Skip to main content
Log in

Small universal improved spiking neural P systems with multiple channels and autapses

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

By abstracting the structure and function of nervous systems and neurons, spiking neural P systems (SN P systems) were first proposed in 2006. Many variants of such systems have been discussed and investigated by introducing some biological and mathematical considerations into SN P systems. For the purpose of proposing small universal systems with as few as possible neurons, we present a new class of SN P systems, improved SN P systems with multiple channels and autapses (ISNP-MCA systems). ISNP-MCA systems combine some interesting discoveries in biology, multiple ion channels in synapses and the special synapses that connect the axon of a neuron onto itself (autapses). In the ISNP-MCA systems, multiple channels are used to ensure the spikes transmitted to the correct neurons, and the autapses could drive the neurons to perform self-excitation. Additionally, for saving neurons, the number of spikes is used to represent different instruction labels. We build an ISNP-MCA system which is proved universal in computing functions, with only nine neurons, eight of them representing eight registers and the other one used for inputting spikes. Additionally, a small universal ISNP-MCA system is proposed to generate numbers, also requiring nine neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Artiom, A., Rudolf, F., Sergiu, I., Marion, O., & Sergey V. (2015). Extended spiking neural P systems with white hole rules. Research Group on Natural Computing. Brainstorming Week on Membrane Computing, Sevilla, pp. 46–62.

  2. Bîlbîe, F. D., & Păun, A. (2020). Small SNQ P systems with multiple types of spikes. Theoretical Computer Science, 862, 14–23.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cabarle, F., Adorna, H., & Pérez-Jiménez, M. (2016). Sequential spiking neural P systems with structural plasticity based on max/min spike number. Neural Computing and Applications, 27(5), 1337–1347.

    Article  Google Scholar 

  4. Cabarle, F., Cruz, R., Cailipan, D., Zhang, D., Liu, X., & Zeng, X. (2019). On solutions and representations of spiking neural P systems with rules on synapses. Information Sciences, 501, 30–49.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cavaliere, M., Egecioglu, O., Ibarra, O.H., Ionescu, M., Păun, G., & Woodworth, S. (2008). Asynchronous spiking neural P systems: Decidability and undecidability. In: M. H. Garzon, et al. (Eds.), 13th international meeting on DNA computing, DNA 13, 2007, Memphis, USA, in: Lecture notes in computer science, vol. 4848, Springer, pp. 246–255.

  6. Díaz-Pernil, D., Christinal, H., & Gutiérrez-Naranjo, M. (2018). Solving the 3-COL problem by using tissue P systems without environment and proteins on cells. Information Sciences, 430–431, 240–246.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, W., Zhou, K., Qi, H., He, C., & Zhang, J. (2018). A tissue P system based evolutionary algorithm for multi-objective VRPTW. Swarm and Evolutionary Computation, 39, 310–322.

    Article  Google Scholar 

  8. Garcia, L., Sanchez, G., Vazquez, E., Avalos, G., & Perez, H. (2021). Small universal spiking neural P systems with dendritic/axonal delays and dendritic trunk/feedback. Neural Networks, 138, 126–139.

    Article  Google Scholar 

  9. Guo, P., Quan, C., & Ye, L. (2019). UPSimulator: A general P system simulator. Knowledge-Based Systems, 170, 20–25.

    Article  Google Scholar 

  10. Ibarra, O., Păun, A., & Rodríguez-Patón, A. (2009). Sequential SNP systems based on min/max spike number. Theoretical Computer Science, 410(30–32), 2982–2991.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2), 279–308.

    MathSciNet  MATH  Google Scholar 

  12. Korec, I. (1996). Small universal register machines. Theoretical Computer Science, 168(2), 267–301.

    Article  MathSciNet  MATH  Google Scholar 

  13. Macababayao, I. C. H., Cabarle, F. G. C., de la Cruz, R. T. A., & Zeng, X. (2022). Normal forms for spiking neural P systems and some of its variants. Information Sciences, 595, 344–363.

    Article  Google Scholar 

  14. Macías-Ramos, L., & Pérez-Jiménez, M. (2012). Spiking neural P systems with functional astrocytes. In: Proceeding of the 13th International Conference on Membrane Computing, CMC 2012, Budapest (pp. 228–242).

  15. Minsky, M. (1967). Computation: Finite and Infinite Machines. Prentice Hall.

    MATH  Google Scholar 

  16. Neary, T. (2008). Three small universal spiking neural P systems. Theoretical Computer Science, 567, 2–20.

    Article  MathSciNet  MATH  Google Scholar 

  17. Pan, L., Zeng, X., Zhang, X., & Jiang, Y. (2012). Spiking neural P systems with weighted synapses. Neural Processing Letters, 35(1), 13–27.

