Quantum Machine Intelligence (2020) 2: 3
https://doi.org/10.1007/s42484-020-00015-9

RESEARCH ARTICLE

®

Check for
updates

Decoding surface code with a distributed neural network-based
decoder

Savvas Varsamopoulos 2@ - Koen Bertels * - Carmen G. AlImudever '

Received: 12 June 2019 /Accepted: 26 February 2020 /Published online: 13 March 2020
© The Author(s) 2020

Abstract

There has been a rise in decoding quantum error correction codes with neural network—based decoders, due to the good decoding
performance achieved and adaptability to any noise model. However, the main challenge is scalability to larger code distances
due to an exponential increase of the error syndrome space. Note that successfully decoding the surface code under realistic noise
assumptions will limit the size of the code to less than 100 qubits with current neural network—based decoders. Such a problem
can be tackled by a distributed way of decoding, similar to the renormalization group (RG) decoders. In this paper, we introduce a
decoding algorithm that combines the concept of RG decoding and neural network—based decoders. We tested the decoding
performance under depolarizing noise with noiseless error syndrome measurements for the rotated surface code and compared
against the blossom algorithm and a neural network—based decoder. We show that a similar level of decoding performance can be
achieved between all tested decoders while providing a solution to the scalability issues of neural network—based decoders.

Keywords Quantum error correction - Quantum error detection - Surface code - Decoding - Artificial neural networks

1 Introduction

Quantum error correction (QEC) is for now considered to be
the most time- and resource-consuming procedure in quantum
computation. However, the way that quantum computing is
currently envisioned, QEC is necessary for reliable quantum
computation and storage. The need for QEC arises from the
unavoidable coupling of the quantum system with the envi-
ronment, which causes the qubit state to be altered (decohere).
Altering the quantum state is perceived as errors generated in
the quantum system. Through active error correction and
fault-tolerant mechanisms that control error propagation and
keep the error rates low, we can have the error-free desired
state. Note that, in fault-tolerant techniques, errors can occur
in the quantum system, but do not affect the quantum state in a
catastrophic manner (Nielsen and Chuang 2002).

P4 Savvas Varsamopoulos
svarsamo @ gmail.com

Quantum Computer Architecture Lab, Delft University of
Technology, Delft, The Netherlands

2 QuTech, Delft University of Technology, P.O. Box 5046, 2600
GA Delft, The Netherlands

A critical sub-routine of QEC is decoding. Decoding in-
volves the process of identifying the errors that occur in the
quantum system and proposing corrections that keep the quan-
tum state error-free. The importance of high-speed and accu-
rate decoding lies in the fact that the time budget allowed for
error correction is small, since qubits lose their state rapidly.
Therefore, if the process of decoding exceeds the error correc-
tion time budget, errors will accumulate to the point that the
error-free state cannot be retrieved.

Various classical decoding algorithms have been proposed
over the years with a few examples of classical decoding algo-
rithms being the Blossom algorithm (Edmonds 1965;
Kolmogorov 2009; Fowler 2015; Fowler 2013), the maximum-
likelihood algorithm (Bravyi et al. 2014), and the renormalization
group (RG) algorithm (Duclos-Cianci and Poulin 2010a;
Duclos-Cianci and Poulin 2010b). Recently, there is an increase
in the development of neural network—based decoders that either
consist exclusively of neural networks (Torlai and Melko 2017,
Krastanov and Jiang 2017) or a classical module working togeth-
er with neural networks (Varsamopoulos et al. 2017; Baireuther
et al. 2018; Chamberland and Ronagh 2018; Ni 2018;
Davaasuren et al. 2018). Neural network—based decoders exist
with different designs in the way the decoding is performed, and
a variety of types of neural networks has been explored, like
feed-forward, recurrent, and convolutional neural networks.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-020-00015-9&domain=pdf
https://orcid.org/0000-0002-5277-8768
mailto:svarsamo@gmail.com

3 Page2of12

Quantum Mach. Intell. (2020) 2: 3

In Fig. 1, we present an abstract comparison between var-
ious decoding algorithms based on their decoding perfor-
mance (accuracy) and their execution time (wall clock time),
namely, the Markov Chain Monte Carlo (MCMC) (Hutter
et al. 2014), the maximum-likelihood decoder (MLD)
(Bravyi et al. 2014), the minimum weight perfect matching
(MWPM) (Edmonds 1965; Kolmogorov 2009) that Blossom
algorithm is based on, the neural network—based decoder
(NNbD) (Varsamopoulos et al. 2019), the renormalization
group (RG) (Duclos-Cianci and Poulin 2010a), and the cellu-
lar automaton (CA) (Herold et al. 2015). Decoding perfor-
mance is typically calculated as the ratio of the number of
logical errors created out of the decoder corrections over the
number of error correction cycles run to accumulate these
errors. Execution time is defined as the time spent from the
moment that the input data arrive at the decoder until the time
that the decoder proposes the corrections. As can be seen from
Fig. 1, neural network—based decoders can reach equivalent
decoding performance as classical algorithms while requiring
smaller execution time. This is the main reason that neural
network—based decoders are explored and various designs
have been proposed recently. However, the main issue with
such decoders is that scaling to larger quantum systems will be
significantly harder compared with classical decoders, due to
the required training process of the neural network. As the size
of the system increases, more training samples need to be
collected and then the neural network has to be trained based
on them. The main challenge of NNbDs is that in order to
reach similar decoding performance to classical algorithms
as the quantum system is increasing, the amount of samples
required to be collected increases in an exponential way,
which makes the training harder and slower.

