
Extracting reaction systems from function behavior
Genova, D.; Hoogeboom, H.J.; Prodanoff, Z.

Citation
Genova, D., Hoogeboom, H. J., & Prodanoff, Z. (2020). Extracting reaction systems from
function behavior. Journal Of Membrane Computing, 2(3), 194-206.
doi:10.1007/s41965-020-00045-z

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3589966

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3589966

Vol:.(1234567890)

Journal of Membrane Computing (2020) 2:194–206
https://doi.org/10.1007/s41965-020-00045-z

1 3

REGULAR PAPER

Extracting reaction systems from function behavior

Daniela Genova1 · Hendrik Jan Hoogeboom2 · Zornitza Prodanoff3

Received: 27 June 2020 / Accepted: 13 August 2020 / Published online: 1 September 2020
© Springer Nature Singapore Pte Ltd. 2020

Abstract
Reaction systems, introduced by Ehrenfeucht and Rozenberg, are a theoretical model of computation based on the two main
features of biochemical reactions: facilitation and inhibition, which are captured by the individual reactions of the system.
All reactions, acting together, determine the global behavior or the result function, res, of the system. In this paper, we study
decomposing of a given result function to find a functionally equivalent set of reactions. We propose several approaches, based
on identifying reaction systems with Boolean functions, Boolean formulas, and logic circuits. We show how to minimize
the number of reactions and their resources for each single output individually, as a group, and when only a subset of the
states are considered. These approaches work both when the reactions of the given res function are known and not known.
We characterize the minimal number of reactions through the minimal number of logical terms of the Boolean formula
representation of the reaction system. Finally, we make applications recommendations for our findings.

Keywords Reaction systems · Boolean functions · Minimization · Boolean formulas · DNF · Prime implicants · Logic
synthesis · Logic circuits

1 Introduction

Reaction systems were introduced by Ehrenfeucht and
Rozenberg in [6], as a theoretical model of computation
capturing the two main features of biochemical reactions:
facilitation and inhibition. Each reaction system is defined
over a finite set of background entities and contains reac-
tions, that are triples of entities: reactants, inhibitors, and
products. Reactions act together on each subset (state) of
entities, such that, if all of the reactants and none of the
inhibitors are present, the reaction is enabled in that state
and its products are produced. The products of all reactions
enabled in a state form the next state and, in that way, define
the result function res . The aggregate behavior of the sys-
tem, can then be represented by a one-out (exactly one edge

goes out of each state (vertex)) graph, called the 0-context
graph of the system, [9]. Two reaction systems that exhibit
the same aggregate behavior (produce the same 0-context
graph) are called functionally equivalent, since their result
functions act the same way on every single state. Determin-
ing whether two reaction systems are functionally equivalent
was proved in [6] to be Co-NP-complete. An extensive list
of complexity results for reaction systems is obtained in [1].
Other equivalences of reaction system studied in the litera-
ture include enabling equivalence [7], process equivalence,
enabling process equivalence, and more [12].

One of the new approaches to reaction systems we intro-
duce here is that of decomposing the aggregate result func-
tion into separate reactions, as a kind of parallelization. This
includes not only minimization, but also adds to it: starting
with a flat state graph (which does not show which set of
reactions led to it), we decompose it into more or less inde-
pendent reactions. One of the novel approaches to minimiza-
tion here is that we do not only minimize reaction systems
that are known, but we also minimize reaction systems that
are not known, i.e. the individual reactions defining the
global result function are not known. To our knowledge,
the topic of recovering of unknown reaction systems with
known res function, is new.

 * Daniela Genova
 d.genova@unf.edu

 Zornitza Prodanoff
 zprodano@unf.edu

1 Department of Mathematics and Statistics, University
of North Florida, 32224 Jacksonville, FL, USA

2 LIACS, Leiden University, Leiden, The Netherlands
3 School of Computing, University of North Florida,

Jacksonville, FL 32224, USA

http://orcid.org/0000-0002-0029-5238
http://orcid.org/0000-0002-6673-0124
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-020-00045-z&domain=pdf

195Extracting reaction systems from function behavior

1 3

Whether we start from a reaction system that is specified
by its set of reactions or directly by a given result function,
which may be given in the form of its 0-context graph, we
seek to minimize the number of reactions adhering to certain
properties. In the various minimization techniques that we
propose, we always obtain a functionally equivalent reaction
system to the (explicitly or implicitly) given one.

Minimization in terms of resources in reactions, more spe-
cifically minimal and almost minimal reactions, are discussed
in [8, 17]. Minimizing reaction systems, in terms of obtain-
ing functionally equivalent reaction systems with a minimal
number of reactions, when the set of reactions are partitioned
according to their product sets, were studied in [5].

We propose three types of minimizations that adhere to
different types of requirements: (1) minimizing reactions
(and their combined resources) for the purpose of produc-
ing a specific entity with minimum cost; (2) minimizing the
number of reactions for the entire system when all outputs
are considered; and (3) minimizing the number of reactions
when only some states are considered. These can then be
applied in various hybrid modes.

Two components of our approach are crucial for this
paper: identifying reaction systems with Boolean functions
and Boolean formulas and adapting minimization techniques
for Boolean formulas to reaction systems. The first connec-
tion was made by Ehrenfeucht and Rozeneberg in [6] and
later used in [5]. In [2], the logical formulas are used as
formula based predictors for the occurrence of certain enti-
ties in a set number of steps. The second, spans well-known
minimization tools from logic circuits minimization and
logic synthesis: Karnaugh maps [11], the Quine-McCluskey
algorithm [13] and Espresso algorithm [15, 16], which were
also used for the minimization shown in [5].

This paper is organized as follows. Section 2 presents the
basic notions of reaction systems. It explains how, given a
set of reactions, one can generate its result function (conven-
iently represented by the 0-context graph) and, conversely,
how given the result function, one can construct a set of
maximally inhibited reactions that generates it. We show
how every function on the power set of a finite set can be
translated to a reaction system.

In Section 3, we discuss ways to identify reaction systems
with Boolean functions and Boolean formulas. A crucial
observation is made in Theorem 10, which basically states
that common terms in DNF formulas correspond to reac-
tions, i.e. to their resources, while the output is determined
by the formulas involved. Thus, the minimization of DNF
formulas can directly be applied to minimization of reaction
systems.

Section 4 focuses on extracting a minimal set of reactions
from a given result function. These methods can also be
used to recover reactions from a reaction system that is not
known, using only its result function. A popular example is

used throughout to illustrate the different methods of mini-
mization, e.g. Karnaugh maps and Espresso algorithm, as
well as, the different types of minimization: as independent
outputs, together as a group, and with don’t care states.

Section 5 presents a pseudocode of the Espresso algo-
rithm for the cases where a group minimization is the goal
and also when do not care states may be present. It explains
the main features of the algorithms and also points to rel-
evant references where more about these algorithms may
be found.

Finally, Section 6 discusses applications and future work.

2 Reaction systems and the result function

Reaction systems were introduced in [6] and we recall and
follow the definitions from this reference. The power set of
a set S is denoted by P(S).

Definition 1 A reaction system is a pair A = (S,A) , where
S is a finite nonempty set, the background set of A , and
A ⊆ P(S) × P(S) × P(S) is a set of reactions in S.

