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Abstract
In this paper, we present LOIMOS, which is an epidemiological scenario simulator developed in the context of the fight 
against the pandemic caused by coronavirus SARS-CoV-2 on a global scale. LOIMOS has been fully developed under the 
paradigm of membrane computing using transition P systems with communication rules, active membranes and a stochastic 
simulator engine. In this paper we detail the main components of the system and we report some examples of epidemiologi-
cal scenarios evaluated with LOIMOS.
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1  Introduction

The year 2020 will undoubtedly be remembered as the year 
of the COVID-19 pandemic. This global scale epidemic 
has not only altered the normal lives of citizens around 
the world, but has reoriented many lines of research and 
scientific development to the study of the epidemic from 
its multiple aspects (biological, medical, pharmacological, 
sociological, etc.). The lines of work in computer science, 
information systems and tools provided by AI and other 
related disciplines have not been abstracted from this strug-
gle. Thus, we have seen a multitude of applications aimed 

at predicting the evolution of the pandemic (mainly under 
the paradigm of the SIR model [14] and its variants [18]), 
while other tools have been oriented towards the control of 
the mobility of individuals with the aim of tracking possible 
infections. Nor should we forget the tools aimed at support-
ing research into the development of new vaccines that have 
come to light in the last year. In this sense, bioinformatics, 
genomic information processing and other related areas have 
become particularly relevant.

In this environment, a multidisciplinary work team 
formed by epidemiologists, computer scientists, microbi-
ologists, physicians, etc. joined our efforts in the develop-
ment of a tool that could evaluate different scenarios of the 
pandemic and project its evolution over time. In this way, 
decision-makers (e.g. imposing restrictions on mobility, use 
of masks, confinement, etc.) could have a tool with which 
they could adjust various parameters (some purely biologi-
cal, others of a social nature, etc.) and see the effects they 
could have in the short and medium term. This tool is not 
so much based on the use of data to make a more or less 
adjusted prediction (statistical predictive approach). The 
proposed tool is based on the scientific evidences that were 
being produced about the virus and its effects (transmission 
rates with or without masks, time of symptom development, 
average length of stay in ICUs, etc.). Obviously, our proposal 
has not been the only one and we can affirm that many dif-
ferent models have been proposed to evaluate and predict 
the evolution of the pandemic. To cite a couple of them, we 
could refer to the proposal by Wong et al. [24] where they 
propose a Bayesian approach for modeling the pandemic in 
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Illinois, USA, and the work of Bertozzi et al. [2] that is also 
especially interesting, given that they discuss three different 
macroscopic models (including a SIR approach) that can be 
labelled as parsimonious models.

We have designed and we have developed the LOIMOS 
tool (from ancient Greek, “pestilence, plague”) which is an 
epidemiological scenario simulator designed and developed 
entirely under the paradigm of membrane computing. Our 
choice in designing LOIMOS was based on the team’s pre-
vious experience developing ARES, which is a successful 
simulator for the evolution of antibiotic resistance dynamics 
[1, 4–6]. ARES was developed entirely under the paradigm 
of membrane computing and it is currently a functional 
tool that assists in decision making and clinical research 
developed in hospital environments. The main advantages of 
ARES, which is also inherited by LOIMOS, are that it offers 
the possibility of modeling predictive multilevel scenarios 
that can be interrogated, edited and re-simulated if neces-
sary, with different parameters. Therefore, LOIMOS is not 
only useful for the COVID-19 pandemic but it is ready to 
be easily adapted to any other pandemic caused by different 
viruses. In addition, LOIMOS does not depend on the avail-
ability of public data that occur during the pandemic and 
that, on some occasions, have caused controversies.

In this work we describe LOIMOS. We establish its inter-
nal architecture and the types of rules it uses within the wide 
range of possibilities offered by P systems, and we show 
some examples of its use. LOIMOS has been validated from 
an epidemiological point of view and it is currently used 
to model different scenarios that help decision-making in 
hospital and social settings [7].

2 � P systems

We assume that the reader is familiar with the basic concepts 
of membrane computing [19–21]. In this work, we use cell-
like P systems with active membranes without polarization 
that are defined as follows.