In this work, we will present a neural network—based de-
coder that performs decoding in a distributed fashion, there-
fore providing a solution for the issue of decoding large codes.
We should mention that there exist classical algorithms that

MCMC@
MLD
o
Wall @Blossom
Clock
time RG
P NNbD
cA ®
[J
Low
[Low Accuracy j

Fig. 1 Abstract comparison between decoding performance and
execution time of various decoding algorithms

@ Springer

perform decoding in a distributed way, as can be found in
(Duclos-Cianci and Poulin 2010a) and (Fowler 2015), but in
this paper, we will provide a different approach of the distrib-
uted decoding concept. In (Duclos-Cianci and Poulin 2010a),
the original idea of RG decoding approach is described and
tested. The RG decoding is based on the division of the code
into small tiles, in which a given number of physical qubits are
included and error probabilities about the physical qubits in-
side all tiles are calculated. Then, these tiles are grouped into
larger tiles and the error probabilities about the qubits are
updated. This procedure is continued until only a single tile
has remained containing all the physical qubits of the system.
Based on the updated error probabilities of the largest tile, the
decoder can propose a set of corrections. In (Fowler 2015), a
distributed decoding approach is described, where the code is
divided into small tiles. However, in this case, blossom algo-
rithm is used to decode each tile, and based on the result of it
and the neighbouring information between the tiles, the de-
coder can propose corrections for the whole code. Each tile is
monitored by an application-specific integrated circuit
(ASIC), which is dedicated for the tile.

In our strategy, the code is divided into small overlapping
regions, referred to as overlapping tiles, where local informa-
tion about errors on physical qubits is obtained. Then, this
local information is combined and a decoding for the whole
code is obtained. We compare our algorithm to the
unoptimized version of the blossom algorithm (Edmonds
1965; Kolmogorov 2009) and argue about the decoding per-
formance achieved. Furthermore, we will provide reasoning
for the potential high level of parallelization of our algorithm
that will be suitable for a high-speed hardware implementation
without loss of decoding performance. Also, the problem of
the exponential increase of the error syndrome space is miti-
gated, since it is controlled by the selection of the size of the
decoded regions. This allows neural network—based decoders
to successfully decode larger codes.

The rest of the paper is organized in the following way: in
Sections 2 and 3, we give a short introduction in quantum
error correction and the concept of the RG decoding, respec-
tively. In Section 4, we present the design of the distributed
neural network—based decoder, and in Section 5, we provide
the results in terms of decoding performance. Finally, in
Section 6, we draw our conclusions about the distributed
decoding approach.

2 Quantum error correction

Quantum computation is error-prone due to the fragility of the
qubits, which lose their coherence through their interaction
with the environment. Furthermore, quantum operations are
still imperfect, altering the quantum state in unpredictable
ways. These alterations are interpreted as errors in the

Quantum Mach. Intell. (2020) 2: 3

Page3of12 3

quantum system, which are discretized into Pauli errors in
order to be corrected in an easier way.

Quantum error correction involves an encoding process of
the quantum information into multiple qubits and a decoding
process that identifies and counteracts the noise that is inserted
in the quantum system. Many unreliable physical qubits are
encoded, similarly to classical error correction, to one more
reliable qubit, known as logical qubit. There are many ways
that encoding can be achieved; these encoding schemes are
also known as quantum error correcting codes (Landahl et al.
2011; Fowler et al. 2012a; Suchara et al. 2011; Bravyi 2010;
Bombin 2010; Bravyi et al. 2013), but we are focusing on the
surface code (Gottesman 1997; Kitaev 2003).

Logical qubits are used both for quantum computation and
memory; however, errors occur at the physical level.
Therefore, a decoding process that will identify the errors on
the physical qubits is required. At the end of the decoding
process, corrections against identified errors are proposed by
the decoder.

2.1 Surface code

The surface code is a topological stabilizer code with simple
structure, local interactions, and high level of protection
against errors (Dennis et al. 2002; Raussendorf and
Harrington 2007; Fowler et al. 2009; Wang et al. 2011;
Fowler et al. 2012a; Bombin and Martin-Delgado 2009;
Bombin 2011; Bravyi and Kitaev 1998; Fowler et al.
2012b). A logical qubit in the surface code includes two types
of physical qubits, namely, the data qubits, which store quan-
tum information, and the ancillary or ancilla qubits, which can
be used to find errors on the data qubits. The smallest version
of a planar surface code (Bravyi and Kitaev 1998; Freedman
and Meyer 2001), which requires the least amount of physical
qubits, known as the rotated surface code (Horsman et al.
2012), is presented in Fig. 2.

A logical qubit is defined by its logical operators (X1, Zy),
which are responsible for logical state changes. Any operator
of the form X" or Z" that forms a chain which spans two

Parity checks
AX0=X X,
AX1=X X X, X

177277475

AX2=X X, X X

37477677

AX3=XX,

AZ0=Z,Z,
AZ1=27.7.Z

01734

AZ2=272277

@

!- L
W _ 457778

AZ3—2225

Fig. 2 Rotated surface code describing 1 logical qubit that consists of 17

physical qubits. The 9 qubits that are at the corners of the tiles (0-8) are

data qubits, and the 8 qubits that are inside the tiles (AXi, AZi) are ancilla

qubits. The parity checks of the code are shown on the right side

boundaries of the same type can be considered a logical oper-
ator, with » being the amount of data qubits included in the
logical operator. The operator with the smallest # is always
selected; however, as can be seen from Fig. 2, there are mul-
tiple logical operators with n =3, which is the smallest » for
this code. Any one of them can be selected without further
assumptions. For example, a valid Xi could be XpX3Xs and a
valid ZL could be ZGZ7ZS-

The level of protection against errors is usually described
with the metric known as code distance. Code distance, (d), is
calculated as the minimum number of physical operations
required to change the state of the logical qubit (Terhal
2015; Devitt et al. 2013). Therefore, for the logical qubit of
Fig. 2, the code distance would be 3.

