Skip to main content
Log in

Turing universality of sequential spiking neural P systems with polarizations as number accepting devices

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

To take full advantage of the information transfer mechanism of biological nervous systems, we consider a new computational model of spiking neural P systems with polarizations (PSN P systems). Compared to spiking neural P systems (SN P systems), PSN P systems use more simple formal language rules, and the behavioral changes of each neuron are jointly controlled by the number of spikes and the polarity state (\(+\), 0, − charge), making systems also have a powerful distributed parallel computing capability. Following the fact that SN P systems can operate as different modes, we consider the computation power of sequential PSN P systems in the accepting mode. In this work, we prove Turing universality of PSN P systems using the min-sequentiality and max-sequentiality strategies as number accepting devices by simulating the deterministic register machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bao, T., Zhou, N., Lv, Z., Peng, H., & Wang, J. (2020). Sequential dynamic threshold neural P systems. Journal of Membrane Computing, 2(4), 255–268.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao, T., Zhou, N., Peng, H., Yang, Q., & Wang, J. (2021). Computational completeness of sequential spiking neural P systems with inhibitory rules. Information and Computation, 281, 104786.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bibi, A., Xu, F., Adorna, H. N., & Cabarle, F. G. C. (2019). Sequential spiking neural P systems with local scheduled synapses without delay. Complexity, 2019, 2.

    Article  MATH  Google Scholar 

  4. Cabarle, F. G. C., de la Cruz, R. T. A., Zhang, X., Jiang, M., Liu, X., & Zeng, X. (2018). On string languages generated by spiking neural P systems with structural plasticity. IEEE Transactions on Nanobioscience, 17(4), 560–566.

    Article  Google Scholar 

  5. Chen, H., Freund, R., Ionescu, M., Păun, G., & Pérez-Jiménez, M. J. (2007). On string languages generated by spiking neural P systems. Fundamenta Informaticae, 75(1–4), 141–162.

    MathSciNet  MATH  Google Scholar 

  6. de la Cruz, R. T. A., Cabarle, F. G., & Adorna, H. N. (2019). Generating context-free languages using spiking neural P systems with structural plasticity. Journal of Membrane Computing, 1(3), 161–177.

    Article  MathSciNet  MATH  Google Scholar 

  7. Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., & Peng, H. (2019). Membrane computing and image processing: a short survey. Journal of Membrane Computing, 1(1), 58–73.

    Article  MathSciNet  Google Scholar 

  8. Díaz-Pernil, D., Peña-Cantillana, F., & Gutiérrez-Naranjo, M. A. (2013). A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing, 115, 81–91.

    Article  Google Scholar 

  9. Garcia, L., Sanchez, G., Vazquez, E., Avalos, G., Anides, E., Nakano, M., Sanchez, G., & Perez, H. (2021). Small universal spiking neural P systems with dendritic/axonal delays and dendritic trunk/feedback. Neural Networks, 138, 126–139.

    Article  Google Scholar 

  10. Gerstner, W., & Kistler, W. M. (2002). Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge University Press.

    Book  MATH  Google Scholar 

  11. Ibarra, O. H., Păun, A., & Rodríguez-Patón, A. (2009). Sequential SNP systems based on min/max spike number. Theoretical Computer Science, 410, 2982–2991.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ionescu, M., Păun, G., Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae 71(2-3), 279–308

  13. Ishdorj, T. O., Leporati, A., Pan, L., Zeng, X., & Zhang, X. (2010). Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theoretical Computer Science, 411(25), 2345–2358.

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, S., Fan, J., Liu, Y., Wang, Y., & Xu, F. (2020). Spiking neural P systems with polarizations and rules on synapses. Complexity, 2020(1), 1–12.

    MATH  Google Scholar 

  15. Leporati, A., Mauri, G., Zandron, C., Păun, G., & Pérez-Jiménez, M. J. (2009). Uniform solutions to SAT and Subset Sum by spiking neural P systems. Natural Computing, 8(4), 681–702.

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, L., & Jiang, K. (2022). Universality of spiking neural P systems with polarizations working in sequential mode induced by maximum spike number. Journal of Membrane Computing, 4(1), 56–67.

    Article  MathSciNet  Google Scholar 

  17. Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models. Neural Networks, 10(9), 1659–1671.

