
HKUST SPD - INSTITUTIONAL REPOSITORY

Title Exploring how software developers work with mention bot in GitHub

Authors Peng, Zhenhui; Ma, Xiaojuan

Source CCF Transactions on Pervasive Computing and Interaction, v. 1, September 2019, p.
190-203

Version Accepted Version

DOI 10.1007/s42486-019-00013-2

Publisher Springer

Copyright © the Authors

This version is available at HKUST SPD - Institutional Repository (https://repository.ust.hk)

If it is the author's pre-published version, changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a definitive version of this work,
please refer to the published version.

https://doi.org/10.1007/s42486-019-00013-2
https://repository.ust.hk

Noname manuscript No.
(will be inserted by the editor)

Exploring How Software Developers
Work with Mention Bot in GitHub

Zhenhui Peng · Xiaojuan Ma

Received: date / Accepted: date

Abstract Recently, major software development platforms have started to
provide automatic reviewer recommendation (ARR) services for pull requests
to improve collaborative coding review process. However, the user experi-
ence of ARR is under-investigated. In this paper, we use a two-stage mixed-
methods approach to study how software developers perceive and work with
the Facebook mention bot, one of the most popular ARR bots in GitHub.
Specifically, in Stage I, we conduct archival analysis on projects employing
mention bot and a user survey to investigate bot performance. A year later,
in Stage II, we revisit these projects and conduct additional surveys and in-
terviews with three user groups: project owners, contributors and reviewers.
Results show that developers appreciate mention bot saving their efforts, but
are bothered by its unstable setting and unbalanced workload allocation. We
conclude with design considerations for improving ARR services.

Keywords Automatic reviewer recommendation services · Mixed-methods ·
User experience · Software development platform

1 Introduction

More and more developers work collectively on software development projects
in online platforms such as GitHub. When contributors of a project push their
changes of the code to the project repository, pull requests (PRs) are issued
and they must be reviewed and approved before the new code gets merged
into the codebase (Fig. 1). To maintain the flow of project development, there

Zhenhui Peng
Hong Kong University of Science and Technology
Tel.: +852-62280396
E-mail: zpengab@connect.ust.hk

Xiaojuan Ma
Hong Kong University of Science and Technology

2 Zhenhui Peng, Xiaojuan Ma

Fig. 1 The pull request process [8].

is a pressing demand for timely, qualified PR reviews [29]. According to a sur-
vey in 2014, 15% of the contributors complain that their pull requests hardly
get a prompt feedback [13]. It has always been a challenge assigning pull
requests to appropriate reviewers [3]. On the one hand, although contribu-
tors can propose reviewers in their PRs, many of them, especially those new
to a project, have little idea of who may be qualified and willing to review
their code [27]. On the other hand, reviewers have limited time and capac-
ity to handle the large quantity of PRs [15,19]. To improve the efficiency of
collaborative code review process, some developers introduce bots that pro-
vide automatic reviewer recommendation (ARR) service into their projects.
For instance, Balachandran [3] implements “ReviewBot” that shortlists po-
tential reviewers by code change history, and then selects the most appro-
priate reviewer using code review history. Recently, major software devel-
opment platforms start to provide their own ARR services for users. For ex-
ample, developers in GitHub with write access to a project’s repository can
request reviews from suggested developers based on git blame data [11].

Existing research on ARR services mainly focus on the performance in
terms of recommendation accuracy [17,29,30,6]. However, the user experi-
ence of and interaction among different stakeholders involved in the process
are under-investigated (Fig. 1). In particular, little work has looked into 1) how
developers perceive and work with ARR in practice, and 2) what are the most criti-
cal needs for different types of users involved in ARR services. To fill this gap, we
conduct a case study on Facebook mention bot, an ARR bot active in GitHub
from October 2015 to April 2018, as a lens to gain insights into a better design
of ARR services in collaborative software development platforms.

In this paper, we use a two-stage mixed-methods approach to address the
two questions mentioned above. In Stage I (2015.11 to 2016.06), we conduct
archival analysis on 205 GitHub projects that employed Facebook mention
bot at that time. More specifically, for each project, we compare the response
rate and response time of pull requests with and without reviewers suggested
by mention bot, to assess the effectiveness and efficiency of this ARR bot in
practice. We further analyze comments related to mention bot inside these
projects and conduct a survey with 52 mention bot users to explore user
needs. In Stage II (2016.07 to 2017.08), we revisit these projects and analyze

Exploring How Software Developers Work with Mention Bot in GitHub 3

new user comments emerged within the year to see if user needs identified
in Stage I are met. To gain more in-depth understanding of why developers
use / do not use mention bot and what they expect from an ARR service,
we divide the ARR users into three groups: project owners, contributors, and
reviewers. Then we conduct an additional survey with thirty-six valid re-
sponses and interview six developers in GitHub to explore the needs of each
group. Results of the two-stage investigation show that developers appreci-
ate mention bot saving their efforts, but different user groups have differ-
ent demands for ARR services, i.e., simplicity and stability needed by project
owners, transparency needed by contributors, while selectivity needed by
reviewers. We summarize our findings into considerations for future ARR
services design.

2 Background and Related Work

In this section, we first introduce the concepts of pull request (PR) and review
process in GitHub, then we summarize the mechanism of some existing ARR
services.

2.1 Pull request and Review Process in GitHub

The pull-based development is the latest model of distributed software de-
velopment [12]. To receive external contributions, repositories are shared by
fork (i.e., clone) and modified by PRs. Normally there are three kinds of de-
velopers involving in the pull request process:

– Project owners who possess PRs in their projects.
– Contributors who submit PRs that need reviews.
– Reviewers who help to review PRs.

The pull request process is described in Fig. 1. Contributors fork a master
branch and commit changes to their local branches [12,14,15]. To make con-
tributions to the master branch, contributors submit a set of changes by cre-
ating a PR. The owners inspect the PR and project owners decide whether to
merge the changes or not. During this process, the project owners, reviewers
and contributors usually need to discuss the proposed changes. In the end,
the PR is closed.

After a pull request is opened, anyone with read access can review and
comment on the changes it proposes. GitHub allows developers to comment
on the changes proposed in pull requests, approve the changes, or request
further changes before the pull request is merged. When PRs are submitted,
they are intended to be reviewed within a short period of time. However, in
reality, owners in popular projects receive too many PRs. They have difficul-
ties in reviewing these PRs by themselves or identifying other appropriate
reviewers for them [3,15,17,24,25,27,28,29,30].