The relation between the code distance and the errors that
can be successfully corrected is given by:

d—1

weight of error = {TJ (1)

According to Eq. 1, for a d=3 surface code, all single
errors (weight = 1) are going to be successfully corrected.

Since the errors are discretized into bit- and phase-flip er-
rors, it is sufficient to only have two types of ancilla qubits, a
Z-type for detecting bit-flips and an X-type for detecting
phase-flips. Each ancilla qubit resides inside a tile and inter-
acts with 4/2 neighbouring data qubits to perform a parity
check operation. We provide the parity checks for a d=3
rotated surface code in Fig. 2, as obtained by running the
circuits depicted in Fig. 3. These circuits are run in parallel
and constitute a surface code (error correction) cycle. Both
circuits consist of initialization of the ancilla qubit, followed
by a series of CNOT gates between the ancilla and the data
qubits, followed by ancilla measurement.

The result of the ancilla measurement is a binary value that
indicates whether the value of the parity check measured is the
same as the one of the previous error correction cycle or not.
When a parity check returns a different value between two
consecutive surface code cycles, it is referred to as a detection
event. By running the circuits of Fig. 3, we obtain the values
for all parity checks and infer what errors have occurred.
Gathering all parity check values out of a single surface code
cycle forms the error syndrome.

2.2 Error decoding

A single data qubit error will cause two neighbouring parity
checks to indicate two detection events (Z error in the bottom
of the lattice in Fig. 4), unless the error occurs at the corner of
the lattice which will lead to only one parity check indicating
one detection event (Z error in the top corner of the lattice in
Fig. 4). Multiple data qubit errors that occur near each other
form chains of errors (X errors in Fig. 4), which causes only

@ Springer

3 Page4of 12

Quantum Mach. Intell. (2020) 2: 3

Fig. 3 Left: circuit for Z-type —O <>
ancilla. Right: circuit for X-type TN
ancilla ® NV
JaRY
® NP
l /AR
U

0) 5D

two detection events located at the parity checks existing at the
endpoints of the error chain (Dennis et al. 2002; Terhal 2015;
Fowler et al. 2012a, b).

In addition, the measurement process is also imperfect,
which leads to different type of errors. When a measurement
outcome is misinterpreted, a correction might be applied
where no error existed and vice versa. The way that a mea-
surement error is observed is by comparing the measurement
values of multiple consecutive surface code cycles for the
same parity check, as presented in Fig. 5.

In the case where the error probability for a data qubit error
is equal to the error probability for a measurement error, d
surface code cycles are deemed enough to successfully iden-
tify measurement errors (Raussendorf et al. 2007). When a
measurement error is successfully identified, no correction is
required.

Thus, through observation of the parity checks throughout
multiple surface code cycles, identification of errors is made in
space (data errors) and in time (measurement errors). The
decoder, which is the module responsible for analysing the
detection events and producing corrections against the errors
that have occurred, receives the error syndrome out of one or
multiple surface code cycles and produces a set of corrections
to be applied.

However, totally suppressing the noise is unfeasible, since
the decoder might misinterpret the information coming from

Fig. 4 Rotated surface code with code distance 5. Errors are denoted on
top of the data qubits with X or Z, and detection events corresponding to
these errors are shown with red dots

@ Springer

/AR
U

the error syndrome. The main reason for such misinterpreta-
tions comes from the fact that the surface code is a degenerate
code. This degeneracy means that different sets of errors cre-
ate the same error syndrome. Therefore, based on the physical
error rate of the quantum operations, different sets of errors are
more likely than others. This puts an extra assumption to the
decoder, since it should output different corrections based on
the error probability. Based on all these reasons, it is evident
that no decoder can perfectly suppress all noise.

3 Decoding algorithms

The main parameters that define a good decoder are the decoding
performance, the ability to efficiently scale to large code dis-
tances, and the execution time. There exist decoders that can
reach good decoding performance, enough to make fault-
tolerant quantum computing possible. Some of the classical al-
gorithms are the maximum-likelihood algorithm (Bravyi et al.
2014), the blossom algorithm (Edmonds 1965; Kolmogorov
2009; Fowler 2015), and the renormalization group (RG) algo-
rithm (Duclos-Cianci and Poulin 2010a; Duclos-Cianci and
Poulin 2010b). The maximum-likelihood algorithm investigates
the most probable error that has occurred that produces the ob-
served error syndrome. This process can reach high decoding
accuracy but is extremely time-consuming especially as the code
distance increases. The execution time scales as O(ny), with x
being an approximation parameter, as given in Bravyi et al.
(2014). The blossom algorithm can reach slightly lower decoding
performance than the maximum-likelihood decoder, but still
good enough to be used in experiments. The execution time
scales linearly with the number of qubits (Fowler 2013), but still

3rd time step

2nd time step

1st time step

Fig. 5 Rotated surface code with code distance 3 at consecutive time
steps. Alternating pattern on the measurement value of the same parity
check indicates the presence of a measurement error

Quantum Mach. Intell. (2020) 2: 3

Page50f12 3

might not meet the small execution time requirements of con-
temporary experiments. However, there exists an optimized ver-
sion of the blossom algorithm that claims a constant average
processing time per detection round, which requires dedicated
hardware (Fowler 2015). The renormalization group decoding
provides a good solution for the decoding of large quantum
systems, because decoding is performed in a local manner
through distributed regions throughout the lattice. The RG algo-
rithm can be highly parallelized, and the scaling is reported to be
log(1), for an 1x1 code (Duclos-Cianci and Poulin 2010a).
However, the decoding accuracy is not as good as the other
two algorithms. Neural network—based decoders with a large
variety of designs (Torlai and Melko 2017; Krastanov and
Jiang 2017; Varsamopoulos et al. 2017; Baireuther et al. 2018;
Chamberland and Ronagh 2018; Ni 2018; Davaasuren et al.
2018; Maskara et al. 2018; Darmawan and Poulin 2018;
Sweke et al. 2018; Varsamopoulos et al. 2019) have been recent-
ly suggested that report similar or better decoding performance
than the blossom and RG decoders, making them a potential
candidate for decoding.