    Article  Google Scholar 

  18. Pan, L., & Zeng, X. (2009). A note on small universal spiking neural P systems. Springer.

    MATH  Google Scholar 

  19. Pan, L., & Păun, G. (2009). Spiking neural P systems with anti-spikes. International Journal of Computers, Communications & Control, 4(3), 273–282.

    Article  Google Scholar 

  20. Pan, L., Păun, G., Zhang, G., & Neri, F. (2017). Spiking neural P systems with communication on request. International Journal of Neural Systems, 27(8), 1750042.

    Article  Google Scholar 

  21. Pan, L., Zeng, X., & Zhang, X. (2010). Small universal asynchronous spiking neural P systems. In: 5th International conference on bio-inspired computing: theories and applications, BIC-TA, Changsha (pp. 622–630).

  22. Păun, A., & Păun, G. (2007). Small universal spiking neural P systems. Bio Systems, 90(1), 48–60.

    Article  MATH  Google Scholar 

  23. Păun, G. (2007). Spiking neural P systems with astrocyte-like control. Journal of Universal Computer Science, 13(11), 1707–1721.

    MathSciNet  Google Scholar 

  24. Păun, G. (2018). A dozen of research topics in membrane computing. Theoretical Computer Science, 736, 76–78.

    Article  MathSciNet  MATH  Google Scholar 

  25. Peng, H., Wang, J., Pérez-Jiménez, M. J., Wang, H., Shao, J., & Wang, T. (2013). Fuzzy reasoning spiking neural P system for fault diagnosis. Information Sciences, 235, 106–116.

    Article  MathSciNet  MATH  Google Scholar 

  26. Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., Lou, X., & Huang, X. (2017). Spiking neural P systems with multiple channels. Neural Network, 95, 66–71.

    Article  MATH  Google Scholar 

  27. Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M., & Riscos-Núñez, A. (2017). Fault diagnosis of power systems using fuzzy tissue-like P systems. Integrated Computer-Aided Engineering, 24(4), 401–411.

    Article  Google Scholar 

  28. Peng, H., Wang, J., Ming, J., Shi, P., Pérez-Jiménez, M., Yu, W., & Tao, C. (2018). Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE Transaction on Smart Grid, 9(5), 4777–4784.

    Article  Google Scholar 

  29. Peng, H., Wang, J., Pérez-Jiménez, M., & Riscos-Núñez, A. (2019). Dynamic threshold neural P systems. Knowledge-Based Systems, 163, 875–884.

    Article  Google Scholar 

  30. Singh, G., & Deep, K. (2016). A new membrane algorithm using the rules of particle swarm optimization incorporated within the framework of cell-like P-systems to solve Sudoku. Applied Soft Computing, 45, 27–39.

    Article  Google Scholar 

  31. Song, B., Zhang, C., & Pan, L. (2017). Tissue-like P systems with evolutional symport/antiport rules. Information Sciences, 378, 177–193.

    Article  MathSciNet  MATH  Google Scholar 

  32. Song, T., Pan, L., & Păun, G. (2013). Asynchronous spiking neural P systems with local synchronization. Information Sciences, 219, 197–207.

    Article  MathSciNet  MATH  Google Scholar 

  33. Song, T., Jiang, Y., Shi, X., & Zeng, X. (2013). Small universal spiking neural P systems with anti-Spikes. Journal of Computational and Theoretical Nanoscience, 10(4), 999–1006.

    Article  Google Scholar 

  34. Song, T., Pan, L., & Păun, G. (2014). Spiking neural P systems with rules on synapses. Theoretical Computer Science, 529, 82–95.

    Article  MathSciNet  MATH  Google Scholar 

  35. Song, T., Wang, X., Zhang, Z., & Chen, Z. (2014). Homogenous spiking neural P systems with anti-spikes. Neural Computing and Applications, 24(7–8), 1833–1841.

    Article  Google Scholar 

  36. Song, T., Gong, F., Liu, X., Zhao, Y., & Zhang, X. (2016). Spiking neural P systems with white hole neurons. IEEE Transactions on NanoBioscience, 15(7), 666–673.

    Article  Google Scholar 

  37. Song, T., & Pan, L. (2016). Spiking neural P systems with request rules. Neurocomputing, 193, 193–200.

    Article  Google Scholar 

  38. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. D., & Rodríguez-Patón, A. (2019). Spiking neural P systems with learning functions. IEEE transactions on nanobioscience, 18(2), 176–190.