4 Zhenhui Peng, Xiaojuan Ma

2.2 Automatic Reviewer Recommendation for Pull Requests

To reduce project owners’ efforts, some researchers have proposed automatic
reviewer recommendation (ARR) services [3,17,24,27,29,30]. As the key of
any review is context and change understanding [1], these ARR services in-
tend to bring in reviewers who are qualified for the PRs and willing to help.
They normally use historical information of code change and review in or-
der to identify appropriate reviewers [3,17,24,27,29,30]. The “ReviewBot”
proposed by Balachandran shortlists potential reviewers by blame informa-
tion, and then selects the most appropriate reviewer who has modified the
related code sections most [3]. Thongtanunam et al. proposed “RevFinder
” which recommends reviewers not only based on code review history but
also the similarity of file paths [24]. Then, “Tie” was proposed to enhance
“RevFinder” by using different similarity measures for file paths and tex-
tual information in pull requests [27]. Jiang et al. developed “CoreDevRec”
to train a prediction model using a support vector machine [17]. This model
uses three features, which are file path, social interaction between reviewers
and contributors, and activeness of reviewers. Profiles of the developers are
also used for reviewer recommendations. For example, Rahman et al. pro-
posed to use the experience of a developer in certain specialized technolo-
gies associated with a PR in addition to the cross-project experience to de-
termine the expertise as a potential code reviewer [20]. The experiment on
their dataset show that this technique can achieve over 85% recommendation
accuracy. Fejzer et al. employed a similarity function between programmers’
profiles and change proposals to be reviewed to give recommendations, and
they obtained improved results in terms of classification metrics and perfor-
mance [6]. A review of different PR reviewer recommendation techniques can
be found in [2].

While the above ARR services are outside tools of the software develop-
ment platforms, GitHub has provided their own ARR services. The “CODE-
OWNERS file” [10] is used to define individuals or teams that are responsible
for the code in a repository. These developers will be automatically requested
for review if someone modifies the code they own. The “suggested reviewer”
feature [11] can automatically suggest reviewers based on git blame data. Ev-
ery time a PR is submitted, the organization members, repository owners and
collaborators can see the suggested reviewers in the right sidebar of the PR
and they can decide whether to request reviews from these reviewers or not.

However, little work addresses how software developers perceive and
work with these ARR services in practice. Many factors could affect the ef-
ficiency of these services, as suggested by works that explore user experience
of recommendation services in the domains of music, digital cameras [4,7,
18,22,23]. For example, Sinha et al. [22] studied the role of transparency in
music recommender systems. Stolze et al. [23] found that compared with the
feature-oriented recommendation, needs-oriented recommendation for digi-
tal cameras was more helpful. Chen Li et al. [4] studied how personality in-
fluences users’ need for recommendation diversity. Ferwerda et al. [7] tested

Exploring How Software Developers Work with Mention Bot in GitHub 5

Fig. 2 An example of the mention bot comments [5].

that the user personality affected their ways of choosing music. However,
the methods to study the user experience in above scenarios only referred to
only one specific aspect or no more than two user groups. It is still a chal-
lenge to study user experience in the domain of ARR service for online soft-
ware development platforms, which might involve three kinds of user groups
(project owner, contributor and reviewer) in.

2.3 Facebook Mention Bot

Facebook mention bot can recommend any developers to be reviewers us-
ing two heuristics: 1) If a line was deleted or modified, the person that last
touched that line is likely to care about this pull request. 2) If a person last
touched many lines in the file where the change was made, he may want to
be notified [5].

Since its launch in October 2015, mention bot had served for 205 GitHub
projects and handled 12060 pull requests up to June 2016. owners of GitHub
projects can deploy the mention bot using a webhook service [26] without any
extra setting. Once the mention bot is employed in a project, a recommenda-
tion comment is added to the newly made pull requests as shown in Fig. 2. By
default, mention bot will straightly mention its recommended reviewers af-
ter the PR is created, but project owners can manually personalize the bot by
adding a “.mention-bot” file to the base directory of the repository [5]. For in-
stance, they can configure some recommendation and notification rules such
as the maximum number of candidates for recommendations, the message
from mention bot and the blacklist for some reviewers.

3 Research Method Overview

In this section, we first introduce the facebook mention bot, and then present
our two-stage mixed-methods approach.

3.1 Facebook Mention Bot

In this work, we use mention bot developed by facebook as a lens to look into
how developers work with it in practice and what are the critical needs for
different stakeholders. Facebook mention bot can recommend any developers

6 Zhenhui Peng, Xiaojuan Ma

to be reviewers using two heuristics: 1) If a line was deleted or modified, the
person that last touched that line is likely to care about this pull request. 2) If
a person last touched many lines in the file where the change was made, he
may want to be notified [5].

Since its launch in October 2015, mention-bot had served for 205 GitHub
projects and handled 12060 pull requests up to June 2016. owners of GitHub
projects can deploy the mention-bot using a webhook service [26] without
any extra setting. Once the mention-bot is employed in a project, a recom-
mendation comment is added to the newly made pull requests as shown in
Fig. 2. By default, mention-bot will straightly mention its recommended re-
viewers after the PR is created, but project owners can manually personalize
the bot by adding a “.mention-bot” file to the base directory of the reposi-
tory [5]. For instance, they can configure some recommendation and notifica-
tion rules such as the maximum number of candidates for recommendations,
the message from mention bot and the blacklist for some reviewers.

3.2 Two-stage Mixed-methods Approach

To better explore how software developers perceive and work with Facebook
mention-bot overtime, we carry out our research with archival data, survey
and interview in two stages. In the first stage, we analyze 205 projects that
employ mention bot, investigate 53 issue comments about mention-bot, and
conduct a survey with 52 mention-bot users. In this stage, we focus on men-
tion bot’s performance in practice during a certain period (from November
2015 to June 2016). By analyzing the pull requests in these projects, we mea-
sure the response rate and the response time of the recommended reviewers.
We use the issue comments to investigate user needs for mention-bot, while
the survey is used to learn how users perceive its usefulness. We conclude
with three potential features to improve mention bot and address user needs
at the end of Stage I. In the second stage, we revisit these projects and analyze
another 90 related comments emerged within this year to see if user needs
identified in Stage I are met. Furthermore, to gain more in-depth understand-
ing of why people use/do not use mention bot and what they expect from an
ARR service, we conduct a survey and acquire 34 valid responses from three
user groups, i.e., project owners, contributors and reviewers, and then inter-
view six developers. Then we explore factors critical to the user experience
of ARR services for each user group. Noticed that above research methods
might conflict with or support each other, we then integrate our results of
two stages to discuss how to provide better user experience in automatic re-
viewer recommendation services.