Currently, the time budget for error correction and
decoding is small for most qubit technologies, due to the er-
roneous nature of the qubits and the imperfect application of
quantum operations. Therefore, a high-speed version of a de-
coder would be necessary. This requirement leads us to neural
network—based decoders which are shown to have constant
execution time after being trained. However, in order to run
complex algorithms, many qubits are required, and as men-
tioned earlier, scaling to large code distances with neural
network—based decoders is extremely hard, since the amount
of data required to train the algorithm grow exponentially with
the number of qubits.

In this paper, we will present a neural network—based de-
coder that exploits the concept of distributed decoding, in a
similar way to RG decoding and the parallel approach of
(Fowler 2015). Based on such a distributed way of decoding,
we limit the amount of training data required, making the
distance of the code irrelevant.

Our previous efforts were mainly focused on developing
neural network—based decoders that can achieve better
decoding performance than classical decoding algorithms
and report a constant execution time for each code distance
for all range of physical error probabilities, which scales line-
arly with the code distance (Varsamopoulos et al. 2019).
However, good decoding performance was harder to achieve
as the code distance increased. The main problem was the
exponential increase of the error syndrome space, which re-
quired an immensely large number of training samples in or-
der for the decoder to achieve similar performance to the clas-
sical decoding algorithms for d > 9. We provide the size of the
training datasets used for the code distances investigated in
(Varsamopoulos et al. 2019) for the depolarizing error model
in Table 1.

Table 1 Size of training datasets

Code distance Training dataset size Full dataset size

d=3 256 28
d=5 6x10° 224
d=17 5x10° 248
d=9 2x107 280

A way that the error space can be limited is through a
distributed way of decoding similar to the RG algorithm.
By dividing the code in small regions which are going
to provide individual information about decoding every
region of the code, the decoder can have enough infor-
mation about decoding the whole code. Limiting the
region that we want to locally decode, the error syn-
drome space is also limited, allowing us to increase the
distance of the code without changing the decoding of
each region.

RG decoding is similar to decoding concatenated codes,
which have various levels of encoding, as can be seen in
Fig. 6.

In these codes, decoding is achieved by passing the error
information concerning the qubits from the lower level to the
higher level. The information about errors is updated through-
out the encoding levels. The decoding occurs at the last
encoding level, and a final decision about the logical state is
made.

The strategy of the RG decoding can be described
according to Fig. 7. At first, the lattice is cut in small
(green) tiles and the probability of an error occurring in
all qubits included in that tile is evaluated. After gather-
ing the updated error probabilities in the green tiles, the
lattice is cut into bigger (red) tiles and the error proba-
bility of all qubits included in that tile is evaluated. This
process is continued until there is only one tile left that
includes all qubits in the code.

The same approach can be applied to surface code.
However, the challenge here is that the parity checks
cannot be broken down into constant size tiles in a
way that every parity check corresponds to a single tile.
Therefore, we need to use overlapping tiles, which will
always include whole parity checks of the code in a
single tile. The boundary qubits that belong to
neighbouring tiles are treated as independent variables
on each tile, and the error probability for the same qubit
is different depending on the tile. The way that the error
probabilities are usually calculated is by belief propaga-
tion (Duclos-Cianci and Poulin 2010a; Duclos-Cianci
and Poulin 2010b) in the RG approach.

We decided to use the idea of overlapping tiles, but follow a
different approach than the RG algorithm as we will explain in
the following section.

@ Springer

3 Page6of 12

Quantum Mach. Intell. (2020) 2: 3

Level 2

Level 1

®

®

XXX

\ <
¢
00000

Fig. 6 Encoding levels of a concatenated code. At level 0, there are nine qubits that are encoded in three qubits at level 1 and these qubits are encoded in

one qubit at level 2. Arrows show the information flow

4 Proposed algorithm based on distributed
decoding

We developed a neural network—based decoder that performs
distributed decoding based on the concept of the RG decoders.
As mentioned, the main idea behind this algorithm is to make
neural network—based decoders able to successfully decode
large code distances. By restricting the decoding in small re-
gions (tiles) of the lattice, the decoder does not have to explore
a large error syndrome space, rather just decode every small
tile and then combine the information out of all tiles.

The main difference between a distributed neural network—
based decoder and the RG decoder is that the former only has
one level of concatenation. Instead of moving from smaller tile to
bigger tile until the whole lattice is a single tile, we segment the
lattice into small equally sized tiles that are overlapping with each
other, so that each tile includes whole parity checks of the code.
Then, we obtain error information from each individual tile and
combine the information out of all tiles to get the error informa-
tion for the whole lattice. In this case, there is no need to calculate
the error probability of all qubits and forward it to the next level
of concatenation, rather find a way to combine the information
arising from the each tile.

In order to decode based on the distributed decoding ap-
proach, we will use the same two-module decoder as was

|
ul
o

Fig. 7 Tile segmentation that represents the levels of concatenation in a
concatenated code. The smallest level of concatenation is represented by
the green tiles, the next level of concatenation is represented by the red
tiles, the following level of concatenation is represented by the blue tiles,
etc.