    Article  Google Scholar 

  39. Song, X., Peng, H., Wang, J., Ning, G., Wang, T., Sun, Z., & Xia, Y. (2018). On small universality of spiking neural P systems with multiple channels. In: International Conference on Membrane Computing, CMC 2018, Dresden (pp. 229–245).

  40. Song, X., Peng, H., Wang, J., Ning, G., Wang, T., Sun, Z., & Yang, F. (2018). Spiking neural P system with multiple channels and anti-spikes. Bio Systems, 169–170, 13–19.

    Article  Google Scholar 

  41. Song, X., Peng, H., Wang, J., Ning, G., & Sun, Z. (2020). Small universal asynchronous spiking neural P systems with multiple channels. Neurocomputing, 378, 1–8.

    Article  Google Scholar 

  42. Song, X., Valencia-Cabrera, L., Peng, H., Wang, J., & Pérez-Jiménez, M. J. (2021). Spiking neural P systems with delay on synapses. International Journal of Neural Systems, 31(1), 2050042.

    Article  Google Scholar 

  43. Song, X., Valencia-Cabrera, L., Peng, H., & Wang, J. (2021). Spiking neural P systems with autapses. Information Sciences, 570, 383–402.

    Article  MathSciNet  Google Scholar 

  44. Verlan, S., Freund, R., Alhazov, A., Ivanov, S., & Pan, L. (2020). A formal framework for spiking neural P systems. Journal of Membrane Computing, 2(4), 355–368.

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M., & Wang, T. (2013). Weighted fuzzy spiking neural P systems. IEEE Transactions on Fuzzy Systems, 21(2), 209–220.

    Article  Google Scholar 

  46. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., & Pérez-Jiménez, M. (2015). Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Transactions on Power Systems, 30(3), 1182–1194.

    Article  Google Scholar 

  47. Wu, T., Zhang, Z., Păun, G., & Pan, L. (2016). Cell-like spiking neural P systems. Theoretical Computer Science, 623, 180–189.

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, T., Pan, L., Yu, Q., & Tan, K. C. (2020). Numerical spiking neural P systems. IEEE Transactions on Neural Networks and Learning Systems, 32(6), 2443–2457.

    Article  MathSciNet  Google Scholar 

  49. Yuan, Y., Jiang, K., Chen, Z., & Xu, J. (2014). Small universal spiking neural P systems with astrocytes. Romanian Journal of Information Science and Technology, 17(1), 19–32.

    Google Scholar 

  50. Zeng, X., Xu, L., Liu, X., & Pan, L. (2014). On languages generated by spiking neural P systems with weights. Information Sciences, 278, 423–433.

    Article  MathSciNet  MATH  Google Scholar 

  51. Zeng, X., Zhang, X., Song, T., & Pan, L. (2014). Spiking neural P systems with thresholds. Neural Computation, 26(7), 1340–1361.

    Article  MathSciNet  MATH  Google Scholar 

  52. Zeng, X., Pan, L., & Pérez-Jiménez, M. J. (2014). Small universal simple spiking neural P systems with weights. Science Chine Information Sciences, 57(9), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(5), 1440006.

    Article  Google Scholar 

  54. Zhang, X., Zeng, X., & Pan, L. (2008). Smaller universal spiking neural P systems. Fundamenta Informaticae, 87(1), 117–136.

    MathSciNet  MATH  Google Scholar 

  55. Zhang, X., Zeng, Z., & Pan, L. (2014). Weighted spiking neural P systems with rules on synapses. Fundamenta Informaticae, 134(1–2), 201–218.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Sichuan Provincial Department of Science and Technology (No. 2022YFG0327), Chunhui Project Foundation of the Education Department of China (No. Z2017082). The work of Luis Valencia-Cabrera was supported by FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación/Proyecto (TIN2017-89842-P)—MABICAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiao Song.

Ethics declarations

Conflict of interest

We would like to submit the enclosed manuscript entitled “Small Universal Improved Spiking Neural P Systems with Multiple Channels and Autapses”, which we wish to be considered for publication in “Journal of Membrane Computing”. No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, G., Valencia-Cabrera, L. & Song, X. Small universal improved spiking neural P systems with multiple channels and autapses. J Membr Comput 4, 153–165 (2022). https://doi.org/10.1007/s41965-022-00100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-022-00100-x

Keywords

Navigation