Exploring How Software Developers Work with Mention Bot in GitHub 7

Features 1st quartile Median Mean 3rd quartile Histogram

Development period (months) 9.5 20.63 27.8 43.6

Size (SLOC) 1.5K 9.37K 58.01K 41.1K

Commits 188 546 2,863.48 2,855

Pull requests 21 69 413.30 246

Table 1 Properties of projects used in our archival analysis

Likability # of issue comments

Positive 25
Negative 20
Neural 8

Table 2 The number of issues comments that show the positive, negative and neural evaluations
of the mention bot.

4 Stage I

4.1 Archival Data and Survey Collection

In Stage I, we track the public activities of Facebook mention bot up to June
2016 and identify 205 projects in GitHub that employ this bot. We use GitHub
API [9] to gather their properties, pull requests and issues. Among these
projects, we exclude the projects that have less than four reviewer candidates
(i.e., the total number of contributors in the project), since the mention bot
normally recommends up to three candidates. We further exclude the projects
that have not received any external contribution (i.e., pull requests made by
external contributors). According to the literature, a reviewer identification
task can be challenged with external contributions [15,25,28]. Finally, we use
155 projects for our investigation. We exclude the following pull requests:
1) Pull requests made by project owners and merged into a master branch
without any review. 2) Pull requests made by other bots. 3) Pull requests not
closed. In total, we identify 64,937 pull requests from the 155 projects. Among
them, the mention bot is called in 9,413 pull requests while not being used in
the rest.

Table 1 represents the properties of the 155 projects in our dataset up to
June 30th, 2016. Their average development period is about 28 months (SD
= 21.38). The latest revisions of the projects have approximately 58K lines of
source code on average excluding whitespace and comments (SD = 124.71K).
The average numbers of commits and pull requests in total are around 2,863
(SD = 7,953.35) and 413 (SD = 1,250.60) respectively for each project.

We extract 258 issue comments that contain the keyword, “mention bot”
in the original 205 projects. To avoid bias, we exclude 15 issue comments
from the two projects that develop and test the mention bot. Through manual
inspection, we finally identify 53 issue comments that express the likeability

8 Zhenhui Peng, Xiaojuan Ma

of the mention bot (Table 2). There are 25 positive comments, 20 negative
comments and eight neutral comments that give suggestions.

In Stage I, we identify 2,467 developers in GitHub who make or review
the pull requests that call Facebook mention bot. Among them, 1,445 devel-
opers post their email addresses on GitHub profiles or personal web pages.
We advertise for our survey to these developers by emails. To get more re-
sponses, we also invite them to distribute the survey to their communities. In
total, we receive 52 responses.

Our survey consists of five questions about the perceived usefulness and
likeability of Facebook mention bot. The first question asks if mention bot
recommendations are appropriate. We use a 5-point Likert scale to measure
the appropriateness of the mention bot recommendations. In the next ques-
tion, we measure the perceived reduction in response time and efforts after
deploying the mention bot. We provide four statements regarding this aspect
and ask the respondents about their level of agreement using a 5-point Lik-
ert scale. The first two statements represent whether participants receive re-
sponses faster or provide a faster response when the mention bot is involved.
The other two statements are to examine whether the participants can save
the efforts spent on identifying proper reviewers or exploring pull requests
using the mention bot. The rest three questions ask about the likeability of the
mention bot. Specifically, we use a 5-point Likert scale to measure how much
the participants like the mention bot. Then, we offer the four options that cor-
respond to the “Reviewer recommendation”, “Automatic notification”, “En-
able/disable notification for certain PRs/people” and “Message customiza-
tion” features of the mention bot. We ask the participants to select one or
multiple favorite features if they respond positively to the previous question.
Finally, a yes-no question asks if they would continue using the mention bot.

4.2 Analysis and Findings

4.2.1 Performance of mention bot

To understand what kind of benefits a reviewer recommendation service can
provide, we first technically measure mention bot’s performance by response
rate and response time of recommended reviewers in practice. In our work,
we measure response rate rather than top-k accuracy as in other works [3,
17,24,27] because contributors concern about whether there is any response
from recommended reviewers. If the ARR service can correctly recommend
a reviewer who is interested in working on the PR even he or she might not
work it out, it still does a good job. Response rate (Equation 1) represents
the percentage of pull requests whose actual reviewers are correctly recom-
mended by Facebook mention bot. It is similar to top-k accuracy, but we count
it as a hit if any of the recommended developers is observed in a review pro-
cess.

Response rate =

∑
r∈R

Hit(r, Response)

|R|
× 100% (1)

Exploring How Software Developers Work with Mention Bot in GitHub 9

Response time difference # of projects

PRNon−bot > PRBot (p-value < 0.05) 25
PRNon−bot < PRBot (p-value < 0.05) 6
No significant difference 124

Table 3 We compared the response time in the PRBot and PRNon−bot groups using Mann-
Whitney-Wilcoxon test.

The calculation of response rate for each project is straightforward. For
each pull request (PR) that mention bot comments on, we count it as a suc-
cessful response if at least one of the recommended reviewers show up in this
PR review process. Overall the average of the response rate in the 155 projects
is about 75.37% (SD = 26.92%).

Response time (Equation 2) can reflect whether mention bot can reduce
time in involving reviewers in pull requests. It refers to the time difference
between submitting a PR and the first response made by any developer other
than the submitter [28,29].

Response time = TFirstResponse − TSubmitPR (2)

To measure the response time of recommended reviewers, for each project,
we divide the pull requests into the two groups by whether the mention bot
is called, and compare the average response time between the two groups.
In detail, we put the pull requests that call the mention bot into the PRBot

group and the rest of them into the PRNon−bot group. After excluding the
responses made by bots, we calculate the average of the response time in each
group. To precisely calculate the average, we exclude the outliers using the
interquartile range (IQR) in Box-and-Whisker plots [16]. We found that the
response time is reduced in 75 out of the 155 projects (about 48.4%) when
deploying the mention bot. However, the response time rather increase in the
rest of the projects.