Definition 1   A P  system wi th  ac t ive  mem-
branes of degree m ≥ 1 is defined by the tuple 
Π = (V ,H,�,w1,w2,… ,wm,R, i0) , where 

1.	 V is the alphabet of objects
2.	 H is the alphabet of labels for membranes
3.	 � is the initial membrane structure, of degree m, with all 

membranes labeled with elements of H. Polarizations 
are not considered in the system. A membrane with label 
h is represented as [ ]h

4.	 w1,w2,… ,wm are strings over V specifying the multiset 
of objects initially in the regions defined by �

5.	 R is a finite set of rules of the following types: 

(a)	 [v → w]h with v,w ∈ V∗ (evolution rules)
(b)	 v[ ]h → [w]h with v,w ∈ V∗ (‘in’ communication 

rules)
(c)	 [v]h → w[ ]h with v,w ∈ V∗ (‘out’ communication 

rules)
(d)	 [v]h → [ [w]j]h with v,w ∈ V∗ (membrane creation 

with object evolution)
(e)	 [ [ u ]h1 ]h2 [ ]h3 → [ ]h2[ [ w]h1 ]h3 (membrane move-

ment)

6.	 i0 ∈ {0,… ,m} indicates the region where the result of a 
computation is obtained (0 represents the environment).

The rules of the P system are applied in a maximally 
parallel manner according to a probability distribution and a 
priority assignment. The computation of the system finishes 
whenever no rule can be applied. A configuration of the 
system at time t during a computation is defined by the mem-
brane structure �t and the multisets of objects at every region 
in �t . Every rule �

p,q
⟶ � has two parameters p and q. The 

parameter p ∈ [0, .., 1] is a probability value that models the 
stochastic aspects necessary for a reliable simulation of real 
systems. In our case, despite having only one environment 
modeled as a cell-like P-system, our approach to stochastic 
simulation is similar to that developed for multi-environment 
P systems as in [22]. However, the mechanism for the appli-
cation of the rules and the distribution of probabilities is 
inspired by the DCBA algorithm [17]. Ultimately, the mech-
anisms for applying rules to obtain a stochastic simulation 
environment have been those already developed in [5]. The 
parameter q ∈ ℕ is a priority value.

3 � A P system for the LOIMOS simulator

LOIMOS integrates all those significant elements that can 
be found in the simulation of an epidemiological scenario 
such as the one caused by SARS-CoV-2. For example, the 
virus itself is considered an object that can move, sometimes 
freely and sometimes according to a set of constraints influ-
enced by the other agents in the scenario.

We will now describe the most important elements of 
LOIMOS.

3.1 � Membranes

Every membrane in the system has an integer value to denote 
its capacity that means the number of objects and mem-
branes that the region it delimits holds. The capacity of any 
membrane cannot be exceeded. We have defined membrane 
labels in the system that correspond to the following ele-
ments in the epidemiological scenario: 
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1.	 Echo: membrane containing the epidemiological sce-
nario. This is the skin membrane and it does not contain 
any rule.

2.	 Membranes that simulate places: 

(a)	 House i  for 1 ≤ i ≤ 4000 . Every house is a fam-
ily nucleus where the members of a family spend 
most of their time.

(b)	 Hospital. A place where the seriously infected go.
(c)	 ICU. A place where the critically infected go.
(d)	 Hospital aux. A place that serves as a passageway 

from the hospital to the ICU.
(e)	 Post-hospital. A place where cured patients go to 

recover before returning to normal life.
(f)	 Residence. A house where elderly persons live.
(g)	 Elderly day center. A place where a good per-

centage of retirees go and spend part of the day.
(h)	 Primary school. A place where children go to 

study.
(i)	 Secondary school. A place where teenagers go to 

study.
(j)	 Workplace. A place where people go to work.
(k)	 Common area. A place where everyone passes 

through to go from one area to another (except 
from one part of the hospital to another part).

(l)	 Leisure area. A place where teenagers and mid-
dle-aged people go on the weekends at night.

	    Note that in each area the dynamics of interaction 
between the objects and membranes within it are dif-
ferent from the others, both in terms of their rules of 
behavior and the parameters and constants that operate 
in that region. Similarly, the interactions between differ-
ent areas may be different when communicating objects 
and membranes,

3.	 h1 : membranes that simulate people. All people are con-
sidered of the same type. To define characteristics of 
the person (i.e. age) or role (i.e. a worker), a number 
of objects are defined that provide these characteristics 
within the region delimited by the membrane (that is 
inside the persons).

The membrane structure of the P system is defined in 
such a way that the skin membrane is the echo membrane, 
inside of which we have all the places on the same level 
(houses, hospital, residences, ...), and finally the hosts 
(people) are inside the places. The hosts always go from 
one place to another (they never go out to the P system 
environment). To move into a place, the region that models 
the host enters into the region that models the place using 
a membrane movement rule.

3.2 � Objects

The rest of the elements that play an important role in the 
scenarios have been defined as objects. This allows us to 
have within each membrane those characteristic elements 
that fix the behaviours and all the interaction dynamics. The 
main objects used in the system are as follows: 

1.	 Hour i  for 0 ≤ i ≤ 23 . It denotes every day’s hour and 
controls the schedule inside every host.

2.	 di  for 1 ≤ i ≤ 7 . It denotes the day of the week and it is 
inside each host to control its schedule (some hosts have 
different schedules during the week than on weekends).