@ Springer

presented in (Varsamopoulos et al. 2019). Our decoding algo-
rithm consists of two modules, a classical decoding module
that we call simple decoder and a neural network. The simple
decoder provides a naive decoding for the whole lattice, in
which a chain is created between each detection event and
its closest boundary of the same type. The corrections arising
from the simple decoder occur in the data qubits underneath
the chain. An example is provided in Fig. 8, where AZ5 and
ancilla AX4 have indicated the presence of an error in their
proximity. The proposed corrections of the simple decoder
will be Z5, Z11 arising from ancilla AX4 and X3, X7 arising
from ancilla AZS.

The simple decoder receives the error syndrome for the
whole lattice and provides a set of corrections for the
whole lattice. This is a fast process since the corrections
arising from each detection event are independent from
the corrections arising from other detection events; there-
fore, they can be parallelized. However, the simple decod-
er cannot yield high decoding accuracy on its own, due to
its simplistic design.

Fig. 8 Description of the simple decoder operation for the rotated surface
code with distance 5. Detection events are presented with the red dots.
Red lines indicate which data qubits are going to be corrected

Quantum Mach. Intell. (2020) 2: 3

Page70f12 3

That is why we also include the neural network that will work
as a supervisor to the simple decoder. More accurately, the neural
network will be trained to identify for which error syndromes the
simple decoder will lead to a logical error. In the case where a
logical error will be created out of the simple decoder corrections,
the neural network will output the appropriate logical operator
that will cancel the logical error out. As we showed in
(Varsamopoulos et al. 2019), the combination of these two mod-
ules will provide high decoding performance.

In order to train the neural network, we create a training
dataset by running surface code cycles and storing the error
syndrome and the corresponding logical state of the logical
qubit after the corrections of the simple decoder are applied.
The size of the training dataset varies based on the code dis-
tance and the error model. For more information about all the
parameters that affect the dataset, we refer the reader to our
previous work (Varsamopoulos et al. 2019).

In Fig. 9, we provide an example of the segmentation of a
d =5 rotated surface code into four overlapping tiles of d =3
rotated surface codes.

As can be seen from Fig. 9, each parity check is included in
at most two tiles. The error syndrome obtained for the whole
lattice (d = 5) is broken down into parts of the error syndrome
that correspond to each small tile (d = 3). The error syndrome
out of one surface code cycle consists of 24 bits, due to the 24
parity checks of the d = 5 code. The error syndrome will be cut
into smaller parts of the initial error syndrome that fit the d =3

Fig. 9 Segmentation of a d = 5 rotated surface code into four overlapping
tiles of d = 3 rotated surface codes

tiles. Due to inclusion of the shared parity checks, the bits that
are available out of the four d =3 tiles are now 32. Each error
syndrome of the d =3 tile corresponds to a part of the com-
plete error syndrome. The error probabilities of the logical
state, Prob(/), Prob(X), Prob(Z), Prob(Y), that are associated
with the given tile are averaged, and the probabilities for the
logical state of each tile is provided. Then, the 4 probabilities
concerning the logical state of each d =3 tile are used as the
inputs of the neural network, which will provide at the output
the probabilities of the logical state for the whole lattice.
Based on the output of the neural network, extra corrections
are going to be applied in the form of the appropriate logical
operator to cancel any potential logical error created by the
simple decoder. The information contained in the 32 bits of the
d =3 tiles is now compressed to 16 bits that constitute the
inputs of the neural network and represent the probabilities
of contribution to the logical state out of every d=3 tile.
The results of the proposed algorithm which is based on the
distributed decoding are presented in Section 5.1.

4.1 Optimizing for the size of training dataset

The scalability problem that all neural network—based de-
coders face is based on the exponential increase of the training
samples required to efficiently decode. As an extension to our
work on neural network—based decoders, we propose an alter-
ation to our decoding algorithm in order to increase the im-
portant training samples included in the training dataset, with-
out increasing the size of the dataset.

As mentioned, our decoding strategy is based on a two-
module approach (simple decoder and neural network), where
the neural network exists to increase the decoding perfor-
mance of the simple decoder. However, the simple decoder
can be designed in different ways, which will lead to different
decoding performance for different designs. Therefore, an in-
vestigation of the performance of the simple decoder is crucial
before the training of the neural network.

We observed that for all code distances investigated
for the depolarizing error model, the simple decoder pro-
vided corrections that would lead to an error-free logical
state (I) ~42% of the time. In those cases, the neural
network would be unnecessary, since it would output
the identity operator. Therefore, if we removed the error
syndromes that the simple decoder corrects properly
from the training dataset, then the dataset could be in-
creased even further, with more relevant error syn-
dromes. The only caveat is that another module, named
binary neural network in Fig. 13, should be included to
the decoder which will predict whether the obtained error
syndrome will be properly corrected by the simple de-
coder or not. The binary logic neural network might be
implemented in a simpler way, which will make the

@ Springer

3 Page8of 12

Quantum Mach. Intell. (2020) 2: 3

Simple Binary
decoder NN
Logical
error
yes no
Decode with

overlapping tiles

|

Predicted logical
operator

Identity
operator

Data qubit
corrections

<«
<

Final
corrections

Fig. 10 Description of the design flow of the optimized version of the
distributed decoder

binary classification task faster, instead of using a recur-
rent neural network as was chosen for this design.

A flowchart of the optimized algorithm with the in-
clusion of the extra neural network is presented in
Fig. 10. We divide the operation of the neural network
from the original design of distributed decoding to two
neural networks, namely, a binary neural network and a
neural network for distributed decoding.