We further analyze the change in the response time using Mann-Whitney-
Wilcoxon test. Table 3 shows the comparison between the response time in
the PRBot and PRNon−bot groups. When the mention bot is deployed, the
response time in the 25 projects is significantly reduced while the response
time in the 6 projects is significantly increased. In the rest of the projects,
there is no significant time difference between the two groups. We then ran-
domly sample pull requests that do not employ the mention bot from the 6
projects whose response time significantly increased (PRNon−bot < PRBot).
The average response time is about 1.7 hours (SD = 5.14). However, in the 25
projects with a significant decrease in response time (PRNon−bot > PRBot),
the average response time is around 9.45 hours (SD = 74.01). This result im-
plies that mention bot is more likely to reduce the response time in less active
projects.

In our survey, we evaluate developers’ perceived usefulness and likeabil-
ity of mention bot. Fig. 3(a) shows the survey results of the first question that

10 Zhenhui Peng, Xiaojuan Ma

Fig. 3 Participants indicate their level of agreement with following statements: (a)I think the
recommendations made by the mention bot are appropriate. (b)I receive faster responses from
reviewers using mention bot. (c)I respond faster to review request sent through the mention bot.
(d)Using the mention bot saves my efforts to identify proper reviewers. (e)Using the mention bot
saves my efforts to explore PRs.

asks the appropriateness of Facebook mention bot recommendations. About
75% of the participants express positive responses with strongly agree or
agree. In the second question, the first two statements ask whether the partic-
ipants could save time when using the mention bot. As shown in Fig. 3(b)(c),
50-52% of the participants strongly agree or agree with the statements while
36.5-38.5% of the participants neither agree nor disagree with them. The rest
11.5% of the participants strongly disagree or disagree with the time benefit
from the mention bot. The last two statements in the second question ask if
the participants could reduce efforts with the mention bot. Overall, compared
to the responses for the time reduction, there are more positive and negative
responses but less neutral responses. As described in Fig 3(d)(e), 46.2-71.1%
of the participants give us positive responses (strongly agree or agree) while
13.5-28.8% of them reply with the neutral (neither agree nor disagree). 15.4-
25% of the participants show the negative responses (strongly disagree or
disagree).

Interestingly, about 20% of the participants respond that the mention bot
is useful to save the efforts for identifying proper reviewers but not helpful
to reduce the time spent in this process. These results may imply that the
effort reduction in identifying reviewers is perceived as the key benefit that
mention bot provides for developers.

In the survey, we ask the participants whether they like mention bot and
whether they would continue using it. The results show that 73% of the par-
ticipants strongly like or like the service and 84.6% of the participants would
continue using it, which suggests that users are positive about mention bot.

Exploring How Software Developers Work with Mention Bot in GitHub 11

Fig. 4 The favorite features of the mention bot. The participants can choose one or multiple
features.

4.2.2 User needs for mention bot

In our survey, we ask the participants to indicate their level of agreements
with mention bot’s features: “Reviewer recommendation”, “Automatic noti-
fication”, “Enable/disable notification for certain PRs/people” and “Message
customization”. Fig. 4 shows the result from the survey. The most favorite fea-
ture is the “Reviewer recommendation” with the support from about 81.3%
of the participants. The second most favorite feature is the “Automatic noti-
fication” which receives votes from approximately 60.4% of the respondents.
The other two features, “Enable/disable notification for PRs/people” and
“Message customization”, are the favorites for around 37.5% and 16.7% of
the participants, respectively. The 53 issue comments also show users’ prefer-
ence about these features. As showed in Table 2, 25 issue comments contain
positive feedbacks on the mention bot. The developers seem to like its core
features, including the “Reviewer recommendation” and “Automatic notifi-
cation”. Especially, when the mention bot is shut down [21], we observe de-
velopers feel inconvenient and manually send notifications to the potential
reviewers:

“@YYY could you take a look at this and #2645 if you have time [. . .] Not
sure what happened to our friend the mentionbot. facebook/mention-bot#134”

However, in the 20 comments of negative feedbacks on the mention bot,
developers dislike the mention bot’s insensitivity to context and unbalanced
workload allocation. Some of them do not want to get further notifications
because they no longer work on the projects:

“Can someone please correct the blacklist for @mention-bot? I don’t want
to receive any notifications for this repository as I’m not a collaborator here.
PS: Just complaining because this is the 4th email I receive thanks to the bot.”

While the context insensitivity problem bothers the developers who no longer
work on the projects, the unbalanced workload allocation problem increases
some reviewers’ workloads and discourage others:

“If a person is being recommended a lot, nominate a reviewer who wouldn’t
have a super hard time”

“It’s almost always recommending the same person in our project which
is not really that helpful.”

12 Zhenhui Peng, Xiaojuan Ma

The main cause of these problems lies on its manual setting. In the cur-
rent environment, project owners have to manually identify developers who
do not want to be notified and then add them to the blacklist. The “En-
able/disable notification for certain PRs/people” feature of mention bot is
designed to minimize the above incorrect recommendation and unbalanced
workload allocation problems, but its unfriendly designation discourages the
users (only 37.5% of the participants like it).

The results from the survey and comment analysis imply that “Reviewer
recommendation” and “Automatic notification” are the key features of men-
tion bot (favorite by 83.1% and 60.4%, respectively). When these two features
are broken, users will feel inconvenient. But if mention bot keeps notifying
a specific reviewer, it will increase the workload of the reviewer. And users
need a higher context sensitivity which can avoid notification to inactive de-
velopers in the projects. Given with these results, we find the possibility that
the user needs may come from three user groups. For example, the project
owners and contributors need the “Reviewer recommendation” and “Auto-
matic notification” features, while the reviewers need a more balanced work-
load allocation and a higher context sensitivity.

4.2.3 Potential Features to Improve Mention Bot

To address above user needs, we propose three potential features to improve
mention bot:

– A delay for 1-3 days before activate mention bot
User comments suggest that the immediate activation of mention bot may
cause redundant notifications to developers. We explore the distribution
of the response time in the archival data. We find that about 80.34% and
89.52% of the pull requests are responded within 24 and 72 hours respec-
tively. Given this, we propose that a delay for 1-3 days before activate
mention bot would help to avoid the majority of redundant notification.