    Article  Google Scholar 

  18. Maass, W., & Bishop, C. M. (2001). Pulsed Neural Networks. MIT Press.

    MATH  Google Scholar 

  19. Neary, T. (2015). Three small universal spiking neural P systems. Theoretical Computer Science, 567, 2–20.

    Article  MathSciNet  MATH  Google Scholar 

  20. Pan, L., & Păun, G. (2009). Spiking neural P systems with anti-spikes. International Journal of Computers, Communications & Control, 4(3), 273–282.

    Article  Google Scholar 

  21. Pan, L., Păun, G., Zhang, G., & Neri, F. (2017). Spiking neural P systems with communication on request. International Journal of Neural Systems, 27(8), 1750042.

    Article  Google Scholar 

  22. Pan, L., & Zeng, X. (2011). Small universal spiking neural P systems working in exhaustive mode. IEEE Transactions on NanoBioscience, 10(2), 99–105.

    Article  Google Scholar 

  23. Pan, T., Shi, X., Zhang, Z., & Xu, F. (2018). A small universal spiking neural P system with communication on request. Neurocomputing, 275, 1622–1628.

    Article  Google Scholar 

  24. Păun, A., & Păun, G. (2007). Small universal spiking neural P systems. BioSystems, 90(1), 48–60.

    Article  MATH  Google Scholar 

  25. Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.

    Article  MathSciNet  MATH  Google Scholar 

  26. Păun, G. (2002). Membrane Computing: An Introduction. Springer-Verlag.

    Book  MATH  Google Scholar 

  27. Păun, G. (2010). A quick introduction to membrane computing. The Journal of Logic and Algebraic Programming, 79(6), 291–294.

    Article  MathSciNet  MATH  Google Scholar 

  28. Păun, G., Rozenberg, G., & Salomaa, A. (2010). The Oxford Handbook of Membrane Computing. Oxford University Press.

    Book  MATH  Google Scholar 

  29. Peng, H., Wang, J., Ming, J., Shi, P., Pérez-Jiménez, M. J., Yu, W., & Tao, C. (2017). Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE Transactions on Smart Grid, 9(5), 4777–4784.

    Article  Google Scholar 

  30. Peng, H., Wang, J., Pérez-Jiménez, M. J., Wang, H., Shao, J., & Wang, T. (2013). Fuzzy reasoning spiking neural P systems for fault diagnosis. Information Sciences, 235, 106–116.

    Article  MathSciNet  MATH  Google Scholar 

  31. Rodríguez-Chavarría, D., Gutiérrez-Naranjo, M. A., & Borrego-Díaz, J. (2020). Logic negation with spiking neural P systems. Neural Processing Letters, 52(2), 1583–1599.

    Article  Google Scholar 

  32. Rong, H., Duan, Y., & Zhang, G. (2022). A bibliometric analysis of membrane computing (1998–2019). Journal of Membrane Computing. https://doi.org/10.1007/s41965-022-00098-2

    Article  MathSciNet  Google Scholar 

  33. Rong, H., Wu, T., Pan, L., & Zhang, G. (2018). Spiking neural P systems: Theoretical results and applications. In C. Graciani, A. Riscos-Núñez, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Enjoying Natural Computing (Vol. 11270, pp. 256–268). Springer.

    Chapter  Google Scholar 

  34. Rong, H., Yi, K., Zhang, G., Dong, J., Paul, P., & Huang, Z. (2019). Automatic implementation of fuzzy reasoning spiking neural P systems for diagnosing faults in complex power systems. Complexity, 2019(1), 1–16.

    Article  Google Scholar 

  35. Song, T., Pan, L., & Păun, G. (2013). Asynchronous spiking neural P systems with local synchronization. Information Sciences, 219, 197–207.

    Article  MathSciNet  MATH  Google Scholar 

  36. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. D., & Rodríguez-Patón, A. (2019). Spiking neural P systems with learning functions. IEEE Transactions on Nanobioscience, 18(2), 176–190.

    Article  Google Scholar 

  37. Song, T., Pang, S., Hao, S., Rodríguez-Patón, A., & Zheng, P. (2019). A parallel image skeletonizing method using spiking neural P systems with weights. Neural Processing Letters, 50(2), 1485–1502.

    Article  Google Scholar 

  38. Song, T., Zheng, P., Wong, M. D., & Wang, X. (2016). Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Information Sciences, 372, 380–391.

    Article  MATH  Google Scholar 

  39. Song, X., Valencia-Cabrera, L., Peng, H., Wang, J., & Pérez-Jiménez, M. J. (2020). Spiking neural P systems with delay on synapses. International Journal of Neural Systems, 31(1), 2050042.