3.	 Objects to denote the age range: 

(a)	 ss1 a host between 0 and 12 years old,
(b)	 ss1b a host between 13 and 19 years old,
(c)	 ss2 a host between 20 and 59 years old, and
(d)	 ss3 a host over 60 years old.

4.	 Objects to define the roles (work, school1, school2, 
retired, resident,...) inside each host. These objects 
define how and where every host moves (i.e. a school1 
host will go to primary school, a worker host will go to 
a work place except at the weekends,...), and so on.

5.	 Objects to guide the infection dynamics: here we have 
defined many types of objects. First an infected host 
can send to another host a virus object, this randomly 
changes to one of the four possible types of active infec-
tions. There are rules that can make an infected person 
infect to other people, and cure or get worse depending 
on the type of infection he/she has. When the infection 
ends, the host is marked with an object as having passed 
a certain type of infection because this is important in 
case there is reinfection or loss of immunity. There is 
a type of infection (the most serious) that is simulated 
with a quantity x of object v1 , the more v1 objects the 
more infected the patient is, the membrane representing 
the patient has antiv objects (antibodies) that can elimi-
nate v1 , but with a very small probability. In addition, 
it can happen that an antiv object is transformed into 
an antivesp object which indicates that antibodies have 
been obtained, and antivesp eliminates v1 in a much 
more efficient way (if a predefined number of antivesp 
objects are obtained, v1 disappears completely and the 
host is cured).

6.	 E1, E2, E3 and E4 objects denote the hosts status: E1 
means the host is well (can be asymptomatic infected), 
E2 is mildly symptomatic, E3 is severe and E4 is criti-
cal. Each status triggers different processes, E2 causes 
a host to stay at home, E3 causes a host to go to hospital 
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and E4 causes a host to need to go to ICU. In E3 and 
E4 states death can occur (it causes the only membrane 
dissolution in the P system). Each host in E4 state can 
decrease the ICU membrane capacity. A host that is 
cured or dies in the ICU increases the ICU capacity by 
one.

7.	 Addresses: each host has an object inside with the name 
of the house where he/she lives that correspond to a 
membrane label. It serves for modelling the mobility of 
persons.

In addition, marker objects are used to count how many 
times a rule is executed. This is especially interesting to 
obtain internal usage statistics to evaluate how many times 
the rules have been used. Each time a rule is executed, in 
some cases, it sends out a marker object that serves as a 
source of information for the aforementioned statistics.

3.3 � Rules

The rules defined in the system have been designed accord-
ing to Definition 1. In LOIMOS, the number of rules exceed 
30.000. Many of them have been designed according to the 
indexes used in membranes and objects. The rules model 
aspects of the scenarios such as the processes of contagion, 
mobility, scheduling established for different populations, 
recovery or death, etc. We will show, as an example, the 
rules involved in some processes.

A basic contagion process We use the following objects: 
v1 object denotes one per thousand of active infection, v1_
ino object denotes one per thousand of harmless infec-
tion (virus no longer reproducing), antiv object denotes 
one per thousand of non-specialised antibodies, antivesp 
object denotes one per thousand of specialised antibodies 
(they are much more effective), phag (of phagocyte), they 
make the v1_ino disappear, sint is an object that triggers 
other processes. Observe that only objects v1 and v1_ino 
reduce the membrane capacity whenever they enter the host 
membranes.

When a host infects another host it passes a virus object 
and the rule virus → v5

1
 starts the infection.

A host membrane (delimiting the one that contains the 
infection) has 1000 capacity and this capacity simulates the 
degree of the infection: if the host has 1000 v1 objects it 
means that it is at its maximum point of active infection, if 
it has 100 it is at 10% of its possible maximum active infec-
tion, if it has 100 v1 and 100 v1_ino it is at 20%, but of this 
percentage half of the infection is innocuous.

–	 antiv v1 
0.001,2

⟶
 antiv v1_ino sint. Non-specialised antibod-

ies fight against the infection.

–	 antivesp v1 
1,2

⟶
 antivesp v1_ino sint. Specialised antibod-

ies fight against the infection (increased likelihood of rule 
execution).

–	 v1 
0.035,1

⟶
 v1 v1 sint Virus growth.

–	 antiv200 v200
1

 0.012,3
⟶

 antivesp v1_ino antiv199 v199
1

 sint200 . 
Immunity is acquired (specialised antibodies), 200 
objects antiv and 200 objects v1 are needed to obtain 
immunity in a biological sense. Since it takes a cer-
tain amount of time for an infection to occur, the 200 
objects mentioned above ensure the necessary time for 
the infection to grow up to 20%.