– Automatically disable notification for inactive developers
We find that the notification feature may bother developers who no longer
work on the projects. Mention bot does have a blacklist to not notify cer-
tain developers, but project owners need to manually identify these devel-
opers and add them to the blacklist. We propose a feature that automati-
cally turns off notifications if reviewer candidates are inactive. We suggest
measuring the activeness of developers by checking their last contribution
to the project and how much times they fail to respond to the recommen-
dations before. For example, if a reviewer candidate made the last contri-
bution on a project six months ago and fails to respond to the notifications
three times, it would be better to turn off the notification to this developer.

– Limit the maximum number of review requests to one developer.
Workload balancing among recommended reviewers can be critical. As
the participants say, it is not realistic to ask one developer to review many
pull requests at a time while others have nothing to work with. We pro-
pose that we can limit the maximum number of review requests to one

Exploring How Software Developers Work with Mention Bot in GitHub 13

developer. For example, if one developer receives more than five review
requests within a week, it is reasonable to lower the priority of this devel-
oper in recommendations.

Overall, up to June 2016, Facebook mention bot performs quite well as a
reviewer recommendation service. Its recommended reviewers respond ac-
tively to the PRs (75.37%) and it is useful to reduce the response time in less
active projects. Our user study supports that mention bot recommends ap-
propriate reviewers for the PRs (75%) and developers perceive that the effort
reduction in identifying reviewers is the key benefit provided by mention bot.
And we find the possibility that the user needs identified may come from dif-
ferent user groups, which motivates us to investigate factors critical to their
experience of ARR services separately in the later stage.

5 Stage II

Over the year, Facebook mention bot has added more configuration options
to benefit different users. For example, the “delayed” feature that we pro-
posed in Stage I is added with default “false” setting and a “delayUntil 3 days”
configuration. In addition, to avoid redundant notifications to the reviewers
and provide a better recommendation result for the contributors, project own-
ers can now filter developers and files via settings such as “requiredOrgs”,
“skipAlreadyMentionedPR”, “fileBlacklist” and “skipTitle”. With so many
attractive features added in, it is interesting to know whether mention bot has
attracted more projects, whether developers are satisfied with the improvement, and
whether each of the three user groups have unmet needs and expectations for ARR
service. To answer these questions, we conduct the second stage of our re-
search, starting with re-analyzing the adoption of mention bot and investi-
gating factors critical to the three user groups of ARR services, i.e., project
owners, contributors and reviewers, respectively.

5.1 Re-analysis of the Adoption of Mention Bot

5.1.1 Archival analysis

In Stage II, we find that the official account of “mention-bot” has been re-
moved from GitHub so that we can not track the mention bot’s activities in
the PRs like we do in Stage I anymore. But mention bot is still active. On
the one hand, reviewers are still notified by mention bot. On the other hand,
some developers configure mention bot by adding a “.mention-bot” file to the
base directory of the repository and use different accounts to comment on the
PRs, such as “jimmibot” in “syndesisio / syndesis-ui” repository and “salt-
jenkins” in “saltstack/salt” repository. Therefore, we revisit the 205 projects
to check whether they still use mention bot using following criteria: 1) Re-
moved: Some issues explicitly claim that the project removes mention bot.

14 Zhenhui Peng, Xiaojuan Ma

Status Removed Still use Disappeared Unclear Newly add
of projects 22 30 11 142 22

Table 4 Mention bot’s status in the projects in Stage II

Contents # Details

Benefits 5 Automatic notification; reviewer recommendation; involve more reviews in
Workload allocation 9 The same people; aggressive notification; want to be added in blacklist
Bug 12 Configuration problem; ignore the config. file; not active
Suggestions 9 Turn it into plug-in; recommend experts; whitelist; provide some links
Alternative 8 GitHub “suggested reviewers”; CODEOWNERS; dwylbot

Table 5 Contents showed in some comments

2) Still use: The “.mention-bot” configuration file still exists in the project or
there are issues that imply the existence of mention bot. 3) Disappeared: The
project no longer exists in GitHub. 4) Unclear: There is no “.mention-bot”
configuration file inside the project and we cannot find any issues claiming
that the mention bot is still use or has been removed.

Through our manual check, we find that 22 projects have removed men-
tion bot, 30 projects still use it, 11 projects disappear and the rest 142 projects
are unclear (Table 4). Among these 142 projects, 72 of them have no issues
about mention bot, which is unusual if mention bot serves well in these projects.
In addition, we try to identify mention-bot-related activities in other GitHub
projects between July 2016 and August 2017 by searching “create mention
bot” and “remove mention bot” in project “Commits” log in GitHub. Filter-
ing out the irrelevant results, we identify that 22 projects claim that they em-
ploy mention bot and 19 projects claim that they remove it during this period.
We can see that mention bot is not increasingly used in GitHub during this
year.

To collect users comments about mention bot, we search related issues in
GitHub using the keyword “mention bot”. Filtering out the irrelevant results,
we finally identify 90 effective comments emerged within the year (from July
2016 to August 2017) that express user attitude towards mention bot. Among
these comments, 33 of them show positive attitude toward mention bot, 26 of
them are negative, and the rest 31 are neural. We further classify these com-
ments based on their contents (Table 5), and identify five comments specify-
ing benefits of mention bot, nine complain about the unbalanced workload
allocation, 12 comments reporting bugs, nine suggesting room for improve-
ment, and eight proposing an alternative service. We suspect that the adop-
tion of mention bot is greatly impaired by its bugs, unbalanced workload
allocation problem and the existence of alternatives.

5.1.2 Survey and Interview

To further investigate developers’ perceived usefulness of mention bot and
explore factors critical to ARR user experiences and adoption, we conduct a

Exploring How Software Developers Work with Mention Bot in GitHub 15

survey with three user groups: project owners, contributors and reviewers
(see Research Method Overview Section). We design five different question-
naires in our survey: 1) Project owner using mention bot; 2) Project owner not
using mention bot; 3) Contributor using mention bot; 4) Reviewer using men-
tion bot; 5) Contributor or reviewer not using mention bot. We design only
one questionnaire for the contributor not using mention bot and the reviewer
not using mention bot because we ask almost the same questions to investi-
gate their needs and expectation for ARR services. Across all user groups, we
ask respondents to rate the perceived usefulness and annoyance of the ser-
vice as well as the efficacy of each features of mention bot on a 5-point Likert
scale (1 being the least of each measure). There are also customized questions
for each user group. For example, we ask project owners about the reason
why they (do not) deploy mention bot; we ask contributors what they would
do before issuing a pull request and when a mention bot comments on their
pull requests; and we ask reviewers how they get pull requests to review and
what they would do if notified by mention bot.