The binary neural network will predict whether the obtain-
ed error syndrome will lead to a logical error or not. The input
of the binary neural network is the obtained error syndrome
for the whole lattice, and the output will be a binary value,
indicating whether extra corrections need to be applied or not.
These extra corrections will arise from the neural network for
distributed decoding. This neural network will work similarly

Table 2 Reduction in required inputs of the neural network

Code distance Old inputs New inputs
d=5 24 16
d=17 43 36
d=9 80 64

@ Springer

to the one in the original unoptimized strategy described in
Section 4, but the training samples will be restricted to the
error syndromes that lead to a logical error. The inputs and
outputs of this neural network are previously explained. Note
that we need to include all 4 logical states for this neural
network, because there is still a probability of an unknown
to training input to produce an error-free logical state. The
results of the optimized version for the size of the dataset are
presented in Section 5.2.

5 Results

In order to check whether the distributed decoding algorithm can
reach similar decoding performance as the other popular
decoding algorithms, we tested it against an unoptimized version
of the blossom algorithm (Edmonds 1965; Kolmogorov 2009)
and our previous implementation of neural network—based de-
coder (Varsamopoulos et al. 2019) for the depolarizing error
model with noiseless error syndrome measurements.

The depolarizing error model assumes errors only on the data
qubits and perfect error syndrome measurements. Bit-flip (X)
errors, phase-flip (2) errors, and both bit- and phase-flip (¥) errors
are assumed to be generated with equal probability of p/3. Such a
simplistic error model is enough to prove that the distributed
decoding algorithm that we propose can reach similar decoding
performance to other decoding algorithms and that the scalability
issues of neural network—based decoder are addressed.

The critical aspect of our decoder is the choice of the size of
the overlapping tiles. Since there is only one level of concat-
enation, contrary to RG decoding, the size of the overlapping
tiles plays a significant role in the algorithm. Having a large
tile size might provide better decoding, for example, decoding
a d =9 surface code with d =7 tiles might be more beneficial
than decoding with d = 3 tiles, since there will be less shared
parity checks and long error chains will be included in a single
tile. However, the bottleneck that will make such a case de-
code poorly in our design is the inability of the decoder to
handle properly the error syndromes unknown to the training
dataset. Since it becomes exponentially harder to gather all the
possible error syndromes as the code distance increases, the
training dataset will be an incomplete set of all potential cases.
In the case of an unknown to the training error syndrome, the
neural network will not have any meaningful data to make a
prediction, making the behaviour of the neural network incon-
sistent. Such a case occurs because there is an intermediate
step between the cutting of the error syndrome into parts and
the averaging of the probabilities of each part.

Based on that, we opted to always divide the lattice into
d =3 overlapping tiles, since the d=3 case only consists of
256 different error syndromes. This is an easily obtained com-
plete training dataset, to which any part of error syndrome of
any large distance can deconstruct to. All possible error

Quantum Mach. Intell. (2020) 2: 3

Page9of12 3

Fig. 11 Comparison of decoding

—— 4%(d=3)
performance between the —— d=5
distributed decoder with four —— Blossom

overlapping tiles of d = 3 rotated
surface codes inside a d=5
rotated surface code (blue), the
unoptimized version of the
blossom algorithm (red), and the
neural network—based decoder
(green)

Logical error rate

syndromes of the large lattice (d > 3) are represented through
the d = 3 overlapping tiles, without having to explicitly sample
all possible error syndromes for the large lattice.

The only downside of using d=3 tiles is that there exist
some error syndromes that are highly ambiguous to what log-
ical state they lead. Fortunately, these ambiguous error syn-
dromes are not extremely frequent, making the errors arising
from this shortcoming rare.

Another benefit of the distributed decoding approach is that
the number of inputs required by the neural network is de-
creased compared with decoding the whole lattice approach.
The reduction of inputs of the neural network for the code
distances tested are shown in Table 2.

5.1 Distributed decoding results
The comparison of the decoding performance between the

distributed decoding, the neural network—based decoder from
Varsamopoulos et al. (2019), and unoptimized version of the

107
Physical error rate

blossom algorithm for distance 5, 7, and 9 rotated surface
codes is presented in Figs. 11, 12 and 13, respectively. Each
point in these graphs has a confidence interval of 99.9%
(Figs. 11, 12 and 13).

As can be seen from Figs. 11, 12, and 13, the distributed
decoder can reach similar decoding performance to the com-
pared decoders for d=5, 7, and 9, respectively. In order to
have a fair comparison between the two neural network—
based decoders, we used the same dataset to train both de-
coders; therefore, the decoding performance should be com-
parable. These comparisons were used as a proof-of-concept
to verify that a distributed decoding approach is feasible and
that limitations are observed.

5.2 Optimized version results

The comparison of the decoding performance of this
optimized version of the algorithm with the unoptimized

Fig. 12 Comparison of decoding —— 9*(d=3)
performance between the 4 4=7
distributed decoder with nine —— Blossom

overlapping tiles of d = 3 rotated
surface codes inside a d="7
rotated surface code (blue), the
unoptimized version of the
blossom algorithm (red), and the
neural network—based decoder
(green)

Logical error rate

107
Physical error rate

@ Springer

3 Page 10 of 12

Quantum Mach. Intell. (2020) 2: 3

Fig. 13 Comparison of decoding

—+— 16%(d=3)
performance between the —— d=9
distributed decoder with sixteen —— Blossom

overlapping tiles of d =3 rotated 10
surface codes inside a d =9
rotated surface code (blue), the

.. . [0]
unoptimized version of the ®
blossom algorithm (red), and the 5 102
neural network—based decoder g

®
(green) s
o
—

10

one and the benchmarks that were used in this work for
the largest code tested (d=9) is presented in Fig. 14.

As expected, the optimized version with the two neural
networks cannot achieve better decoding performance than
the unoptimized version, since we kept the same training
dataset for both designs in order to have a fair comparison.
The binary neural network has the same dataset as the
unoptimized version, but the neural network for distributed
decoding only includes the ~ 58% of error syndromes that lead
to a logical error.