–	 v1_ino phag 1,1

⟶
 phag Body-harmless viruses are elimi-

nated.

Addition to the infection (symptomatology) In this process, 
we use the following objects: E1 the host has no symptoms 
(may or may not be infected), E2 the host has mild symp-
toms, E3 the host has severe symptoms, E4 the host has 
critical symptoms (needs ICU), the flag object is used to 
establish whether the host has reached a high viral load. 
In such a case, the flag object generates a cont object that 
is responsible for triggering the other actions associated 
with that high viral load. Every host has only one object Ex 
with x ∈ {1, 2, 3, 4} that defines its status. Observe that the 
initial configuration of the system before starting a simula-
tion process, establishes that a predetermined number of 
Ex objects with x ∈ {1, 2, 3, 4} are initially in the system.

–	 sint 1,1

⟶
 � Deletion of leftover sint objects. This rule 

has a very low priority. In this case, the object sint 
is used to know how many objects v1 there were in a 
previous step. They are used to know if a dangerous 
viral load is reached. If they are not used then they are 
deleted.

–	 sint700 flag 1,2

⟶
 cont flag The object cont triggers some 

processes when the viral load is high.
–	 f lag 1,1

⟶
 f lag clear_cont1000 clear_cont cont 1,2

⟶
 � 

clear_cont 1,1

⟶
 � . The above rules are used when the 

viral load is not high. If we look at the previous rule, 
when we have 700 sint objects, they take the object 
flag and they generate the high viral load state which 
is represented by cont, but when these 700 sint objects 
do not exist, the flag object is not selected so the rules 
defined above are executed, the object flag generates 
objects that delete all the cont objects and, therefore, 
they eliminate the host symptoms.

–	 E1 cont 1,3

⟶
 E2 This rule changes from asymptomatic to 

mild symptoms. This occurs the first time a dangerous 
viral load is reached.

–	 E2 cont 0.003,3
⟶

 E3 This rule changes from mild to severe 
symptoms, This occurs if the host is mildly sympto-
matic and maintains a high viral load. The probability 
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of this rule is deduced from the probability of a host 
worsening to severe.

–	 E3 cont 0.0025,3
⟶

 E4 This rule carries out the transition 
from severe to critical symptoms. This occurs if the 
host is severely symptomatic and maintains a high viral 
load. The probability of this rule is deduced from the 
probability of a host worsening and transitioning to 
critical status.

–	 E2 cont 1,2

⟶
 E2 cont E3 cont 1,2

⟶
 E3 cont E4 cont 1,2

⟶
 E4 

cont. If the object cont exists then the host remains in the 
same state given that the viral load is dangerous and the 
health state, if it does not worsen, is maintained.

–	 E2 
1,1

⟶
 E1 E3 

1,1

⟶
 E1 E4 

1,1

⟶
 E1 The host is cured, the viral 

load is not dangerous (there is no object cont) and the 
symptoms disappear.

4 � Defining scenarios with LOIMOS

It is possible to design a la carte scenarios with LOIMOS 
based on the specification of the system parameters. These 
parameters refer to possible alterations of the known sci-
entific evidence at any given time (i.e. infection rate in 
enclosed spaces using masks) and also to the scalability 
of the system by adjusting the number of hosts, locations, 
mobility rates, etc.

In any scenario that has been defined, the initial condi-
tions are always identical: all hosts start at time hour0 and 
day d1 (00:00 on Monday), they start in their homes and all 
other areas are empty except the residences. Following this 
initial situation, the general scenario processes are the fol-
lowing: In each execution step the time of all hosts advances 
by one (and every 24 h advances one day), each host has a 
schedule according to its role that makes that, for example, at 
8:00 the worker leaves home to the common area and at 9:00 
the worker goes from the common area to work, and then he/
she returns home when he/she finishes work. When several 

hosts are in the same area, contagion rules can be triggered, 
the probability of these rules depends on the area they are in 
(i.e. there is more probability of contagion in the leisure area 
than in the school), the probability also depends on the type 
of host (i.e. a child is less likely to become contagious than 
an adult), and on the host’s state of health (an infected host 
starts to become contagious three days before the symptoms 
appear and up to ten days after).

From the point of view of the P system, no new mem-
branes are created (neither membrane division rules nor 
membrane duplication rules are used) and membranes are 
only dissolved whenever a host h1 dies. Every computation 
step simulates 1 h of real life.

The rates of transmission in various settings and through 
various agents of transmission in the population are based on 
estimates drawn from scientific evidence such as [3, 8–10, 
12, 13, 15, 16] and [23], and public data [11]. Some of the 
rates used by LOIMOS are shown in Table 1.