A reaction is a triple a = (Ra, Ia,Pa) of finite subsets of
S, called the reactant set of a, the inhibitor set of a, and the
product set of a respectively.

We say that a is enabled in X ⊆ S if and only if Ra ⊆ X
and Ia ∩ X = ∅ . Thus, a reaction a is enabled in a set X, if
X separates Ra from Ia . If a is enabled in X, we define the
result of a on X, as res a(X) = Pa . Otherwise, a is not enabled
in X, and then we set resa(X) = ∅ . For a set of reactions A,
define resA(X) =

⋃
a∈A resa(X) to be the result of the set of

reactions A on X. Clearly, the result of a set A on a subset X
of S is the union of the product sets of the reactions that are
enabled in X. For a given reaction system A = (S,A) , we set
resA(X) = resA(X).

We recall a popular example, Example 7, from the over-
view paper A Tour of Reaction Systems [4].

Example 2 Let A = (S,A) be the reaction system with back-
ground set S = {1, 2, 3, 4} and set of reactions A, consisting
of the six reactions below.

Consider, for example, the following subsets of S, X1 = {2, 3} ,
X2 = {1, 3, 4} , and X3 = {1, 2} . In subset X1 = {2, 3} , only
a2 is enabled, so the result of A on X1 equals Pa2

 , i.e.,
resA(X1) = resA({2, 3}) = res a2

({2, 3}) = Pa2
= {1} . In

X2 = {1, 3, 4} , no reactions are enabled, since X2 contains
an inhibitor from every reaction. Thus, resA({1, 3, 4}) = ∅ .

a1 = ({1}, {3}, {2}) a2 = ({2}, {1}, {1})

a3 = ({2}, {3}, {3}) a4 = ({3}, {1, 2}, {1, 2, 4})

a5 = ({4}, {3}, {1, 2}) a6 = ({1, 3}, {2, 4}, {2, 3})

196 D. Genova et al.

1 3

In X3 = {1, 2} , reactions a1 and a3 are enabled, and so,
resA(X3) = res {a1,a3}

({1, 2}) = res
a1
({1, 2}) ∪ res

a3
({1, 2})

= P
a1
∪ P

a3
= {2, 3}. ⌟

Reaction systems are studied as computational devices.
The state of the system is the set X of entities from S cur-
rently present. In a computational step of the system, the next
state consists of all entities that are produced by the reac-
tions of the system from the entities currently present, plus
any entities that might arrive from independent parts else-
where, called the context. Thus, a computational step of the
system can be decomposed into two parts: collect the context
and compute the new state: X ↦ X ∪ C ↦ resA(X ∪ C) , for
some X,C ∈ P(S).

In this paper, we focus on the result function, resA , the
second part of the computational step. It describes the
aggregate change induced by all of the reactions in a state,
as opposed to the partial contributions, res a , made by the
individual reactions a. Given a reaction system A over S, its
result function resA is a mapping from P(S) to P(S) . It can
be represented as a directed graph, the vertices of which are
the states of the system. The target of an outgoing directed
edge at each state, represents the result of the system at that
state. Hence, this is a one-out graph, i.e. there is exactly one
outgoing edge from each vertex. We assume that, at every
state (vertex) no further context will be added. The following
notion is from [9].

Definition 3 The 0-context graph of a reaction sys-
tem A is the graph G0

A
= (P(S),E) with edge set

E = { (X, resA(X)) |X ∈ P(S) }.

Observe that, (X, Y) ∈ E(G0

A
) if and only if Y = resA(X).

Example 4 Consider the reaction system from Example 2.
The 0-context graph for it, G0

A
 , is presented in Figure 1.

The edges of the graph represent the result function resA .
Thus, (X1, resA(X1)) = ({2, 3}, {1}) is an edge on the graph
from {2, 3} to {1} . Also, (X2, resA(X2)) = ({1, 3, 4},∅) and
(X3, resA(X3)) = ({1, 2}, {2, 3}) are edges in the graph. ⌟

Based on the result function resA , different types of
equivalences of reaction systems were defined and studied,
such as enabling equivalence, process equivalence, etc. [7,

12]. The first and most fundamental one is the functional
equivalence defined in [6]. Two reactions a and b are func-
tionally equivalent, if res a(X) = res b(X) , for every X ⊆ S . It
was proved in [6], that this equivalence coincides with equal-
ity for individual reactions. When extended to sets, however,
the notion of functional equivalence is not trivial, in general.

Definition 5 Let A, B be sets of reactions over background
set S. Then A and B are functionally equivalent, denoted
A ∼ B , if resA(X) = resB(X) , for every X ⊆ S.

Extending this further to reaction systems, we say that
two reaction systems A = (S,A) and B = (S,B) are function-
ally equivalent, denoted A ∼ B , if their sets of reactions are
functionally equivalent, i.e. if A ∼ B . Whereas checking the
equivalence of single reactions is a simple syntactic check,
the equivalence of sets of reactions is computationally hard,
see Corollary 12 below.

The following proposition states that every function on
the subsets of a finite set, can be translated into a reaction
system, thus, showing how powerful these systems are. The
construction of a reaction system uses maximally inhibited
reactions defined in [18], i.e., reactions where the reactant
set and inhibitor set are complementary, a trick also used in
Section 5 in [6].

Proposition 6 Let S be a finite set. For every function
f ∶ P(S) → P(S) , there exists a reaction system A = (S,A) ,
such that f = resA.

Proof Let S be a finite set and f ∶ P(S) → P(S) . Consider
an ordered pair (X, Y) ∈ f , i.e., X, Y ⊆ S and Y = f (X) . Con-
struct the maximally inhibited reaction aX = (X, S ⧵ X, Y) ,
let A = {aZ ∣ Z ⊆ S} , and set A = (S,A) . Since aX is the
only reaction enabled in X, resA(X) = res aX

(X) = Y . Thus,
every pair (X, Y) ∈ f is represented by resA(X) = Y and vice
versa. ◻

From the above proposition, it becomes clear that we can
identify any function on the power set of a given finite set
with the result function of a reaction system. Equivalently,
since such functions can also be identified with one-out
graphs, every one-out graph with vertices that are the subsets

Fig. 1 The 0-context graph G0

A

from Example 4

∅

{1}

{2} {3}

{4}

{1, 2} {1, 3}

{1, 4} {2, 3} {2, 4}

{3, 4}{1, 2, 3}

{1, 2, 4}

{1, 3, 4}{2, 3, 4}

{1, 2, 3, 4}

197Extracting reaction systems from function behavior

1 3

of a finite set can be identified with a reaction system whose
0-context graph equals the given graph.

In the next section, we discuss how these structures can
be specified with Boolean functions.

3 Boolean functions and reaction systems

In this section, we take reaction systems to the digital
domain, translating sets into bit-vectors. This has two moti-
vations. First, as it was already illustrated in [6], bit-vectors
(bit-strings) can be used to obtain complexity results for
various computational or decision problems concerning
reaction systems. Second, we will use bit-vectors to apply
various tools to minimize the number of reactions in a reac-
tion system, or construct reactions for a given res function
behavior.