An important clarification is that the optimization is
mentioned in the context of the potential increase of the
training dataset and not in terms of better decoding
performance. However, the fact that we reached the
same level of decoding performance with both designs,
suggests that we can make these optimizations without
any loss of decoding performance.

Fig. 14 Comparison between the

o ° —— 16*(d=3)
optimized version of the —— 4=9
distributed decoding (blue) to the —— Blossom

unoptimized version (red), the 107
unoptimized version of the
blossom algorithm (pink), and the

(0]
neural network—based decoder ©
(green) S, ,

510

©

°

[

o

-

107

107

@ Springer

—— 16%(d=3)_opt

107
Physical error rate

6 Conclusions

We presented a decoding algorithm that performs decoding in a
distributed manner that can achieve similar decoding perfor-
mance to existing decoders, like the blossom decoder and the
neural network—based decoder for d =35, 7, and 9. Furthermore,
due to the distributed way of decoding and the deduction in the
neural network inputs, larger codes can be potentially decoded.
The problem of the exponential increase of the training dataset is
mitigated through the distributed decoding strategy, where any
error syndrome can be decomposed to smaller d=3 tiles.
However, large quantum systems will still require large amounts
of training samples. Moreover, in terms of execution time, we
assume that a highly parallel implementation for both the simple
decoder and the neural network can potentially achieve a high-
speed implementation of the algorithm. Finally, we provide an
alternative version of the distributed decoding strategy that can

107
Physical error rate

Quantum Mach. Intell. (2020) 2: 3

Page 11 0f12 3

reach the same level of decoding performance as the original
algorithm. The advantage of this alternative is the capability of
using larger training datasets compared with other neural
network—based decoders, making it easier to achieve better
decoding performance for higher code distances.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Baireuther P, O’Brien TE, Tarasinski B, Beenakker CWJ (2018) Machine-
learning-assisted correction of correlated qubit errors in a topological
code. Quantum 2:48. https://doi.org/10.22331/q-2018-01-29-48

Bombin H (2010) Topological subsystem codes. Phys Rev A 81:032301.
https://doi.org/10.1103/PhysRevA.81.032301

Bombin H (2011) Clifford gates by code deformation. New J Phys 13(4):
043005. https://doi.org/10.1088/1367-2630/13/4/043005

Bombin H, Martin-Delgado MA (2009) Quantum measurements and
gates by code deformation. J Phys A Math Theor 42(9):095302.
https://doi.org/10.1088/1751-8113/42/9/095302

Bravyi S (2010) Stabilizer subsystem codes with spatially local generators.
IEEE Information Theory Workshop, p 1-5. http:/ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=5592872&isnumber=5592637.
Accessed 3 Mar 2020

Bravyi SB, Kitaev AY (1998) Quantum codes on a lattice with boundary.
quant-ph/9811052

Bravyi S, Duclos-Cianci G, Poulin D, Suchara M (2013) Subsystem surface
codes with three-qubit check operators. Quantum Inf Comput 13(11—
12):963-985. http://dl.acm.org/citation.cfm?id=2535639.2535643.
Accessed 3 Mar 2020

Bravyi S, Suchara M, Vargo A (2014) Efficient algorithms for maximum
likelihood decoding in the surface code. Phys Rev A 90:032326.
https://doi.org/10.1103/PhysRevA.90.032326

Chamberland C, Ronagh P (2018) Deep neural decoders for near term
fault-tolerant experiments. Quantum Sci Technol 3(4):044002.
http://stacks.iop.org/2058-9565/3/i=4/a=044002. Accessed 3 Mar
2020

Darmawan AS, Poulin D (2018) Linear-time general decoding algorithm
for the surface code. Phys Rev E 97:051302. https://doi.org/10.
1103/PhysRevE.97.051302

Davaasuren A, Suzuki Y, Fujii K, Koashi M (2018) General framework
for constructing fast and near-optimal machine learning- based de-
coder of the topological stabilizer codes. arXiv:1801.04377

Dennis E, Kitaev A, Landahl A, Preskill J (2002) Topological quantum mem-
ory.] Math Phys 43(9):4452-4505. https://doi.org/10.1063/1.1499754

Devitt SJ, Munro WJ, Nemoto K (2013) Quantum error correction for
beginners. Rep Prog Phys 76(7):076001. https://doi.org/10.1088/
0034-4885/76/7/076001

Duclos-Cianci G, Poulin D (2010a) A renormalization group decoding
algorithm for topological quantum codes. Information Theory
Workshop (ITW), IEEE, p 1-5. https://doi.org/10.1109/CIG.2010.
5592866

Duclos-Cianci G, Poulin D (2010b) Fast decoders for topological quan-
tum codes. Phys Rev Lett 104:050504. https://doi.org/10.1103/
PhysRevLett.104.050504

Edmonds J (1965) Paths, trees, and flowers. Can J Math 17:449-467.
https://doi.org/10.4153/CIM-1965-045-4

Fowler A G (2013) Optimal complexity correction of correlated errors in
the surface code. arXiv:1310.0863

Fowler AG (2015) Minimum weight perfect matching of fault tolerant
topological quantum error correction in average o(1) parallel time.
Quantum Inf Comput 15:145-158

Fowler AJ, Stephens AM, Groszkowski P (2009) High threshold univer-
sal quantum computation on the surface code. Phys Rev A 80:
052312. https://link.aps.org/doi/10.1103/PhysRevA.80.052312.
Accessed 3 Mar 2020

Fowler AG, Mariantoni M, Martinis JM, Cleland AN (2012a) Surface codes:
towards practical large-scale quantum computation. Phys Rev A 86:
032324. https://doi.org/10.1103/PhysRevA.86.032324

