Skip to main content
Log in

ConvSNP: a deep learning model embedded with SNP-like neurons

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Inspired from spiking mechanisms in spiking neural P (SNP) systems, this paper proposes a new type of neurons, termed as SNP-like neurons. The mathematical model for SNP-like neurons is a generalized linear function. Based on SNP-like neurons, a new class of deep learning models are developed, called ConvSNP models. By referring the structures of the existing convolutional neural networks (CNNs), five ConvSNP models are designed. The five ConvSNP models are evaluated on three benchmark data sets and compared with the corresponding CNNs. The comparison results demonstrate the availability and effectiveness of ConvSNP models for three classical classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pǎun, Gh., Rozenberg, G., & Salomaa, A. (2010). The Oxford Handbook of Membrane Computing. New York: Oxford University Press.

    Book  Google Scholar 

  2. Ionescu, M., Pǎun, Gh., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71, 279–308.

    MathSciNet  MATH  Google Scholar 

  3. Pǎun, Gh. (2007). Spiking neural P systems with astrocyte-like control. Journal of Universal Computer Science, 13(11), 1707–1721.

    MathSciNet  Google Scholar 

  4. Pan, L., & Pǎun, G. (2009). Spiking neural P systems with anti-spikes. International Journal of Computers Communications & Control, 4(3), 273–282.

    Article  Google Scholar 

  5. Pan, L., Păun, Gh., Zhang, G., Neri, F. (2017). Spiking neural p systems with communication on request. International Journal of Neural Systems, 28(8), 1750042: 1–13.

  6. Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., Lou, X., & Huang, X. (2017). Spiking neural P systems with multiple channels. Neural Networks, 95, 66–71.

    Article  Google Scholar 

  7. Wu, T., Pǎun, A., Zhang, Z., & Pan, L. (2017). piking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360.

    Google Scholar 

  8. Cabarle, F. G. C., Adorna, H. N., Pérenz-Jiménez, M. J., & Song, T. (2015). Spiking neural P systems with structural plasticity. Neural Computing and Applications, 26(8), 1905–1917.

    Article  Google Scholar 

  9. Song, T., Pan, L., & Păun, Gh. (2014). Spiking neural P systems with rules on synapses. Theoretical Computer Science, 529, 82–95.

    Article  MathSciNet  Google Scholar 

  10. Song, X., Valencia-Cabrera, L., Peng, H., Wang, J., Pérenz-Jiménez, M.J. (2021). Spiking neural P systems with delay on synapses. International Journal of Neural Systems, 31(1), 2050042: 1–19.

  11. Peng, H., Li, B., Wang, J., Song, X., Wang, T., Valencia-Cabrera, L., Pérez-Hurtado, I., Riscos-Núñez, A., & Pérenz-Jiménez, M. J. (2020). Spiking neural P systems with inhibitory rules. Knowledge-Based Systems, 188, 1–10.

    Article  Google Scholar 

  12. Peng, H., Wang, J., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2019). Dynamic threshold neural P systems. Knowledge-Based Systems, 163, 875–884.

    Article  Google Scholar 

  13. Peng, H., Wang, J.. Coupled neural P systems. IEEE Transactions on Neural Networks and Learning Systems, 30(6), 1672–1682.

  14. Peng, H., Bao, T., Luo, X., Wang, J., Song, X., Riscos-Núñez, A., & Pérenz-Jiménez, M. J. (2020). Dendrite P systems. Neural Networks, 127, 110–120.

    Article  Google Scholar 

  15. Peng, H., Lv, Z., Li, B., Luo, X., Wang, J., Song, X., Wang, T., Pérenz-Jiménez, M.J., Riscos-Núñez, A. (2020). Nonlinear spiking neural P systems. International Journal of Neural Systems, 30(10), 2050008: 1–17.

  16. de la Cruz, R. T. A., Cabarle, F. G., & Adorna, H. N. (2019). Generating context-free languages using spiking neural P systems with structural plasticity. Journal of Membrane Computing, 1(3), 161–177.

    Article  MathSciNet  Google Scholar 

  17. Jiang, Y., Su, Y., & Luo, F. (2019). An improved universal spiking neural P system with generalized use of rules. Journal of Membrane Computing, 1(3), 270–278.