4.1 � Setting up the scenario parameters

In this section, we provide an example of a scenario devel-
oped with LOIMOS. We describe the characteristics of the 
scenario and provide an example of the results that the simu-
lator provides from the execution of the system.

We describe the scenario as follows.
Age ranges

–	 from 0 to 12 years old.
–	 from 13 to 19 years old.
–	 from 20 to 59 years old.
–	 over 60 years old.

The ages are used to define the health of the host and to 
assign roles. A child is twice as likely to generate acquired 
immunity as an adult, and an elderly or vulnerable person is 
a third as likely to generate acquired immunity as an adult.

Table 1   Estimated contagion index per contact person and hour, considering the spaces where the hosts are located, and the age and severity of 
the infection

The following acronyms are used “efficient innate immunity-lacking acquired immunity-no or mild symptoms” (E-inn/L-acq/N), “efficient innate 
immunity-normal acquired immunity-no or mild symptoms” (E-inn/N-acq/N), “inefficient innate immunity-normal acquired immunity-sympto-
matic” (I-inn/N-acq/S), and “inefficient innate immunity-weak acquired immunity-symptomatic” (I-inn/W-acq/S). The columns are CA: Com-
mon areas, SL: School less than 12 years old, SO: School over than 12 years old., LGA: Leisure Group Activities, ENH: Elderly nursers/Homes, 
Ho: Hospital

CA Home Work SL SO LGA ENH Ho

E-inn/N-acq/N or E-inn/L-acq/N asymptomatic 0.02 0.02 0.02 0.03 0.03 0.06 0.04 0.05
I-inn/W-acq/S or I-inn/N-acq/S incubation for disease 0.1 0.1 0.1 0.15 0.15 0.3 0.2 0.25
I-inn/W-acq/S or I-inn/N-acq/S weak symptoms 0–60 years range 0.1 0.1 0.1 0.15 0.15 0.3 0.2 0.25
I-inn/W-acq/S or I-inn/N-acq/S weak symptoms + 60 years old 0.2 0.2 x x x x 0.4 0.5
I-inn/N-acq/S severe or critical symptoms x x x x x x 0.4 0.3
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Areas that can be occupied by hosts

–	 House: area where a family lives.
–	 Work: place where workers meet during working hours.
–	 School for children: area where hosts with an age range 

of 0–12 years old stay during school hours.
–	 High school for teenagers: area where hosts with an age 

range of 13–19 years old are hosted during school hours.
–	 Common area: symbolises the street and common spaces 

that serve as communication between all the other areas. 
If a host goes from one area to a different area then he/
she has to pass through the common area.

–	 Hospital: Area to which the hosts who suffer from the 
infection in a serious or chronic state go.

–	 ICU: When an infected patient becomes critically ill, an 
ICU is required for their care. If there is space, he/she 
will be moved to this area. Critically ill patients in the 
ICU will have a lower rate of mortality than then criti-
cally ill patients outside the ICU.

–	 Post-hospital: A place where the hosts who have over-
come an infection in the hospital (severe or chronic infec-
tion) recover.

–	 Elderly day center: 40% of the over-60s meet there every 
day.

–	 Residence: A group of hosts over 60 reside there perma-
nently.

–	 Leisure area: a place where a large part of the 13–19 age 
group and some of the 20–59 age group meet for parties 
and nightlife at weekends and during holidays.

Schedules according to role

–	 Worker Monday to Friday:

–	 07:00 to 08:00 in common area.
–	 08:00 to 17:00 at work.
–	 17:00 to 19:00 in common area.
–	 19:00 to 07:00 at home.

–	 Adult at home Monday to Friday: (10%) stay at 
08:00,09:00,10:00, 16:00, 17:00 or 18:00. They stay for 
1 h (40%), 2 h (24%) or 3 h (36%). The adult goes out 
to do some tasks in the common area. Every day for 6 
specific hours a day there is a 10% probability of going 
out to perform a task. This outing can be for 1 h with a 
40% probability, for 2 h with a 24% probability and for 3 
h with a 36% probability.

–	 Children 0–12 years old Monday to Friday:

–	 08:00 to 09:00 common area.
–	 09:00 to 17:00 school for children.

–	 17:00 to 18:00 (20%), to 19:00 (48%), to 20:00 (32%) 
common area. Children may be delayed on their way 
home for 1, 2 or 3 h.

–	 18:00,19:00 or 20:00 to 08:00 home.

–	 Children 13–19 years old Monday to Friday:

–	 08:00 to 09:00 common area.
–	 09:00 to 17:00 High school.
–	 17:00 to 18:00 (20%), to 19:00 (48%), to 20:00 (32%) 

common area. Teenagers may be delayed on their 
way home for 1, 2 or 3 h.