Boolean functions and logical formulas. In general, a
Boolean function H ∶ {0, 1}n → {0, 1} can be specified
with a Boolean formula. We will use n Boolean variables,
v1, v2,… , vn , whose truth value assignments will be rep-
resented by the strings in {0, 1}n . (We do not distinguish
between the boolean vector (b1,… , bn) and the n-bit string
b1 … bn ∈ {0, 1}n and we use both terms interchangeably.)
A literal, � , is a variable v or its negation v̄ (or v′). A term
is a product, i.e., a conjunction (∧ or ⋅), of literals. A term
is a minterm, if each of the variables is used exactly once.
That is, every minterm is of the form �1 ∧… ∧ �n (or simply
�1 …�n), where �i = vi or �i = v̄i , for 1 ≤ i ≤ n . A Boolean
formula � is in disjunctive normal form (DNF), if it is a sum
of products, i.e., a disjunction (∨ or +) of terms.

Given the Boolean function H ∶ {0, 1}n → {0, 1} , con-
struct a Boolean formula in DNF �H (or simply � , when
H is understood) as follows. For each Boolean vector
x = b1 … bn ∈ {0, 1}n , such that H(x) = 1 , construct the
minterm �(x) = �1 …�n , such that for each i, 1 ≤ i ≤ n , the
literal �i = vi if and only if bi = 1 and �i = v̄i , otherwise.
Then, take � to be a disjunction of all these �(x) . Then,
H(x) = 1 if and only if �(x) = 1 . Note that if H has k input
strings x that map into 1, then � will have k minterms �(x) ,
each representing one such string.

In the context of reaction systems, we need multi-val-
ued Boolean functions F ∶ {0, 1}n → {0, 1}n to repre-
sent functions f ∶ P(S) → P(S) . To handle a multi-val-
ued function, one usually considers the partial functions
Fi ∶ {0, 1}n → {0, 1} , which are the projections onto the
ith coordinate of the output, defined as Fi(b1 … bn) = ci , if
F(b1 … bn) = (c1 … cn) . Then, we represent each single-
valued Fi by a Boolean formula �i , as described above, such
that Fi(x) = 1 if and only if �i(x) = 1.

Given F ∶ {0, 1}n → {0, 1}n , define its logical repre-
sentation �F (or simply � , if F is understood), to be the

collection �i , for 1 ≤ i ≤ n , where �i is in DNF, and repre-
sents the partial function Fi of F.

Sets as bit-vectors. Let S = {u1,… , un} be an ordered
set. The characteristic function, � , maps every subset
X ⊆ S onto a Boolean vector x, i.e. �(X) = x = (b1,… , bn)
such that bi = 1 if and only if ui ∈ X and bi = 0 , otherwise.
This establishes a bijection between P(S) and {0, 1}n and,
by extension, between functions f from P(S) → P(S) and
functions F from {0, 1}n → {0, 1}n , where f̄ is the charac-
teristic version of f, defined by f̄ = 𝜒◦f◦𝜒−1 . In particular,
resA is the characteristic version of the result function resA ,
with resA(X) = Y if and only if resA(�(X)) = �(Y) . Thus,
res A ∶ {0, 1}n → {0, 1}n is defined by resA = �◦ res A◦�

−1.
Relating terms and reactions. Here, we study the relation

between the size (number of terms) of the logical representa-
tion �F describing a Boolean function F ∶ {0, 1}n → {0, 1}n
and the number of reactions in the system A implementing
F = resA.

In Section 7 of [6], the authors show how Boolean for-
mulas in DNF can be transformed into reaction systems,
where the value of the formula is translated into generating
a specific entity (or not).

This connection turns out to be crucial in our considera-
tions. Apart from the output of the reaction, it shows that
reactions behave like terms. Each reaction is enabled on the
subset of the Boolean variables that are positive in the term
and inhibited on the Boolean variables that are negated in
the term.

The following lemma captures this correspondence.

Lemma 7 For every logical term � over n Boolean variables,
there exists a reaction a(�) over a background set S of n enti-
ties, such that for every X ⊆ S , a(�) is enabled in X if and
only if �(�(X)) = 1.

Proof Given a term � over the Boolean variables v1,… , vn ,
choose n entities and order them to form the background set
S = {u1,… , un} such that ui corresponds to vi , for 1 ≤ i ≤ n .
Designate a specific entity us as an output entity. We con-
struct a reaction a(�) , such that whenever this reaction is
enabled, it will produce us.

Consider the literals in � . Let P� be the set of indices of
those literals that are variables vi and N� be the set of indices
of the literals that are negations of variables v̄j . Thus,
𝛾 =

⋀
i∈P𝛾

vi ⋅
⋀

j∈N𝛾
v̄j . Then, �(b1 … bn) is true if and only

if each bi = 1 , i ∈ P� , while each bj = 0 , j ∈ N�.
For a set of indices I ⊆ {1,… , n} , let SI = {ui ∣ i ∈ I} be

the corresponding set of entities. Then, a(�) = (SP�
, SN�

, {us})
satisfies the requirement, as it is enabled in a state X if and
only if each of the ui , for i ∈ P� is present in X, while none
of the uj , for j ∈ N� is present in X. That is, a(�) is enabled
in X if and only if �(�(X)) = 1 . ◻

198 D. Genova et al.

1 3

The construction used in the proof of the above lemma
can be used to transform a logical representation � , i.e., a
set of formulas �1,… ,�n in DNF, into a reaction system,
by converting the terms occurring in the formulas into reac-
tions. To define a reaction system from � , we will make the
convention that the entity ui is produced when �i is true, for
i = 1,… , n . The following example illustrates this, for one
output value.

Example 8 Suppose we are given the Boolean for-
m u l a 𝜑1 = v̄1v2 + v̄1v̄2v3 + v̄3v4 w i t h v a r i a b l e s
{v1,… , v4} and terms �1, �2 and �3 , respectively. Let
S = {u1,… , u4} and we necessarily choose for output
value u1 ∈ S . Then, for �1 , P = {2} and N = {1} . Hence,
a(�1) = ({u2}, {u1}, {u1}) . Similarly, for �2 , P = {3} and
N = {1, 2} . Thus, a(�2) = ({u3}, {u1, u2}, {u1}) . Finally,
a(�3) = ({u4}, {u3}, {u1}). ⌟

If a term � occurs in several formulas of the logical repre-
sentation � , then when � is satisfied, according to the con-
struction above, the output entities corresponding to each
of these formulas must be generated by the reaction system
implementing � . Rather than generating each entity with a
separate reaction, these output entities can be combined in
the product set of a single reaction. Hence, we have a direct
correspondence between the number of distinct terms and
the number of reactions.

Corollary 9 Let F ∶ {0, 1}n → {0, 1}n be a Boolean function,
with a logical representation � in n variables, and with a
total number of k distinct terms. Then, there exists a reaction
system A over n background entities S = {u1,… , un} , with k
reactions, such that resA = F.

Proof Let � = �1,… ,�n . Consider a term � that occurs in
� . Define the index set O� = { i ∣ � occurs in �i } of � occur-
rences in �.