By searching the contributors of the projects that use mention bot now
or used it before, we sent emails to over 700 potential users for invitation to
survey and interview. Noticed that software developers might act as project
owners, contributors or reviewers under different circumstances, we ask the
participants to fill out the surveys as much as they could if they match the
criteria and invite them to join our interview. In total, we get 34 effective
survey responses and interview six developers through email and Google
hangout.

We receive a total 34 valid responses from our survey. The responses come
from 7 project owners using mention bot, 10 project owners not using men-
tion bot, 11 contributors or reviewers not using mention bot, five contributors
and one reviewer using mention bot. Overall, mention bot users “find it use-
ful” (mean = 4.08, SD = 0.64). The project owners employ mention bot in their
projects mostly for its “efficiency” (mean = 4.29, SD = 0.95) or “convenience”
(mean = 3.71, SD = 0.95), but not for “fun” (mean = 2.29, SD = 1.11). With
mention bot, project owners spend less effort in “managing the pull request
process” (mean = 3.71, SD = 0.76) and can “engage developers more in the
projects” (mean = 3.86, SD = 0.69). However, employing mention bot does
not necessarily “boost the activeness of the projects” (mean = 3.00, SD = 1.00).
After briefly explaining the concept of mention bot to the contributors and
reviewers who have never heard of the service, 70% of them hope that the
projects they participate in would employ it. Contributors who use mention
bot do not think that they can always “get faster response from its recom-
mended reviewers than from others” (mean = 3.00, SD = 0.71), or that “the
suggested reviewers certainly provide better feedback” (mean = 3.20, SD =
1.10), or that “it improves their interaction with other developers” (mean =
3.2, SD = 1.10). However, they do agree that it saves their efforts in looking
proper reviewers (mean = 4, SD = 1.22), which is consistent with our findings
in Stage I.

16 Zhenhui Peng, Xiaojuan Ma

Fig. 5 The potential features of a reviewer recommendation service. Participants are asked to
evaluate their usefulness.

Among the respondents, six software developers (I1,2,3,4,5,6) express fur-
ther interest and join our semi-structural online interview. I1 is a project owner
as well as a current user of mention bot and I2 is a reviewer as well as a con-
tributor who did not hear about mention bot before and the rest four (I3,4,5,6)
are project owners who used it before but removed it later. We mainly ask
them to share their user experience with or without mention bot during the
interviews.

When we ask I3,4,5,6 why they removed mention bot, surprisingly, their
answers are quite similar:

“We’re not using mention bot any longer because GitHub added the “sug-
gested reviewers" feature which is enough for our needs, but we found men-
tion bot very useful otherwise.” (I3)

Compared with mention bot, the “suggested reviewers” feature in GitHub
is less aggressive because it does not automatically notify the reviewers but
only suggests potential reviewers to project owners who have the write access
to the PRs. It is plugged into the GitHub platform so that users do not need to
configure it by themselves and worry about its instability. However, intervie-
wees also commented that “suggested reviewers” is not flexible enough , as
developers who only have read access to the PRs cannot send a request to the
suggested reviewers on their own if the project owners are too busy to notify
them. Our interviewee I1, the owner of a big project (with 1870 contributors,
84888 commits and 26576 closed PRs up to August 25, 2017), explains why he
continues to use mention bot rather than “suggested reviewers”:

“Our project is too big. The feature needs permission, the suggested re-
viewers should be the member of our project. But we have nearly 2000 con-
tributors. We want them all in our project, and mention bot suits our need.”
(I1)

He stresses how mention bot contributes to his project:

“Mention bot does improve the quality of software, because more people
review the pull request before they are merged. A big improvement of the
number of reviews that we get.”

Exploring How Software Developers Work with Mention Bot in GitHub 17

Overall, we find that mention bot’s performance does not meet some de-
velopers’ expectation possibly because of its instable settings, unbalanced
workload allocation and the existence of other ARR services, especially the
better integrated “suggested reviewers” feature of GitHub. Still, many users
value mention bot’s benefits in terms of extending reviewer pool and reduc-
ing effort in managing PRs. In the next subsection, we present the factors
essential to the unique experience of each ARR user group.

5.2 Factors Critical to ARR User Experiences

In our survey, we ask participants to indicate their perceived usefulness of
a list of potential features of a PR reviewer recommendation service identi-
fied in Stage I: “Message customization”, “Explanation of the result”, “List
of recommended reviewers”, “Delayed time” and “Blacklist”. As shown in
Fig. 5, most respondents find “Explanation of the result” and “List of recom-
mendation reviewers” (extremely) useful features to have (78.6% and 71.5%,
respectively). In comparison, respondents’ perception of the other three fea-
tures which already exist in mention bot is rather neutral (50.0% for “Message
customization” and 50.0% for “Delayed time”, and 27.3% for “Blacklist”). In
fact, some comments from social media are negative about these features:

“how do I get myself blacklisted from this XXX mention bot thing?”

“If the delay feature is enabled, mention bot no longer works”

We further explore features that matter most to project owners, contributors
and reviewers.

– Project owners
1) Simplicity. Although Facebook mention bot claims that it can be set
up easily, it has 22 configuration options now. We find that most of the
projects we visit just keep the default setting, which disables features that
might be helpful for contributors and reviewers such as fileBlacklist, Skip-
Title and requiredOrgs. In fact, some project owners removed mention bot
because of they could not configure it right:

“The configuration added is not working, so I just removed it since the
benefit would be minor anyways (and might annoy some people?) Very
funny. I was deleting the mention bot webhook and accidentally found
out why it was not working. I forgot to check the events to be sent on
‘Labeling’. Oh well.”

2) Stability. Mention bot itself is a project under constant development,
and thus may not function normally from time to time, which really affect
the experience if it is under heavy usage. One of our interviewee (I4) re-
moved it because “It stopped working a while ago so I’ve disabled it.”. Besides,
as showed in Table 5, the bugs of mention bot reported by 12 out of the 90
comments we collected also discourage its usage, e.g., “Seems the complete
.mention-bot file is currently ignored”.