–	 18:00,19:00,20:00 to 08:00 home.

–	 Day shift medical staff or residence carers:

–	 07:00 to 08:00 common area.
–	 08:00 to 17:00 hospital, ICU or residence (it depends 

on the role).
–	 17:00 to 19:00 common area.
–	 19:00 to 07:00 at home.

–	 Night shift medical staff or residence carers:

–	 18:00 to 20:00 in common area.
–	 20:00 to 06:00 hospital, ICU or residence depending 

on role.
–	 06:00 to 07:00 in common area.
–	 07:00 to 18:00 home.

–	 Retiree: (40% chance of going to the elderly day center):

–	 08:00 to 09:00 common area.
–	 09:00 to 18:00 elderly day center.
–	 18:00 to 19:00 common area.
–	 19:00 to 08:00 home.

	    If the retiree does not go to the elderly day center, 
then he/she can go out to the common area as an adult at 
home.

–	 Elderly in residence: Spends the whole day in the resi-
dence.

Other activities carried out by the hosts

–	 During the weekends the workers, the adults at home, the 
younger students or teenager students can go out to the 
common area. Departure times are 10:00 (30%), 17:00 
(35%) or 18:00 (35%). They stay at the common area for 
1 h (40%), 2 h (24%) or 3 h (36%).

–	 Visiting a relative in the residence: Those who have a 
relative in a residence can go on the weekend for a visit.
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–	 09:00 to 10:00 common area.
–	 10:00 to 16:00 residence.
–	 16:00 to 17:00 common area.

–	 Going out to the leisure area: In the early hours of Friday 
to Saturday or Saturday to Sunday, a large percentage of 
teenagers and a small percentage of adults go to a leisure 
area.

–	 00:00 to 01:00 common area.
–	 01:00 to 06:00 leisure area.
–	 06:00 to 07:00 common area.

	    Chances of going out to the leisure area: Friday teen-
age 50% , Friday adult 15%, Saturday teenage: 80% and 
Saturday adult: 30% .

Population

–	 1,372 children students (every day they go to school).
–	 848 teenager students (every day they go to high school).
–	 4324 workers (every day they go to work).
–	 1266 household (objects ss2) (adults who take care of the 

house and go out from time to time).
–	 2380 household (objects ss3) (elderly/sensitive adults 

who take care of the household and go out from time to 
time).

–	 5 medical staff hospital day (every day they go to the 
hospital).

–	 5 medical staff hospital night (every day they go to the 
hospital).

–	 5 medical staff ICU day (every day they go to ICU).
–	 5 medical staff ICU night (every day they go to the ICU).
–	 5 residential staff day.
–	 5 night residential staff.
–	 100 stay in residence.

Host ages

–	 1372 hosts aged 0–12 years old.
–	 848 hosts aged between 13 and 19 years old.
–	 5620 hosts aged 20–59 years old.
–	 2480 hosts aged over 60 years old.

Basic measures for healthcare personnel
Healthcare workers have a prevention measure in the hos-

pital whereby if a host with the virus is going to infect them, 
they have only a 20% chance of becoming infected.

Household types

–	 175: 1 adult working, 1 adult household and 2 children.
–	 30: 1 adult working, 1 adult household and 2 children, 

one minor and one teenager.

–	 105: 1 working adult, 1 adult household and 2 teenagers.
–	 30: 1 adult medical or residential staff, 1 adult household 

and 2 minor children.
–	 1190: 2 elderly or sensitive persons (household type).
–	 496: 1 working adult, 1 adult household.
–	 276: 1 adult working, 1 adult household and 1 minor 

child.
–	 184: 1 working adult, 1 adult household and 1 teenager.
–	 175: 2 working adults and 2 children.
–	 30: 2 adults working and 1 child and 1 teenager.
–	 105: 2 adults working and 2 teenager.
–	 744: 2 working adults.
–	 276: 2 working adults and 1 child.
–	 184: 2 adults working and 1 teenager.

Initial conditions
We start with 3 infected workers.
Dynamics for the sick population

–	 A host that is well keeps on its routine (work, school, 
etc).

–	 A host that reaches a viral load of 70% will notice the first 
symptoms, will become mildly ill and will stay at home 
until he/she is well.

–	 A host in the residence with mild symptoms will stay in 
the residence.

–	 Every hour there is a 0.003 chance that a mildly ill person 
will get worse and become severely ill. If this happens, 
the infected person will go to the hospital.

–	 Every hour there is a 0.0025 probability that a severely 
ill person will deteriorate to critically ill. If this happens, 
the infected person will be transferred to the ICU as long 
as there is any vacancy.

–	 Every hour there is a 0.0005 chance that a severely ill 
patient will die.