As in the proof of Lemma 7, for a set of indices
I ⊆ {1,… , n} , let SI = {ui ∣ i ∈ I} be the corresponding set
of entities. Now define a(�) = (SP�

, SN�
, SO�

) , where (again
as in the proof of Lemma 7) the P� and N� are the indices of
the variables occurring positively and negated in � , respec-
tively. As in the proof of Lemma 7, we argue that a(�) gener-
ates ui in state X if and only if �i is true for �(X) . ◻

So, let F be a multi-valued Boolean function. If there
exists a logical representation � of F with a total of k dis-
tinct terms, then there exists a reaction system implementa-
tion A with k reactions for F, such that resA = F . It can
easily be verified that the result also holds in reverse, by
walking the construction backwards: the result function of a

reaction system with k reactions can be logically represented
using k distinct terms.

A reaction system A = (S,A) is called minimal, if for
every reaction system B = (S,B) , such that A ∼ B , |A| ≤ |B| .
That is, a reaction system A is minimal if it has the smallest
number of reactions of all reaction systems equivalent to it.
A set � = {�1,… ,�n} of logical formulas in DNF is mini-
mal if its total number of distinct terms over all its formulas
is minimal among all logically equivalent sets of formulas.

T h e o r e m 1 0 Fo r e v e r y B o o l e a n f u n c t i o n
F ∶ {0, 1}n → {0, 1}n there exists a reaction system A , such
that, A is minimal if and only if the corresponding logical
representation � of F is minimal. ◻

Note that, the proof of Proposition 6 already indicates a
way to translate Boolean functions to reaction systems, if as
before, we equate sets with bit-vectors via their character-
istic function. That construction yields maximally inhibited
reactions, which correspond to minterms, rather than the
more general terms, as all entities are present in the reactant
or inhibitor sets. The size of the reaction system is 2n , where
n is the number of entities of the system. Its logical repre-
sentation consists of almost the same number of minterms,
except that we can omit states (minterms) that map into the
empty set. The minterms corresponding to these reactions
will not occur in any of the formulas, as the reactions do not
contribute any entities.

Example 11 Consider the reaction system A from Exam-
ple 2, as depicted by its 0-context graph in Figure 1. The
edge ({2, 4}, {1, 2, 3}) is translated into the maximally inhib-
ited reaction ({2, 4}, {1, 3}, {1, 2, 3}) . In the logical repre-
sentation of resA this corresponds to the minterm v̄1v2v̄3v4
(specifying when the reaction is enabled) that occurs in the
formulas �1,�2 , and �3 (specifying when the corresponding
entity is produced).

The problem of deciding the equivalence of Boolean
formulas has a known complexity, and by the strong cor-
respondence between formulas and reaction systems, this
can be translated to the complexity of the equivalence of
reaction systems. It is well known that the problem of decid-
ing satisfiability for formulas in conjunctive normal from is
NP-complete. Dually, deciding whether a formula in DNF is
satisfiable is co-NP-complete. As we can easily construct a
reaction system representing a tautology (always produce an
entity) one obtains the following result, stated in [6].

Corollary 12 Functional equivalence of reaction systems is
co-NP-complete.

199Extracting reaction systems from function behavior

1 3

Minimization of reaction systems turns out to be a harder
problem. The complexity of the related problem of minimi-
zation of Boolean formulas in DNF was obtained in [19].

Problem (min dnf) Given a DNF formula � and an integer
k, is there a DNF formula equivalent to � with k or fewer
occurrences of literals?

This is not exactly the problem we are looking for, count-
ing literals instead of terms, but gives an indication of the
complexity. As reported in [19, Theorem 4] problem min dnf
is �P

2
-complete. (Compare: NP equals �P

1
 , a lower level in

the polynomial hierarchy [14].)

Corollary 13 Minimization of reaction systems (counting
the number of entities in reactants and inhibitors) is �P

2

-complete.

4 Extracting reactions from the total result
function

In Section 2, we demonstrated how given a reaction system
A (specified by its set of reactions A), we can obtain its
global behaviour, resA , represented by the 0-context graph
G0

A
 (see Examples 2 and 4). Also in that section, we

described the reverse process, i.e., how given a function
f ∶ P(S) → P(S) , which may be represented by a one-out
graph G with vertices P(S) , we can construct a reaction sys-
tem A� = (S,A�) using a set of maximally inhibited reactions
A′ , such that resA� = f , or equivalently, such that G0

A
� = G

(see Proposition 6).
In this section, we take the reverse process one step

further: we minimize the set A′ to obtain B, such that
B = (S,B) ∼ A

� and, consequently, res B = resA� . For that,
we use the equivalence of reaction systems to Boolean for-
mulas, as discussed in Section 3, and well-known methods
for minimizing Boolean formulas like Karnaugh maps and
the Espresso algorithm, see [11, 15, 16].

The Problem Assume the global resA function of a reac-
tion system A = (S,A) is given, presumably by a one-out
graph G0

A
 on vertices P(S) , and assume further that the set A

of individual reactions that produced the result function is
not known. We want to decompose the result function resA
into a (preferably) minimal number of reactions b1,… , bk ,
comprising a set of reactions B, which in turn, defines a reac-
tion system B(S,B) , such that, res B = resA , or equivalently,
G0

B
= G0

A
.

Input A one-out graph G0

A
 with V(G) = P(S) for some

finite set S = {u1,… , un} , representing the result function
resA of a reaction system A.

Output A minimal reaction system B such that G0

B
= G0

A
.

Step 1 For each (X, Y) edge, construct the (maximally
inhibited) reaction aX = (X, S ⧵ X,Y) , as in Proposition 6,
and consider the set A� = {aX ∣ X ⊆ S} of the 2|S| reactions
describing G0

A
 and the result function resA that it represents.

Thus, we obtain A� = (S,A�) with G0

A
� = G0

A
 and

resA� = resA , i.e. A� ∼ A.
Step 2 For every reaction aX ∈ A� construct the corre-

sponding minterm �(x) = �1,… ,�n , using the bijection
between terms and reactions as in Lemma 7, as follows. Let
x = �(X) , and for 1 ≤ i ≤ n , we choose the literal �i = vi if
and only if ui ∈ X and �i = v̄i otherwise. (At this point, we
have 2n minterms � , one for each X ⊆ S.)

From our example, for X = {1, 2} , x = 1100 and we set
𝛾(x) = v1v2v̄3v̄4.

Step 3 We consider the elements of the domain. For each
ui ∈ S , construct a Boolean formula �i as a disjunction over
all �(x) where x = �(X) and (X, Y) is an edge such that ui ∈ Y.

Note that, in this step, if aX does not contain ui in its third
component Y, it will not be represented by the minterm �(x)
in �i , where x = �(X).

Example 14 The logical formulas �i for our example are
as stated below. Consider for instance the first background
entity u1 = 1 . In Figure 1, we see that there are nine edges
leading into a set that contains 1, like {1, 4} → {1, 2}
and {2} → {1, 3} , which correspond to nine maxi-
mally inhibited reactions, like ({1, 4}, {2, 3}, {1, 2}) and
({2}, {1, 3, 4}, {1, 3}) . and thus, to nine minterms in �1 , like
v1v̄2v̄3v4 and v̄1v2v̄3v̄4.

In a similar way, we collect the edges where output value
ui = i is generated, to obtain formula �i , for i = 2, 3, 4.

 ⌟

Step 4 This is the minimization step, which can proceed
in one of the following ways: Step 4.1 Minimize the number
of terms (and the total number of literals in them) for each
individual �i separately, or Step 4.2 Minimize the number
of common terms for all �i in � taken together, or Step 4.3
Minimize the system when some states are disregarded
(don’t care states).