Fowler AG, Whiteside AC, Hollenberg LCL (2012b) Towards practical
classical processing for the surface code. Phys Rev Lett 108:180501.
https://doi.org/10.1103/PhysRevLett.108.180501

Freedman MH, Meyer DA (2001) Projective plane and planar quantum
codes. Found Comput Math 1(3):325-332

Gottesman D (1997) Stabilizer codes and quantum error correction.
Dissertation, Caltech

Herold M, Campbell E T, Eisert J, Kastoryano M J (2015) Cellular-
automaton decoders for topological quantum memories. Npj Quantum
Information 1. https://www.nature.com/articles/npjqi201510. Accessed
3 Mar 2020

Horsman C, Fowler AG, Devitt S, Meter RV (2012) Surface code quan-
tum computing by lattice surgery. New J Phys 14(12):123011.
https://doi.org/10.1088/1367-2630/14/12/123011

Hutter A, Wootton JR, Loss D (2014) Efficient Markov chain Monte
Carlo algorithm for the surface code. Phys Rev A 89:022326.
https://doi.org/10.1103/PhysRevA.89.022326

Kitaev A (2003) Fault-tolerant quantum computation by anyons. Ann
Phys 303(1):2-30. http://www.sciencedirect.com/science/article/
pii/S0003491602000180. Accessed 3 Mar 2020

Kolmogorov V (2009) Blossom V: a new implementation of a minimum
cost perfect matching algorithm. Math Program Comput 1:43-67.
https://doi.org/10.1007/512532-009-0002-8

Krastanov S, Jiang L (2017) Deep neural network probabilistic decoder
for stabilizer codes. Sci Rep 7:11003

Landahl A J, Anderson J T, Rice P R (2011) Fault-tolerant quantum
computing with color codes. arXiv:1108.5738

Maskara M, Kubica A, Jochym-O’Connor T (2018) Advantages of versatile
neural-network decoding for topological codes. arXiv:1802.08680

Ni X (2018) Neural network decoders for large-distance 2d toric codes.
arXiv:1809.06640

Nielsen MA, Chuang IL (2002) Quantum computation and quantum
information. Cambridge University Press, Cambridge

Raussendorf R, Harrington J (2007) Fault-tolerant quantum computation
with high threshold in two dimensions. Phys Rev Lett 98:190504.
https://doi.org/10.1103/PhysRevLett.98.190504

Raussendorf R, Harrington J, Goyal K (2007) Topological fault-tolerance
in cluster state quantum computation. New J Phys 9(6):199-199.
https://doi.org/10.1088/1367-2630/9/6./199

Suchara M, Bravyi S, Terhal B (2011) Constructions and noise threshold
of topological subsystem codes. J Phys A Math Theor 44(15):
155301. http://stacks.iop.org/1751-8121/44/i=15/a=155301.
Accessed 3 Mar 2020

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.22331/q-2018-01-29-48
https://doi.org/10.1103/PhysRevA.81.032301
https://doi.org/10.1088/1367-2630/13/4/043005
https://doi.org/10.1088/1751-8113/42/9/095302
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5592872&isnumber=5592637
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5592872&isnumber=5592637
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevA.90.032326
http://stacks.iop.org/2058-9565/3/i=4/a=044002
https://doi.org/10.1103/PhysRevE.97.051302
https://doi.org/10.1103/PhysRevE.97.051302
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/10.1109/CIG.2010.5592866
https://doi.org/10.1109/CIG.2010.5592866
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.4153/CJM-1965-045-4
https://link.aps.org/doi/10.1103/PhysRevA.80.052312
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevLett.108.180501
https://www.nature.com/articles/npjqi201510
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1103/PhysRevA.89.022326
http://www.sciencedirect.com/science/article/pii/S0003491602000180
http://www.sciencedirect.com/science/article/pii/S0003491602000180
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1088/1367-2630/9/6./199
http://stacks.iop.org/1751-8121/44/i=15/a=155301

3 Page 12 of 12

Quantum Mach. Intell. (2020) 2: 3

Sweke R, Kesselring M S, van Nieuwenburg E P L, Eisert J (2018)
Reinforcement learning decoders for fault-tolerant quantum compu-
tation. arXiv:1810.07207

Terhal BM (2015) Quantum error correction for quantum memories. Rev
Mod Phys 87:307-346. https://doi.org/10.1103/RevModPhys.87.
307

Torlai G, Melko RG (2017) Neural decoder for topological codes. Phys
Rev Lett 119:030501 7. https://doi.org/10.1103/PhysRevLett.119.
030501

Varsamopoulos S, Criger B, Bertels K (2017) Decoding small surface
codes with feedforward neural networks. Quantum Sci Technol

@ Springer

3(1):015004. http://stacks.iop.org/2058-9565/3/i=1/a=015004.
Accessed 3 Mar 2020

Varsamopoulos S, Bertels K, Almudever CG (2019) Designing neural
network based decoders for surface codes. IEEE Trans Comput.
https://doi.org/10.1109/TC.2019.2948612

Wang DS, Fowler AG, Hollenberg LCL (2011) Surface code quantum
computing with error rates over 1%. Phys Rev A 83:020302. https:/
doi.org/10.1103/PhysRevA.83.020302

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
http://stacks.iop.org/2058-9565/3/i=1/a=015004
https://doi.org/10.1109/TC.2019.2948612
https://doi.org/10.1103/PhysRevA.83.020302
https://doi.org/10.1103/PhysRevA.83.020302

	Decoding surface code with a distributed neural network–based decoder
	Abstract
	Introduction
	Quantum error correction
	Surface code
	Error decoding

	Decoding algorithms
	Proposed algorithm based on distributed decoding
	Optimizing for the size of training dataset

	Results
	Distributed decoding results
	Optimized version results

	Conclusions
	References