–	 Every hour there is a 0.003 chance that a critically ill 
patient will die if they are in the ICU.

–	 Every hour there is a 0.006 chance that a critically ill 
patient will die if he/she is not in the ICU.

–	 A patient who is cured in the hospital (critically ill 
patients) will spend, on average, recovery time of one 
week in hospital and then return home and resume his/
her routine activities.

Infection dynamics

–	 A host can receive a contagion and he/she can spread it if 
he/she is infected. There is a probability of infecting (this 
is set before) and a probability that if the host is infected 
it will suffer the infection (this is set to 100%, but it can 
be lowered by simulating prevention measures).

–	 When an infection is received, it starts as one of the four 
types that we will describe later.
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–	 The virus in an infected host which is going to overcome 
the infection with acquired immunity grows. The viral 
load goes from 0 to 1000.

–	 When the infection is going to be overcome by acquired 
immunity, we simulate the infection as follows: first the 
innate immune system fights the infection (not very 
effectively) by disabling some viruses (0–1000), then 
antibodies are generated, these specific antibodies dis-
able the virus very effectively, and finally, virus can no 
longer enter cells and cannot reproduce. The disabled 
viruses are eliminated by phagocytes.

All values of disabling a virus and getting more specific 
antibodies can be changed and adjusted.

Immunity

–	 Infection overcome by innate immunity generates anti-
bodies and thus infection passes without symptoms. 
Hosts that pass this type of infection cannot be re-
infected.

–	 Infection overcome by innate immunity that does not 
generate antibodies, but the innate immune system is 
so strong that the infection passes asymptomatically. 
Hosts that pass this type of infection can be re-infected 
and the re-infection will be of this type.

–	 Infection overcome by innate immunity that does not 
generate antibodies. In this case, the immune system 
is weak, so that symptoms can be seen, although they 
will never go beyond mild symptoms. These hosts can 
be reinfected and this reinfection can be of this type.

–	 Infection overcome with acquired immunity. Here, 
we have two different cases, one produces immunity 
and the other does not. The last is a case such that 
the innate immunity is not sufficient and the patient 
presents symptoms that can range from mild to critical 
symptoms and may even result in death.

With regards to reinfections, the host will behave in a very 
similar way to previous infections. Therefore a host that 
has undergone an infection overcome by innate immunity 
and has not acquired immunity, if reinfected, will suffer the 
same type of infection. A host that has passed the infection 
by acquired immunity and has not acquired enough immu-
nity will pass an infection that requires acquired immunity 
again, but this time it has a 50% probability of acquiring 
immunity.

ICU places
In this scenario, there are 2 ICU places.
Types of infection (taken from [7])
First, there are those who acquired the virus, which can 

replicate until reaching 20% of the maximal viral load. Dur-
ing this process, the innate immunity is triggered, causing 
the viral load to decrease. An acquired immune response 

does not occur. These cases are either asymptomatic or have 
very mild symptoms. This type is here designed as the ‘effi-
cient innate immunity/lacking acquired immunity/mild to no 
symptoms’ (E-inn/L-acq/N) type.

Second, there are those in whom the viruses are effi-
ciently cleared by their innate immunity but that cross the 
viral load threshold for triggering acquired immunity. In 
most cases, these hosts remain asymptomatic or have mild 
symptoms. This type is designed as the ‘efficient innate 
immunity/normal acquired immunity/mild to no symptoms’ 
(E-inn/N-acq/N) type.

Third, there are the hosts whose innate immunity is insuf-
ficient for reducing the viral load, which increases accord-
ingly and crosses the threshold after which symptomatic 
infection occurs and acquired immunity is developed. This 
type is designed as the ‘inefficient innate immunity/normal 
acquired immunity/symptomatic’ (I-inn/N-acq/S) type.

Fourth, there are the hosts whose innate immunity is 
insufficient to clear the virus, resulting in a symptomatic 
infection; however, their acquired immune response is weak 
or slow. This type is designed here as the ‘inefficient innate 
immunity/weak acquired immunity/symptomatic’ (I-inn/W-
acq/S) type.

The infection rates are shown in Table  2.
Contagion

–	 Contagion works in a different way depending on whether 
it is overcome by innate or acquired immunity.

–	 If there is an infection that is going to be overcome by 
innate immunity, it starts to be contagious after 60 h.

–	 If there is an infection that will be overcome by acquired 
immunity, it becomes infectious after exceeding a viral 
load of 20%, the rate of infection depends on where the 
host is located and the state in which he/she finds him-
self/herself (asymptomatic, mild symptoms, severe infec-
tion or critical infection).

Other Indexes

–	 Probability of death of critical patient in ICU: 0.003/h. 
In 7 days, the probability of death is 39.63%. In 14 days, 
the probability of death is 63.56%.