Each of these minimization problems is discussed in a
separate subsection below.

𝜑1 =v1v2v̄3v4 + v1v̄2v̄3v4 + v̄1v2v3v4 + v̄1v2v3v̄4 + v̄1v2v̄3v4 + v̄1v2v̄3v̄4

+ v̄1v̄2v3v4 + v̄1v̄2v3v̄4 + v̄1v̄2v̄3v4

𝜑2 =v1v2v̄3v4 + v1v2v̄3v̄4 + v1v̄2v3v̄4 + v1v̄2v̄3v4 + v1v̄2v̄3v̄4 + v̄1v2v̄3v4

+ v̄1v̄2v3v4 + v̄1v̄2v3v̄4 + v̄1v̄2v̄3v4

𝜑3 =v1v2v̄3v4 + v1v2v̄3v̄4 + v1v̄2v3v̄4 + v̄1v2v̄3v4 + v̄1v2v̄3v̄4

𝜑4 =v̄1v̄2v3v4 + v̄1v̄2v3v̄4

200 D. Genova et al.

1 3

4.1 Minimizing Reactions Producing a Single Entity

If we are considering a collection of biochemical reactions
that produce a certain set of entities, we may be interested to
control (or minimize), e.g. due to “cost”, only the number of
reactions that produce a specific entity, say uj . Such minimi-
zation will also result in a minimal total number of literals,
counting multiplicities, related to this output entity uj , which
means that we will use a minimal total number of reactants
and inhibitors (resources) in the set of reactions producing
that entity. When the cost considerations of using smallest
number of reactants and inhibitors in the reactions produc-
ing a certain entity are more important than the minimal
number of reactions producing all entities, then we use Step
4.1. Problems concerning reactions with minimal and almost
minimal resources have been studied in [8, 17].

We illustrate our minimization approach using well-
known methods for minimizing Boolean formulas, heuristic
Karnaugh maps, and automatic minimization. Of course, the
algorithmic approach is open for large scale models, but the
Karnaugh approach will give us some additional insight.

Karnaugh maps. Karnaugh maps are a popular heuristic
method to minimize single-valued Boolean functions [11].
We can represent the 0-context graph of a background set
of limited size in Karnaugh map style, by identifying each
edge (X, Y) with a single cell (square) in the Karnaugh map,
see Figure 2 (1). The entities of each of the sixteen possible
states X ⊆ S are listed in the top left corner of each cell. The
16 states are organized in such a way that each fixed Boolean
combination of entities forms a consecutive strip when the
diagram is viewed as a torus. For example, if “1 and 2” are
in X, the states (cells) are in the third row, while “not 1 and
not 3” in X means the states are in the four corner cells.
The result (output) Y of the system, for each of the sixteen
states, is given inside the cells. Hence, each edge (X, Y) is
represented by X in the top left corner and Y in the middle
of the respective cell.

In this way, the diagram in Figure 2 (1) represents the
graph G0

A
 from Figure 1.

Let the designated output entity be u1 = 1 and disregard
other output entities in the cells for the moment, see Fig-
ure 2 (2). The nine cells that contain output 1 (i.e., u1) are
already represented by the nine minterms in the formula �1 .
We minimize that formula to a smaller number of terms,
using “clustering” or glueing together neighboring cells, as
many as possible, to form strips on the torus (when the Kar-
naugh map is folded and glued like a torus). This leads to the
(blue, purple, and gray) regions described by the terms v̄1v2 ,
v̄3v4 , and v̄1v3 , respectively. All together, these regions cover
all 1’s and hence describe �1 perfectly. That is, �1 reduces
to 𝜑�

1
= v̄1v2 + v̄3v4 + v̄1v3 , equivalent to the following three

reactions ({2}, {1}, {1}) , ({4}, {3}, {1}) , and ({3}, {1}, {1}).
For the output entity u2 = 2 , we immediately observe two

large clusters corresponding to the terms v1v̄3 + v̄3v4 , see
Figure 2 (3). The remaining three cells can be recombined
in several ways (partially over lapping with other 2 where
possible), but we cannot do better than two ‘domino’s’, for
example v1v̄2v̄4 + v̄1v̄2v3 or v̄2v3v̄4 + v̄1v̄2v4 . The last two
entities are simple.

We summarize.

Note that we have ‘accidentally’ chosen the term v̄1v̄2v3
in formula �′

2
 (we had several options) which also occurs

in �′
4
 . This means that we can join the two correspond-

ing reactions ({3}, {1, 2}, {2}) and ({3}, {1, 2}, {4}) into
({3}, {1, 2}, {2, 4}) . Note that choosing another option,
might not give us this reduction. This is exactly one of the
events that make minimizing multiple outputs hard.

Note that, the logical ‘rule’ behind finding larger
Karnaugh blocks uses distributive law to combine
two terms differing only in opposite literals, e.g.,
𝛾 ⋅ v + 𝛾 ⋅ v̄ = 𝛾 ⋅ (v + v̄) = 𝛾 . This is similar to replacing the
two reactions (R ∪ {e}, I,P) and (R, I ∪ {e},P) by (R, I, P).

𝜑�
1
= v̄1v2 + v̄3v4 + v̄1v3

𝜑�
2
= v1v̄3 + v̄3v4 + v1v̄2v̄4 + v̄1v̄2v3

𝜑�
3
= v2v̄3 + v1v̄2v3v̄4

𝜑�
4
= v̄1v̄2v3

Fig. 2 (1) The 0-context graph,
depicted in Karnaugh map style,
see Example 2. (2) A minimal
number of reactions generat-
ing entity 1. (3) Large clusters
(most of the clusters) generating
entity 2

3 4

1

2

- 124 124 12

2 23 - 12

23 - - 123

13 1 1 123

- 3 34 4

1 13 134 14

12 123 1234 124

2 23 234 24

3 4

1

2

- 124 124 12

2 23 - 12

23 - - 123

13 1 1 123

- 3 34 4

1 13 134 14

12 123 1234 124

2 23 234 24

3 4

1

2

- 124 124 12

2 23 - 12

23 - - 123

13 1 1 123

- 3 34 4

1 13 134 14

12 123 1234 124

2 23 234 24

201Extracting reaction systems from function behavior

1 3

Espresso. As minimization is an important facet of digi-
tal design, several tools are available, from small scale to
industrial strength. We have chosen the heuristic minimizer
Espresso [15], together with Logic Friday1, a free Windows
program that provides a graphical interface to Espresso.
Adhering to the syntax of Espresso, we use A to D to rep-
resent the variables v1 to v4 for the entities 1 to 4. The four
logical formulas �1,… ,�4 from Step 3 are entered as FA,
FB, FC, and FD, listed below.

One feature of this minimization to notice is that for each
individual i, �′

i
 not only contains the smallest number of

terms, but also, the smallest number of total literals used in
these terms, which of course, is related to the fact that we
aimed at maximal clusters or cells with output i in the Kar-
naugh map. This is due to maximizing the separate blocks
of i to cover as many as possible, even if they overlap. That
minimizes the variables used. Also, every term in such a for-
mula �′

i
 is essential, i.e. contains a cell that is not contained

in any of the other clusters already used in the formula.
Hence, to minimize the number of reactions we will mini-

mize the number of terms for the combined set of Boolean
functions Fi.