18 Zhenhui Peng, Xiaojuan Ma

– Contributors
3) Transparency. According to our survey, it is not a common practice
for contributors to identify reviewers by their own, such as “manually
search and add reviewers” (mean = 2.57, SD = 1.16) or “mention review-
ers they know” (mean = 3.00, SD = 1.03). When mention bot comments
on their PRs, although they are inclined to “trust its recommendation”
(mean = 3.8, SD = 0.84), many contributors will still “check its recommen-
dation” (mean = 4.6, SD = 0.55). But mention bot and GitHub “suggested
reviewer” feature are not transparent enough as their results are only sev-
eral user names of the reviewers. Some contributors may want to know
who is in charge of the part that they make PR to: “Normally I want my di-
rect supervisor rather than those who had modified related files to review my PRs”
(I2). The fact that “Explanation of the result” and “List of recommended
reviewers” are the most preferred features according to our survey also
suggests that contributors want decisions made by ARR services to be
more transparent.

– Reviewers
4) Selectivity. Our respondents are somewhat conservative about taking
on PR reviews, such as “look for pull requests interesting to me on my
own” (mean = 3.33, SD = 1.12), “mentioned by contributors” (mean = 3.00,
SD = 1.12) or “want to be recommended by a bot” (mean = 3.33, SD = 1.00).
This may be because they are already rather occupied: “I am too busy to look
every email from GitHub because it sends all information about the update of pull
requests, but actually I do not need to review all those pull requests” (I2). I2 said
that he would like the bot to only notify him with the PRs that really need
him. These results imply that the reviewers would not actively take on
ordinary PR reviews but want to have selectivity to only be notified by
certain kinds of PRs.

Overall, in Stage I we find that users need a better reviewer recommenda-
tion with automatic notification as well as a more balanced workload alloca-
tion and a higher context sensitivity, while in Stage II we further explore that
the simplicity, stability, transparency and selectivity are critical to the ARR
experiences of different user groups. Taking all these user needs and factors
into account, we propose our design considerations of ARR services in next
section.

6 Discussion

In this section, we present design considerations for improving ARR services,
other insights and limitations of this work.

Exploring How Software Developers Work with Mention Bot in GitHub 19

6.1 Design Considerations for Improving ARR Services

Based on findings from both stages, we propose three design considerations
that would possibly improve user experience of ARR services.

6.1.1 Easier Configuration of ARR Service for Project Owners

Users cannot customize the “suggested reviewers” feature provided by GitHub,
and thus it cannot adequately meet different types of user needs. Mention bot
does have many options to deal with different situations, but its unfriendly
manual configuration process intimidates many project owners who are re-
sponsible for handling the service. Since the project owners tend to “only care
about the PRs and want the bot easily tells how its capacities are” (I1), we propose
that a better ARR service should have an easier configuration process. For
example, the service can have shortcuts to easily change modes to satisfy dif-
ferent needs. If the project needs more external contributions, the owner can
use a shortcut to adjust some options to invite external reviewers to review
the PRs. Besides, the service can have a log so that project owners can easily
reset it to the suitable and stable state.

6.1.2 Better Transparency of Recommendation for Contributors

According to our survey in Stage II, contributors tend to check on mention
bot’s recommendation when it comments on their PRs, and they call for in-
formation that can improve their understanding of why a particular recom-
mendation is made. Therefore, we propose that a better ARR service should
keep their recommendation transparent to contributors, especially regarding
the qualification and availability of the suggested reviewers. For each PR, in
addition to directly naming the top few appropriate reviewers, ARR service
can provide a ranked list of all the potential reviewers for this PR, each with
a brief profile summarizing their role in the project, specialty, recent active-
ness, current workload, etc. In case contributors would like to manually select
reviewers, this list would be a good place to start.

6.1.3 More Flexible Notification Preference Setting for Reviewers

Reviewers are bothered the most by ignorant PR review notifications. For ex-
ample, when reviewers are already overloaded with work on the project or in
real life, they do not want to receive more review requests. Mention bot does
have some mechanisms to filter reviewers in the candidate pool, but only
project owners have the access to set the rules. Reviewers have to contact the
mangers to adjust the pool if they would like to disengage from / reengage in
the review activities. While the automatically filtering out inactive reviewers
feature that we propose in Stage I is a potential way to avoid unnecessary
notification, and it may not be able to respond instantly to urgent changes

20 Zhenhui Peng, Xiaojuan Ma

in availability. Hence, we propose that a better ARR service should allow re-
viewers to specify personal notification preference on their side. Reviewers
can change their status to “Do not disturb” when occupied, declare types of
PRs uninterested to them, and set a maximum quota of PRs. Further more, for
reviewers (e.g., I2) who would love to help but are not sure of their qualifica-
tion and/or availability, ARR services may instead recommend PRs to them
according to their interests.

6.2 Additional Insights into Bot Usage in GitHub

Our interviewees share their positive attitude toward general bots usage in
GitHub in the interviews.

“Really necessary, because there are many repeated work to do otherwise.”
(I1) “I feel most of the bots can solve actual problems. I am positive toward
these bots and hope more and more useful bots come up.”(I2)

Almost every big project that we visit for this research involves some bot(s)
in its development, such as “facebook-github-bot” in Facebook organization,
“Microsoft Pull Request Bot” in Microsoft society and “greenkeeper bot”.
Their functions are very specific, helping with small chores like adding la-
bels to PRs or sending customized messages. Our interviewees hope to see a
bot that can provide all these functions in the future.

6.3 Limitation and Future Work

Our work has some limitations. Some of our findings might be unique to
Github and we did not compare Facebook mention bot with other ARR ser-
vices. Our survey results come from a small sample of developers due to the
low response rate. Therefore, our results may not represent the opinions of
the entire user group (e.g., contributors with different levels of experiences)
about reviewer recommendation services. In the future, we plan to improve
the coverage and generality of our research, develop a user-friendly ARR ser-
vice based on the findings, and test its usefulness, usability, and user experi-
ence in the wild.