    Article  Google Scholar 

  40. Vreeken, J. (2003). Spiking neural networks, an introduction. Utrecht University.

    Google Scholar 

  41. Wang, H., Zhou, K., & Zhang, G. (2018). Arithmetic operations with spiking neural P systems with rules and weights on synapses. International Journal of Computers Communications and Control, 13(4), 574–589.

    Article  Google Scholar 

  42. Wang, J., Peng, H., Yu, W., Ming, J., Pérez-Jiménez, M. J., Tao, C., & Huang, X. (2019). Interval-valued fuzzy spiking neural P systems for fault diagnosis of power transmission networks. Engineering Applications of Artificial Intelligence, 82, 102–109.

    Article  Google Scholar 

  43. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., & Pérez-Jiménez, M. J. (2014). Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Transactions on Power Systems, 30(3), 1182–1194.

    Article  Google Scholar 

  44. Wu, T., & Pan, L. (2020). The computation power of spiking neural P systems with polarizations adopting sequential mode induced by minimum spike number. Neurocomputing, 401, 392–404.

    Article  Google Scholar 

  45. Wu, T., Pan, L., & Alhazov, A. (2019). Computation power of asynchronous spiking neural P systems with polarizations. Theoretical Computer Science, 777, 474–489.

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, T., Păun, A., Zhang, Z., & Pan, L. (2018). Spiking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360.

    Article  MathSciNet  Google Scholar 

  47. Wu, T., Zhang, L., Lyu, Q., & Jin, Y. (2022). Asynchronous spiking neural P systems with local synchronization of rules. Information Sciences, 588, 1–12.

    Article  Google Scholar 

  48. Wu, T., Zhang, T., & Xu, F. (2020). Simplified and yet turing universal spiking neural P systems with polarizations optimized by anti-spikes. Neurocomputing, 414, 255–266.

    Article  Google Scholar 

  49. Zeng, X., Xu, L., Liu, X., & Pan, L. (2014). On languages generated by spiking neural P systems with weights. Information Sciences, 278, 423–433.

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, G., Pérez-Jiménez, M. J., & Gheorghe, M. (2017). Real-life Applications with Membrane Computing. Springer.

    Book  MATH  Google Scholar 

  51. Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(5), 1440006.

    Article  Google Scholar 

  52. Zhang, G., Rong, H., Paul, P., He, Y., Neri, F., & Pérez-Jiménez, M. J. (2021). A complete arithmetic calculator constructed from spiking neural P systems and its application to information fusion. International Journal of Neural Systems, 31(1), 2050055.

    Article  Google Scholar 

  53. Zhang, X., Zeng, X., & Pan, L. (2008). Smaller universal spiking neural P systems. Fundamenta Informaticae, 87(1), 117–136.

    MathSciNet  MATH  Google Scholar 

  54. Zhang, X., Zeng, X., & Pan, L. (2009). On languages generated by asynchronous spiking neural P systems. Theoretical Computer Science, 410(26), 2478–2488.

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhao, J., & Wang, N. (2011). A bio-inspired algorithm based on membrane computing and its application to gasoline blending scheduling. Computers and Chemical Engineering, 35(2), 272–283.

    Article  Google Scholar 

  56. Zhao, Y., Liu, X., & Wang, W. (2016). Spiking neural P systems with neuron division and dissolution. Plos One, 11(9), 0162882.

    Article  Google Scholar 

  57. Zhao, Y., Liu, Y., Liu, X., & Sun, M. (2022). Qi: Self adapting spiking neural P systems with refractory period and propagation delay. Information Sciences, 589(12), 80–93.

    Article  Google Scholar 

  58. Zhu, M., Yang, Q., Dong, J., Zhang, G., Gou, X., Rong, H., et al. (2021). An adaptive optimization spiking neural P system for binary problems. International Journal of Neural Systems, 31(1), 2050054.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Anhui Provincial Natural Science Foundation (No. 1808085MF173), Natural Science Foundation of Colleges and Universities in Anhui Province of China (No. KJ2021A0640).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqin Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this paper was presented at the 16th International Conference on Bio-inspired Computing: Theories and Applications (BIC-TA 2021), December 2021. This paper was recommended for publication in revised form by the BIC-TA 2021 conference committees.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Jiang, K. Turing universality of sequential spiking neural P systems with polarizations as number accepting devices. J Membr Comput 4, 232–242 (2022). https://doi.org/10.1007/s41965-022-00107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-022-00107-4

Keywords

Navigation