    Article  MathSciNet  Google Scholar 

  18. Bao, T., Zhou, N., Lv, Z., Peng, H., & Wang, J. (2020). Sequential dynamic threshold neural P systems. Journal of Membrane Computing, 2(4), 255–268.

    Article  MathSciNet  Google Scholar 

  19. de la Cruz, R. T. A., Cabarle, F. G. C., Macababayao, I. C. H., Adorna, H. N., & Zeng, X. (2021). Homogeneous spiking neural P systems with structural plasticity. Journal of Membrane Computing, 3(1), 10–21.

    Article  MathSciNet  Google Scholar 

  20. Wu, T., & Jiang, S. (2021). Spiking neural P systems with a flat maximally parallel use of rules. Journal of Membrane Computing, 3(3), 221–231.

    Article  MathSciNet  Google Scholar 

  21. Lv, Z., Yang, Q., Peng, H., Song, X., & Wang, J. (2021). Computational power of sequential spiking neural P systems with multiple channels. Journal of Membrane Computing, 3(4), 270–283.

    Article  MathSciNet  Google Scholar 

  22. Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., & Peng, H. (2019). Membrane computing and image processing: a short survey. Journal of Membrane Computing, 1(1), 58–73.

    Article  MathSciNet  Google Scholar 

  23. Li, B., Peng, H., Wang, J., & Huang, X. (2020). Multi-focus image fusion based on dynamic threshold neural P systems and surfacelet transform. Knowledge-Based Systems, 196(105794), 1–12.

    Google Scholar 

  24. Li, B., Peng, H., Luo, X., Wang, J., Song, X., Pérez-Jiménez, M.J., Riscos-Núñez, A. (2021). Medical image fusion method based on coupled neural p systems in nonsubsampled shearlet transform domain. International Journal of Neural Systems, 31(1), 2050050: 1–17.

  25. Li, B., Peng, H., & Wang, J. (2021). A novel fusion method based on dynamic threshold neural P systems and nonsubsampled contourlet transform for multi-modality medical images. Signal Processing, 178(107793), 1–13.

    Google Scholar 

  26. Peng, H., Li, B., Yang, Q., & Wang, J. (2021). Multi-focus image fusion approach based on CNP systems in NSCT domain. Computer Vision and Image Understanding, 210(103228), 1–14.

    Google Scholar 

  27. Mi, S., Zhang, L., Peng, H., & Wang, J. (2021). Medical image fusion based on DTNP systems and Laplacian pyramid. Journal of Membrane Computing, 3(4), 284–295.

    Article  MathSciNet  Google Scholar 

  28. Liu, Q., Long, L., Yang, Q., Peng, H., Wang, J., & Luo, X. (2022). LSTM-SNP: A long short-term memory model inspired from spiking neural P systems. Knowledge-Based Systems, 235, 107656.

    Article  Google Scholar 

  29. Q. Liu, L. Long, H. Peng, J. Wang, Q. Yang, X. Song, A. Riscos-Núñez, M.J. Pérenz-Jiménez, Gated spiking neural p systems for time series forecasting, IEEE Transactions on Neural Networks and Learning Systems, 2022. Available at https://doi.org/10.1109/TNNLS.2021.3134792.

  30. Goodfellow, I. J., Bengio, Y., & Courville, A. C. (2016). Deep learning. MIT Press.

  31. Hinton, G., Deng, L., Yu, D., Dahl, G. E., & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: the dhared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.

    Article  Google Scholar 

  32. Long J., Shelhamer E., Darrell T. (2015). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431–3440.

  33. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1106–1114.

    Google Scholar 

  34. Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: a search space odyssey. IEEE Transactions on neural Networks and Learning Systems, 28(10), 2222–2232.

    Article  MathSciNet  Google Scholar 

  35. Haykin S. (2009). Neural networks and learning machines. 3rd edition. Pearson.

  36. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  37. Lin M., Chen Q., Yan S. (2013). Network In network. arXiv:1312.4400.

  38. He K., Zhang X., Ren S., Sun J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778.

  39. Simonyan K., Zisserman A. (2014). Very deep convolutional networks for large-scale image recognition, arXiv:1409.1556.

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (No. 62176216 and No. 62076206), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Zhang, L., Liu, Z. et al. ConvSNP: a deep learning model embedded with SNP-like neurons. J Membr Comput 4, 87–95 (2022). https://doi.org/10.1007/s41965-022-00094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-022-00094-6

Keywords

Navigation