4.2 Minimizing the number of reactions
considering all output entities

In other cases, we will need to obtain the multiple outputs
with a minimal total number of reactions. In other words,
we start with the maximally inhibited set of reactions A′ and
find a set of reactions of minimal cardinality B, such that
res A� = res B . Hence, to minimize the number of reactions,
we will minimize the total number of distinct terms for the
combined set of Boolean functions Fi.

Table 1 Retrieving reactions from terms, Espresso minimization, sep-
arate outputs

term used in corresponding reaction

C’ D FA, FB b1 = ({4}, {3}, {1, 2})

A’ C FA b2 = ({3}, {1}, {1})

A’ B FA b3 = ({2}, {1}, {1})

A’ B’ C FB, FD b4 = ({3}, {1, 2}, {2, 4})

B’ C D’ FB b5 = ({3}, {2, 4}, {2})

A C’ FB b6 = ({1}, {3}, {2})

A B’ C D’ FC b7 = ({1, 3}, {2, 4}, {3})

B C’ FC b8 = ({2}, {3}, {3})

1 Logic Friday 1.1.4, (c) Steve Rickman.

We now use this tool with settings that “minimize each
output separately” and we obtain the following equations:

One can see that Espresso returned mostly the same indi-
vidually minimized formulas FA through FD, just as apply-
ing the Karnaugh heuristic did, where we obtained �′

1
, �′

2
 ,

�′
3
 and �′

4
 . The difference is that we made a different choice

for �′
2
 vs. FB.

Translating the individually minimized formulas back
into reactions is done in Table 1.

Again, we input our original FA, FB, FC, and FD from
the end of Step 3 and our tool finds the following minimized
set of equations. We have set the parameters of Espresso
such that, rater than using a heuristic approach, the global
minimum is obtained (at the cost of a longer computation,
of course).

202 D. Genova et al.

1 3

The terms represent reactions, where terms common
to one or more functions, can be combined in generating
the corresponding entities. Translating this solution into
reactions, we obtain our original reaction system A from
Example 2 back, see Table 2. However, note that we did not
start with the A , because we assumed we do not know A.
Rather, we started with its global result function resA , built
a maximally inhibited set of reactions A′ that is functionally
equivalent to it, and then, minimized A′ to obtain a set B
functionally equivalent to it. This process confirmed that the
original set A was minimal.

It is important here to note that if, in general, we know
the original set of reactions A, which is used to define resA ,
we do not have to go through A′ to find a minimal B (or
verify that A is minimal). Espresso has an option to input the
original reactions A (by coding them into logical formulas
�i similar to the above) and obtain a functionally equiva-
lent minimal set of reactions B (which may be the same as
A). In this case, the initial �i will not necessarily consist of
minterms, but of terms (possibly fewer than the maximum).

Comparison of the two models. We now compare the
group minimization with the individual minimization. The
individual minimization obtained in Step 4.1 of our exam-
ple produces the terms and the corresponding reactions
presented in Table 1. We notice that the group minimiza-
tion algorithm used in Step 4.2 produces a smaller set of
reactions, as seen in Table 2. However, the individual mini-
mization algorithm from Step 4.1 produces a smaller (or
the same) total number of entities (counting multiplicities)
necessary for producing each output entity.

For example, to produce the entity 1, the reactions
bj (namely b1, b2 , and b3) use six entities (counting mul-
tiplicities) in their combined reactant and inhibitor sets,

that is, {4}, {3}, {3}, {1}, {2}, {1} , while the reactions
ai (namely a2 , a4 , and a5) use reactant and inhibitor sets
{3}, {1, 2}, {4}, {3}, {2}, {1} , i.e. seven entities (counting
multiplicities). This difference can be seen in the Karnaugh
maps in Figure 2 (2) and Figure 3. In the individual case,
represented in Figure 2 (2), the cluster consisting of the
top middle and the bottom middle cells is bigger and, thus,
defined by less literals, whereas the top middle cells only,
in Figure 3, contribute more literals, as they form a smaller
cluster. Such a minimization may be desirable in certain
biological settings, when using less reactants and inhibi-
tors is more cost effective, than having a smaller number
of reactions.

4.3 Minimizing the number of reactions for a subset
of the states

Often, there are situations where one wants to design a (bio-
logical) system where only a subset of all possible states are
considered. The behavior of the system at the other states
is irrelevant, because it is assumed that those states will not
occur during the execution of the system.

Ignoring a part of the state space is very common in the
design of digital systems. For example, if we want to design
a system with ten states, we represent the state set with four
bits. This will give sixteen available states, of which only ten
will be used. When implementing the digital design by an
electronic circuit, the output value for the superfluous states
is specified as don’t care. The output of these states can then
be taken arbitrarily, and is chosen so that the implementation
can be optimized.

The Karnaugh map approach is particularly suited for sit-
uations like this. Cells that are marked as do not care can be

Fig. 3 Six reactions generating
the original 0-context graph,
see Example 2. Also terms as
retrieved by Espresso minimiza-
tion, see Section 4.2

3 4

1

2

- 124 124 12

2 23 - 12

23 - - 123

13 1 1 123

- 3 34 4

1 13 134 14

12 123 1234 124

2 23 234 24

Table 2 Retrieving reactions from terms, Espresso minimization,
multiple outputs, Section 4.2

term used in corresponding reaction

A’ B’ C FA, FB, FD a4 = ({3}, {1, 2}, {1, 2, 4})

C’ D FA, FB a5 = ({4}, {3}, {1, 2})

A’ B FA a2 = ({2}, {1}, {1})

A B’ C D’ FB, FC a6 = ({1, 3}, {2, 4}, {2, 3})

A C’ FB a1 = ({1}, {3}, {2})

B C’ FC a3 = ({2}, {3}, {3})

203Extracting reaction systems from function behavior

1 3

combined with surrounding cells, if that helps to obtain less,
and thus larger, covering rectangles (clusters). Translated in
the realm of reaction systems, this means that we will obtain
less reactions with a smaller set of reactants or inhibitors.

We use an example from [12] to illustrate situations with
do not care states. A Gray code is an ordering of the ele-
ments in {0, 1}n such that the successive bitstrings differ by
at most one bit. Example 2.3 from [12] implements a reac-
tion system that mimics the forward and backward genera-
tion of a Gray code. Its six reactions are as follows.

As in our exposition above, the two bits are represented by
the presence of two elements 1, 2 in the state space. Moreo-
ver, the Gray code is repeated and travelled twice, to obtain
the state space below. The presence of elements 3 or 4 sig-
nals the forward or backward traversal of the Gray code.

Note that exactly one of the elements 3, 4 is present
in each state of this design. Thus, half of the state space
remains unspecified. Hence, using our Karnaugh map style
presentation of the state space for the Gray code example,
we obtain the diagram from Figure 4, where x denotes do
not care states.2

After entering the required state transitions as a multi-
valued function truth table to Espresso, minimization yields
the following proposed implementation:

a = ({4}, {2, 3}, {1, 4}) b = ({1, 4}, {3}, {2, 4}) c = ({2, 3}, {4}, {1})

d = ({2}, {1}, {2, 3}) e = ({1, 3}, {4}, {3}) f = ({3}, {1, 2}, {4})

Translating the ‘gates’ into reactions as before, we obtain
six reactions, see Table 3.

