on April 2021 using the below query in SCOPUS (see Fig. 2).

The SCOPUS search was followed by manual selection by the authors on the 
basis of the titles, abstracts, and full text. The authors rejected papers using CP 
in medical applications such as toxicology and drug discovery, animal models, 

Fig. 2.  SCOPUS Query used in 
this review
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image analysis, and “neuro computing.” These were eliminated because these 
topics are not the focus of this review, which looks into CP applications to prob-
lems with clinical relevance with an emphasis on predictive modeling. A paper 
using image features for forecasting was retained because the focus was predictive 
analytics and not image analysis. Similar searches performed in Google Scholar, 
PubMed, and IEEE Xplore did not provide any further work reporting the use of 
CP in medical applications.

4  Conformal Prediction in Clinical Medical Sciences

The selection process described above gave a total of 14 papers reporting the use 
of CP in medical sciences with clinical relevance and germane to the topic of this 
review. These papers are listed in Table 1.

Pereira [14] and coworkers have used Conformal Prediction (CP) methods to 
predict confidence intervals of the probability that patients with mild cognitive 
impairment progress to dementia. In this work, the authors used two underly-
ing classifiers, K-nearest neighbors (KNN) and Naïve Bayes, and Mondrian CP 
to evaluate the confidence of the predictions at different levels of significance. 
The methods were tested with two large available cohorts from prospective stud-
ies, the ADNI project (http:// adni. loni. usc. edu/) [33] and the Cognitive Com-
plains Cohort (CCC) [34]. The results show that the conformal predictors’ output 
regions contain the correct class within a precise level of confidence, but notice 
that better efficiency in the Mondrian steps is needed for clinical applications. 
The authors argue that the CP methods can help clinicians in making better use of 
AI methods in their practices. In a subsequent paper, the authors [20] compare CP 
predictors with Venn-ABERS predictors [35]. The authors use an ensemble clas-
sifier approach and compare the CP and Venn-ABERS confidence predictors with 
other direct probability estimates and other calibration methods given by standard 
classification methods. Using the same data sets that they used in ref. [14], the 
authors compare different combinations of classifiers and methods to predict the 
confidence of the prediction, concluding that different combinations and ensem-
bles should be implemented depending on the intended use.

Papadopoulos [21, 22] and coworkers used CP to provide a measure of the 
accuracy of predictions of severe abdominal pain. The authors used a data set 
of 6,387 patients admitted to a hospital, for which 33 symptoms were recorded 
and coded into 135 binary attributes. These data were used to predict one of nine 
conditions that are associated with severe abdominal pain using a 2-layer fully 
connected feed-forward neural network (NN). The NN results were also com-
pared with those from other classifiers demonstrating the NN performed better 
than other methods. The CP results using a Mondrian predictor show that at any 
confidence level, a matrix can be constructed to inform the probability of non-
conformal predictions for each pair of conditions considered. The authors did not 
report any further studies evaluating the usefulness of the matrix in actual clinical 
environments. 

247Journal of Healthcare Informatics Research (2022) 6:241–252

http://adni.loni.usc.edu/


1 3

Papadopoulos [23] also presented the use of CP to provide unbiased confidence 
measurements for stroke risk estimation based on ultrasound carotid images. In this 
work, the data from the ACSRS study [36] was used. The data set included 1,121 
patients, for which 130 ipsilateral events were recorded. In addition to clinical and 
demographic variables, the study uses ten features extracted from the images. Using 
label-conditional Mondrian Conformal Prediction and artificial neural networks 
(ANNs), the authors compare several classification and CP approaches, concluding 
that the proposed LCMCP (Label-Conditional Mondrian Conformal Predictors) is 
superior to other approaches  (Fig. 3).

Alnemer [24] reported the use of CP to assess the reliability of predictions of 
breast cancer survivability. The authors used the SEER cancer database [37] on 
which they applied several classification algorithms, including support vector 
machine (SVM), decision trees, K-nearest neighbors (KNN), and artificial neural 
networks (ANN), before evaluating the confidence of the prediction using CP to 
determine the non-conformity score and the confidence intervals, which were used 
to eliminate the non-reliable predictions. Using this approach, they consistently 
show that the CP corrected prediction always improved accuracy, sensitivity, speci-
ficity, and precision regardless of the classifier used.

Devetyarov [25] used conformal predictors to provide accuracy measurements 
of early diagnosis of ovarian and breast cancers using mass spectrometry data 
from the UKCTOCS biobank. The work uses a linear rule classifier with Mon-
drian predictors for CP. The results can provide information about the confidence 
and credibility of the predictions, as depicted in Table 1 of ref. [25], which clearly 
could be used as a base for the presentation of the results to practitioners.