Table 2   Rates of each type of infection by age range

0–12 13–19 20–59 > 60

E-inn/L-acq/N 0.1979 0.1956 0.12 0.15625
E-inn/N-acq/N 0.7421 0.6844 0.52 0.24375
I-inn/N-acq/S 0.03 0.06 0.18 0.3
I-inn/W-acq/S 0.03 0.06 0.18 0.3
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–	 Probability of death for critical patient outside the ICU: 
0.006/h. In 7 days, the probability of death is 63.62%. In 
14 days, the probability of death is 86.76%.

–	 Probability of death of seriously ill patient: 0.0005/h. In 
7 days, the probability of death is 8.05%. In 14 days, the 
probability of death is 15.47%.

–	 Probability of an infected person from mild to severe 
illness: 0.003/h. In 7 days, the probability of going from 
mild to severe is 39.63%. In 14 days, the probability of 
going from mild to severe is 63.56%.

–	 Probability for an infected person from severe to critical 
illness : 0.0025/h. In 7 days, the probability from severe 
to critical is 34.33%. In 14 days, the probability from 
severe to critical is 56.87%.

Other contagion rates

–	 Infection overcome by innate immunity:

–	 Most: 0.02/h.
–	 Contagions in 6 h 0.12.
–	 Contagions in 12 h 0.24.
–	 Contagions in 1 day 0.48.
–	 Contagions in 7 days 3.36.

–	 Infections overcome by acquired immunity:

–	 (most commonly used) Asymptomatic at home, com-
mon area, and work: 0.1/h.

•	 Contagious in 6 h 0.6.
•	 Contagious within 12 h 1.2.
•	 Contagious in 1 day 2.4.
•	 Contagious in 7 days 16.8.

–	 (highest outside the hospital) Asymptomatic and 
mildly ill elderly in residence: 0.4/h.

•	 Contagions in 6 h 2.4.
•	 Contagions in 12 h 4.8.
•	 Contagions in 1 day 9.6.
•	 Contagions in 7 days 67.2.

–	 (controversial) leisure area: 0.3/h.

•	 Contagions in 6 h 1.8.
•	 Contagions in 12 h 3.6.
•	 Contagions in 1 day 7.2.
•	 Contagions in 7 days 50.4.

4.2 � Three different scenario assays

Once the parameters and characteristics of the scenarios 
described in the previous section have been set, we show 
the results obtained by the simulator in three different situ-
ations, which are detailed in the following:

–	 Scenario 1: The evolution of the scenario is obtained 
without adopting any measure of correction or preven-
tion.

–	 Scenario 2: 30 days without measures, confinement from 
day 30 to day 90, no measures from day 90 onwards.

–	 Scenario 3: 30 days no measures, confinement from day 
30 to day 90, from day 90 onwards curfew (no night-time 
recreation), 80% reduction of infections in hospital and 
residence and 40% elsewhere.

When the confinement is applied, we apply the 95% reduc-
tion of infection in hospital and residence and 60% in the 
rest of the sites. The schedules are reduced to what is strictly 
necessary.

In Fig.  1, we see the evolution of the three scenarios pre-
viously defined. We can observe the evolution during 7000 
computation steps which amounts to 291 days of real life 
approximately. On the vertical axis we represent the num-
ber of infected people depending on the categories defined 
in Table  1, as well as the prevalence index referring to the 
entire population. It can be seen, in particular in scenario 2, 
the effect of the famous waves of infections that epidemiolo-
gists have repeatedly mentioned as a result of ceasing the 
restrictive measures to be adopted by the population.

5 � Conclusions

In this paper, we have presented a new application of mem-
brane computing and P systems to modeling complex sys-
tems. In our case, the application of these models in the area 
of epidemiology takes on special relevance due to the events 
that we have suffered in recent months on a global scale.

The advantages of membrane computation models over 
other more classical simulation models such as those based 
on ODE are multiple: on the one hand, the compartmentali-
zation of the actor agents in the system to be simulated is an 
innate ingredient in P systems. In addition, the scalability of 
the model as well as the ease of introducing new concepts 
and evidences make its development, both at the design and 
implementation level, extremely easy. The hierarchies estab-
lished between all the elements of the simulated scenarios 
are also defined in a very natural way in the P systems.

Currently, in relation to the LOIMOS system, we are 
developing interfaces that facilitate its use by stakeholders 
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in decision-making during the pandemic. Note that the LOI-
MOS system is prepared to work with pandemics other than 
those caused by the SARS-CoV-2 coronavirus. In this sense, 
the adaptation of LOIMOS would only be carried out by 
altering those parameters that have been defined as a result 
of biological evidence, while the population parameters and 
assumptions could remain unaltered.
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