Note that, if we look at the reactions, we see that the two
do not care columns are just copied from their neighbors
in the final solution. Also, observe that these reactions do
not adhere to the ‘modern’ requirement that reactant and
inhibitor sets must be nonempty. In the example, this is eas-
ily resolved. As entities 3 and 4 are complementary in the
states for the Gray code, they can also be added in a com-
plementary fashion to the reactant and inhibitor sets. This

will change the global behavior of the system, but not in the
eight state subspace we are interested in.

3 4

1

2

x 4 x 14

x 3 x 124

x 13 x 24

x 123 x 23

- 3 34 4

1 13 134 14

12 123 1234 124

2 23 234 24

3 4

1

2

x 4 x 14

x 3 x 124

x 13 x 24

x 123 x 23

- 3 34 4

1 13 134 14

12 123 1234 124

2 23 234 24

Fig. 4 The Gray code example with don’t care states marked by ‘x’

Table 3 Reactions obtained for the Gray code example from Section
4.3

product used in representative reaction

B D’ FA b1 = ({2}, {4}, {1})

B’ D FA b2 = ({4}, {2}, {1})

A’ B FB, FC b3 = ({2}, {1}, {1, 3})

A D FB, FD b4 = ({1, 4},∅, {2, 4})

A D’ FC b5 = ({1}, {4}, {3})

A’ B’ FD b6 = (∅, {1, 2}, {4})

2 Although the cells of the Karnaugh map themselves are ordered
according to a Gray code, it is still a surprise to see the code clearly
spelled out in the diagram.

204 D. Genova et al.

1 3

5 The Espresso Minimization Algorithm

In this section, we briefly review the basic execution steps
in Espresso MV, a multiple-input, multiple-output variant of
the Espresso algorithm. The relevant pseudocode is shown
in Algorithm 1. For further details regarding the description
and operation of each execution step, the reader is referred
to [15].

The set of binary strings x ∈ {0, 1}n for which �(x) = 1 is
labeled as the on-set in Espresso. Note that for a multiple-
output function, the on-set of the combined set of functions
Fi is the combined set of the on-sets for each function, where
each string is labeled as xi and the index i corresponds to the

respective function index. Similar labels, off-set and dc-set,
are used in an analogous way when the function values for
a minterm are 0, and 0 or 1 respectively.

Pre-processing steps are performed first over the input,
the 0-context graph G0

A
 of a reaction system A = (S,A) . As

the total effect of the result function resA is represented
by the edges in the 0-context graph G0

A
 , the total function

res a(X) , for every X ⊆ S , is directly used to assign the 2n
states of the power set P(S) of the maximally inhibited reac-
tions in A′ to the set of binary strings in the three covers: the
on-set cover, the off-set cover, as well as the dc-set cover.

205Extracting reaction systems from function behavior

1 3

Note that to reduce the number of preprocessing operations,
only two of the three covers could be produced in this way
and complement can be used afterwards to compute the third
set cover at the expense of adding processing complexity.
Other heuristic algorithms have been proposed to mitigate
that issue for functions with large complement size [10].

The Espresso algorithm uses a heuristic approach to
reduce the original function cover with the help of a cost
function that minimizes the number of cubes and the num-
ber of literals in each of the currently considered covers of
the multiple output function that is viewed as the combined
set of functions Fi . A cost function is used to minimize the
number of cubes in the current cover and the total number
of literals, where |F| represents the number of 1s in the func-
tion cover.

The key processing steps include: expand, irredundant,
essential, and reduce as follows. An implicant of the func-
tion is a term (a.k.a. cube), as shown in Figure 2, that does
not contain any minterm representing a multiplication of
the literals in string xi ∈ off-set of the function. A prime
implicant of the function is an implicant that is not contained
by any other implicant. Before processing begins, essential
prime implicants, or implicants which contain some � not
contained in any other implicant, are identified using essen-
tial and are excluded. expand is used to maximize the size
of each implicant, so that other (smaller) implicants become
covered and can be deleted. expand is used to “expand” each
cube (analogous to the color-coded clusters depicted in Fig-
ure 2) of the on-set cover into a prime implicant.

In multiple-output function mode of operation, Espresso
always ‘expands’ to multi-output prime implicants when-
ever applicable. The cubes are labeled with multiple indices
accordingly: e.g. cubeijp , to indicate that the prime implicant
spans across the outputs of functions Fi,Fj , and Fp . expand
is followed by execution of irredundant to select a mini-
mal subset of this set of prime implicants that constitutes
a function cover. irredundant makes a cover irredundant
by deleting a maximum number of redundant implicants.
Note that an irredundant cover is minimal. This step can be
implemented using a containment test, which in turn can be
implemented using a tautology test.

As already noted in Section 2, the functional equivalence
problem for reaction systems has been previously shown to
be co-NP-complete [4, Section 7]. The proof presented in [4]
reduces it to the tautology problem for Boolean formulas,
which coincidentally comprises the core of the execution
iterations in essential. The main idea is to iterate over the
cover until no improvement in the cost function is seen and
the solution is moved away from the local minimum without
increasing the number of cubes in the cover. The latter goal
is achieved by the processing inside the reduce module. The
reader should note that an improvement in the cost function

does not guarantee that a global minimum is reached. The
optional execution of lastgasp ensures that no implicant can
replace any implicant in the cover to reduce the cardinality
of the cover. When the outer loop terminates, an irredundant
cover of prime implicants is found. At the end, essential
prime implicants are returned to the cover before processing
of the cover is completed.

Additional steps, not shown in Algorithm 1 can be added
to find a better minimization solution at the expense of
potentially adding excessive processing delays. The basic
idea is to rely on generating the set of all prime implicants,
then executing irredundant over that set, and finally, solving
the covering problem.

A variant of the Espresso MV algorithm, referred to as
Espresso EXACT [15], presents an improvement over this
strategy. Espresso EXACT is an approximate algorithm of
polynomial complexity that can confirm the optimality of
the solution in some of the input cases.

6 Concluding remarks

Reaction systems arose as a theoretical model of biochemi-
cal reactions. Due to various considerations for producing
certain biomolecular products or biomolecules, we may be
concerned with minimizing the number of reactions pro-
ducing a single entity, or some of the entities, or all of the
entities. In this paper, we explained how our approaches will
vary regarding each of these different goals. In all cases, we
converted the problem of minimizing the number of reac-
tions to minimizing Boolean functions (single-valued or
multi-valued) or, else, minimizing Boolean formulas.

By reducing this reaction systems problem to a Boolean
function or a Boolean formula counterpart, we essentially
reduce this problem to logic optimization for the purposes
of logic synthesis in electronics, where many well-known
approaches for such minimization exist.

Future directions of research include developing appli-
cations for the three types of minimization discussed here
both in biochemical reactions and logic circuits, as well as,
expanding the theoretical investigations of minimization of
reaction systems.