In reference [26], the authors discuss how to incorporate a CP approach based 
on genetic algorithms (GA) and how to apply the method to predictions of breast 
cancer diagnosis using data from the Wisconsin breast cancer diagnosis (WBCD). 
They show that this approach to calculate CP is efficient and can provide similar 
results to other CP methods. In a subsequent paper, Lambrou and collaborators 
[27] used CP based on artificial neural networks (ANN), support vector machine 

Fig. 3.  Example of the matrix that can be constructed to inform the probability of non-conformal predic-
tions for each pair of conditions considered. From ref. [21]
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(SVM), Naïve Bayes classifier (NBC), and K-nearest neighbor (KNN) classifiers 
to assess the reliability of predicting the risk of stroke based on morphological 
ultrasound images. The results show that the methods are useful to differenti-
ate between symptomatic and asymptomatic plaques to assess the risk of stroke. 
Finally, the same authors [28] published a succinct review of using reliable con-
fidence measurements for medical diagnosis with evolutionary algorithms, which 
recounts and expands the work described in their previous publications [26, 27].

Luo [29] introduced the concept of Dynamic CP (DCP) as part of a computer-
aid decision support system for clinical decision-making using support vector 
machines (SVM) as the base classifier. The authors used their method on five 
non-clinical data sets and one clinical data set. The clinical data set is the MIT-
BIT data set to detect arrhythmias [38]. The authors argue that their new DCP 
method provides multiple advantages over traditional CP in terms of computer 
performance and precision.

Schleif [30] used CP to obtain the reliability measurements of clinical measure-
ments using mass spectroscopy when used for cancer informatics. The authors used 
a wavelet-based technique to encode the mass spectrometry signals from the clinical 
samples, using the results of the wavelet analysis as features for the classifiers. Clini-
cal proteomic data for colorectal and lung cancer studies were used for this work. 
The features extracted by the wavelet process were classified using the supervised 
neural gas method, which combines the neural gas algorithm with the Generalized 
Learning Vector Quantizer [39]. An example of the results presented by the authors 
is given in Fig. 4, which demonstrates an interesting pictorial representation of the 
results that could be used to explain the results of the CP analysis to non-experts. 
The authors explain that using this figure, we can trust a prediction if the confidence 
is close to 100% and the credibility is not low (e.g., not less than 5%). Taking this 

Fig. 4.  Visual representation of the Conformal Prediction results of the classification of mass spectros-
copy traces used for cancer informatics in reference [30]
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advice into account, the results shown in the figure show that only items 4, 5, 9, 10, 
and 15 should be considered trusty results with high confidence and moderate or 
high credibility, and indeed, the labels for these items are correctly predicted.

Balasubramanian [31] applied CP to study the advantages that drug-eluting stents 
(DES) have over other percutaneous coronary intervention procedures, using a sup-
port vector machine (SVM) for the classification. The paper used a data set from 
Advanced Cardiac Specialists for patients in Arizona containing 2,312 patients who 
had a DES procedure during the period 2003–2007. The results of the analysis show 
that even at the 99% level of confidence, the number of empty predictions is very 
low, and argue that this approach can be very valuable in many predictive models in 
cardiology.

Finally, Bellotti [32] reported using CP to assess the reliability of the classifica-
tion of childhood acute leukemia from gene expression data. In this work, a support 
vector machine (SVM) was used as the base classifier, and the authors show that the 
confidence machine proposed in the paper can be used to provide reliable predic-
tions controlling the risk of error while maintaining the level of accuracy from the 
SVM.

5  Conclusions

The literature reviewed here clearly shows that CP methods can be used in clini-
cal applications and that they can provide important insight into the quality of indi-
vidual predictions. The following CP methods have been used in clinical biomedi-
cal research: Inductive Conformal Predictors (ICP), Mondrian Conformal Predictors 
(MCP), Label-Conditional Mondrian Conformal Predictors (LCMCP), Dynamic 
Conformal Predictors (DCP), Inductive Confidence Machine (ICM), and General-
ized Learning Vector Quantizer (GLVQ). This shows that there is interest in explor-
ing the use of different CP approaches in biomedical sciences but that they have 
been used in a very diverse set of data sets, leaving unanswered the critical question 
of which are the best overall methods to be used across multiple clinical predictive 
tools and data sets. Studies using well-defined and commonly used analytic proto-
cols in well-characterized data sets are needed to promote the use of CP in clinical 
settings.

Unfortunately, the review also shows that most of the studies have been per-
formed in isolation and with little or no input from practicing clinicians, who should 
provide very important insights on how the results of CP assessments could be used 
in clinical practice.
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