Acknowledgements This research was initiated at and facilitated by
the 2nd International Workshop in Reaction Systems and 1st School in
Reaction Systems held on June 3, 2019, organized by Nicolaus Coper-
nicus University, Toruń, Poland. DG and HJH acknowledge travel sup-
port from InterAPS (International Academic Partnerships in Sciences
with Nicolaus Copernicus University) and from the University of North
Florida, USA. The authors thank Matthew Thomas for useful com-
ments on a previous version of this paper. The authors are also very
grateful for the thoughtful suggestions from three anonymous referees,
which have improved the presentation of this paper.

206 D. Genova et al.

1 3

Compliance with ethical standards

Conflicts of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

 1. Azimi, S., Gratie, C., Ivanov, S., Manzoni, L., Petre, I., & Por-
reca, A. E. (2016). Complexity of model checking for reaction
systems. Theoretical Computer Science, 623, 103–113. https ://
doi.org/10.1016/j.tcs.2015.11.040.

 2. Barbuti, R., Gori, R., Levi, F., & Milazzo, P. (2016). Investigating
dynamic causalities in reaction systems. Theoretical Computer
Science, 623, 114–145. https ://doi.org/10.1016/j.tcs.2015.11.041.

 3. Brayton, R. K., Hachtel, G. D., McMullen, C. T., & Sangiovanni-
Vincentelli, A. L. (1984). Logic minimization algorithms for VLSI
synthesis. Amsterdam: Kluwer Academic Publishers.

 4. Brijder, R., Ehrenfeucht, A., Main, M., & Rozenberg, G. (2011). A
tour of reaction systems. International Journal of Foundations of
Computer Science, 22, 1499–1517. https ://doi.org/10.1142/S0129
05411 10088 42.

 5. Corolli, L., Maja, C., Marini, F., Besozzi, D., & Mauri, G. (2012).
An excursion in reaction systems: From computer science to biol-
ogy. Theoretical Computer Science, 454, 95–108. https ://doi.
org/10.1016/j.tcs.2012.04.003.

 6. Ehrenfeucht, A., & Rozenberg, G. (2007). Reaction systems. Fun-
damenta Informaticae, 75, 263–280.

 7. Ehrenfeucht, A., Kleijn, J., Koutny, M., & Rozenberg, G. (2017).
Evolving reaction systems. Theoretical Computer Science, 682,
79–99. https ://doi.org/10.1016/j.tcs.2016.12.031.

 8. Ehrenfeucht, A., Kleijn, J., Koutny, M., & Rozenberg, G. (2012).
Minimal reaction systems. In: C. Priami, I. Petre, E. de Vink
(eds) Transactions on Computational Systems Biology XIV.
Lecture Notes in Computer Science, 7625, 102–122 https ://doi.
org/10.1007/978-3-642-35524 -0_5

 9. Genova, D., Hoogeboom, H. J., & Jonoska, N. (2017). A graph
isomorphism condition and equivalence of reaction systems.
Theoretical Computer Science, 701, 109–119. https ://doi.
org/10.1016/j.tcs.2017.05.019.

 10. Gurunath, B., & Biswas, N.N. (1989) An algorithm for multiple
output minimization. IEEE Trans. on CAD of Integrated Circuits
and Systems 8, 1007–1013. https ://doi.org/10.1109/43.35553

 11. Karnaugh, M. (1953). The map method for synthesis of combi-
national logic circuits. Transactions of the American Institute of
Electrical Engineers, Part I: Communication and Electronics, 72,
593–599. https ://doi.org/10.1109/TCE.1953.63719 32.

 12. Kleijn, J., Koutny, M., & Mikulski, Ł. (2020). Reaction systems
and enabling equivalence. Fundamenta Informaticae, 171, 261–
277. https ://doi.org/10.3233/FI-2020-1882.

 13. McCluskey, E. J, Jr. (1956). Minimization of Boolean func-
tions. Bell System Technical Journal, 35, 1417–1444. https ://doi.
org/10.1002/j.1538-7305.1956.tb038 35.

 14. Meyer, A.R., & Stockmeyer, L.J. (1972). The equivalence prob-
lem for regular expressions with squaring requires exponential
space. Proceedings of the 13th IEEE Symposium on Switch-
ing and Automata Theory, 125–129. https ://doi.org/10.1109/
SWAT.1972.29

 15. Rudell, R.L., & Sangiovanni-Vincentelli, A.L. (1987). Multiple-
valued minimization for PLA optimization. IEEE Trans. on
CAD of Integrated Circuits and Systems 6, 727–750. https ://doi.
org/10.1109/TCAD.1987.12703 18

 16. Rudell, R., Sangiovanni-Vincentelli, A. (2003). Exact minimiza-
tion of multiple-valued functions for PLA optimization. In: Kue-
hlmann A. (eds) The Best of ICCAD. Springer, Boston, MA. https
://doi.org/10.1007/978-1-4615-0292-0_16

 17. Salomaa, A. (2013). Minimal and almost minimal reaction sys-
tems. Natural Computing, 12, 369–376. https ://doi.org/10.1007/
s1104 7-013-9372-y.

 18. Salomaa, A. (2012). On state sequences defined by reaction sys-
tems. Kozen Festschrift, Lecture Notes in Computer Science
7230, 271–282. https ://doi.org/10.1007/978-3-642-29485 -3_17.

 19. Umans, C. (2001). The minimum equivalent DNF problem and
shortest implicants. Journal of Computer and System Sciences,
63, 597–611. https ://doi.org/10.1006/jcss.2001.1775.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.tcs.2015.11.040
https://doi.org/10.1016/j.tcs.2015.11.040
https://doi.org/10.1016/j.tcs.2015.11.041
https://doi.org/10.1142/S0129054111008842
https://doi.org/10.1142/S0129054111008842
https://doi.org/10.1016/j.tcs.2012.04.003
https://doi.org/10.1016/j.tcs.2012.04.003
https://doi.org/10.1016/j.tcs.2016.12.031
https://doi.org/10.1007/978-3-642-35524-0_5
https://doi.org/10.1007/978-3-642-35524-0_5
https://doi.org/10.1016/j.tcs.2017.05.019
https://doi.org/10.1016/j.tcs.2017.05.019
https://doi.org/10.1109/43.35553
https://doi.org/10.1109/TCE.1953.6371932
https://doi.org/10.3233/FI-2020-1882
https://doi.org/10.1002/j.1538-7305.1956.tb03835
https://doi.org/10.1002/j.1538-7305.1956.tb03835
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1109/TCAD.1987.1270318
https://doi.org/10.1109/TCAD.1987.1270318
https://doi.org/10.1007/978-1-4615-0292-0_16
https://doi.org/10.1007/978-1-4615-0292-0_16
https://doi.org/10.1007/s11047-013-9372-y
https://doi.org/10.1007/s11047-013-9372-y
https://doi.org/10.1007/978-3-642-29485-3_17
https://doi.org/10.1006/jcss.2001.1775

	Extracting reaction systems from function behavior
	Abstract
	1 Introduction
	2 Reaction systems and the result function
	3 Boolean functions and reaction systems
	4 Extracting reactions from the total result function
	4.1 Minimizing Reactions Producing a Single Entity
	4.2 Minimizing the number of reactions considering all output entities
	4.3 Minimizing the number of reactions for a subset of the states

	5 The Espresso Minimization Algorithm
	6 Concluding remarks
	Acknowledgements
	References