7 Conclusion

In this paper, we used Facebook mention bot, an automatic reviewer recom-
mendation (ARR) bot in GitHub, as a lens to explore how developers work
with ARR services. We used a two-stage mixed-methods approach to investi-
gate practical usefulness of mention bot and critical needs for different types
of users. Our Stage I investigation (June 2016) shows that mention bot per-
formed quite well as it can save contributors’ effort in identifying proper re-
viewers, and can achieve a 75.57% response rate among suggested review-
ers who expressed the need for a better workload allocation. A year later in

Exploring How Software Developers Work with Mention Bot in GitHub 21

Stage II (August 2017), we do not see an obvious increase in mention bot’s
adoption, perhaps due to its inherent problems and the existence of other
ARR alternatives. Our survey and interview with three user groups (project
owners, contributors and reviewers) suggest that simplicity, stability, trans-
parency and selectivity are critical to the user experiences of ARR services.
According to these findings, we propose a set of considerations for designing
more user-friendly ARR services.

References

1. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code review. In:
Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13, pp.
712–721. IEEE Press, Piscataway, NJ, USA (2013). URL http://dl.acm.org/citation.

cfm?id=2486788.2486882

2. Badampudi, D., Britto, R., Unterkalmsteiner, M.: Modern code reviews - preliminary re-
sults of a systematic mapping study. In: Proceedings of the Evaluation and Assessment
on Software Engineering, EASE ’19, pp. 340–345. ACM, New York, NY, USA (2019). DOI
10.1145/3319008.3319354. URL http://doi.acm.org/10.1145/3319008.3319354

3. Balachandran, V.: Reducing human effort and improving quality in peer code reviews using
automatic static analysis and reviewer recommendation. In: Proc. of ICSE, pp. 931–940. IEEE
Press (2013)

4. Chen, L., Wu, W., He, L.: How personality influences users’ needs for recommendation di-
versity? In: CHI ’13 Extended Abstracts on Human Factors in Computing Systems, CHI EA
’13, pp. 829–834. ACM, New York, NY, USA (2013). DOI 10.1145/2468356.2468505. URL
http://doi.acm.org/10.1145/2468356.2468505

5. Facebook: mention-bot (2015). Accessed: 2019-05-23. https://github.com/

facebookarchive/mention-bot

6. Fejzer, M., Przymus, P., Stencel, K.: Profile based recommendation of code reviewers. Journal
of Intelligent Information Systems 50(3), 597–619 (2018). DOI 10.1007/s10844-017-0484-1.
URL https://doi.org/10.1007/s10844-017-0484-1

7. Ferwerda, B., Yang, E., Schedl, M., Tkalcic, M.: Personality traits predict music taxonomy
preferences. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’15, pp. 2241–2246. ACM, New York,
NY, USA (2015). DOI 10.1145/2702613.2732754. URL http://doi.acm.org/10.1145/

2702613.2732754

8. Github: Understanding the github flow (2013). Accessed: 2019-05-23. https://guides.
github.com/introduction/flow/

9. Github: Github api v3 (2016). Accessed: 2019-05-23. https://developer.github.com/
v3/

10. GitHub: About code owners (2017). Accessed: 2019-05-23. https://help.github.com/
articles/about-codeowners/

11. Github: request review in github (2017). Accessed: 2019-05-23. https://help.github.
com/articles/requesting-a-pull-request-review/

12. Gousios, G., Pinzger, M., Deursen, A.v.: An exploratory study of the pull-based software
development model. In: Proc. of ICSE, pp. 345–355. ACM (2014)

13. Gousios, G., Storey, M.A., Bacchelli, A.: Work practices and challenges in pull-based devel-
opment: The contributor’s perspective. In: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pp. 285–296 (2016). DOI 10.1145/2884781.2884826

14. Gousios, G., Storey, M.A., Bacchelli, A.: Work practices and challenges in pull-based devel-
opment: the contributor’s perspective. In: Proc. of ICSE, pp. 285–296. ACM (2016)

15. Gousios, G., Zaidman, A., Storey, M.A., Van Deursen, A.: Work practices and challenges in
pull-based development: the integrator’s perspective. In: Proc. of ICSE, pp. 358–368. IEEE
Press (2015)

16. Hoaglin, D.C., Iglewicz, B., Tukey, J.W.: Performance of some resistant rules for outlier label-
ing. Journal of the American Statistical Association 81(396), 991–999 (1986)

22 Zhenhui Peng, Xiaojuan Ma

17. Jiang, J., He, J.H., Chen, X.Y.: Coredevrec: Automatic core member recommendation for con-
tribution evaluation. Journal of Computer Science and Technology 30(5), 998–1016 (2015)

18. Lee, M.K., Kusbit, D., Metsky, E., Dabbish, L.: Working with machines: The impact of al-
gorithmic and data-driven management on human workers. In: Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pp. 1603–
1612. ACM, New York, NY, USA (2015). DOI 10.1145/2702123.2702548. URL http:

//doi.acm.org/10.1145/2702123.2702548

19. Pham, R., Singer, L., Liskin, O., Filho, F.F., Schneider, K.: Creating a shared understanding
of testing culture on a social coding site. In: 2013 35th International Conference on Software
Engineering (ICSE), pp. 112–121 (2013). DOI 10.1109/ICSE.2013.6606557

20. Rahman, M.M., Roy, C.K., Collins, J.A.: Correct: Code reviewer recommendation in github
based on cross-project and technology experience. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C), pp. 222–231 (2016)

21. erlend sh: Only activate mention bot on prs without comments (2016). Accessed: 2016-09-16.
https://github.com/facebook/mention-bot/issues/119

22. Sinha, R., Swearingen, K.: The role of transparency in recommender systems. In: CHI ’02
Extended Abstracts on Human Factors in Computing Systems, CHI EA ’02, pp. 830–831.
ACM, New York, NY, USA (2002). DOI 10.1145/506443.506619. URL http://doi.acm.

org/10.1145/506443.506619

23. Stolze, M., Nart, F.: Well-integrated needs-oriented recommender components regarded as
helpful. In: CHI ’04 Extended Abstracts on Human Factors in Computing Systems, CHI EA
’04, pp. 1571–1571. ACM, New York, NY, USA (2004). DOI 10.1145/985921.986147. URL
http://doi.acm.org/10.1145/985921.986147

24. Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., Iida, H., Matsumoto, K.i.:
Who should review my code? a file location-based code-reviewer recommendation approach
for modern code review. In: Proc. of SANER, pp. 141–150. IEEE (2015)

25. Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for evaluating con-
tribution in github. In: Proc. of ICSE, pp. 356–366. ACM (2014)

26. Webhooks: webhooks (2017). Accessed: 2017-09-01. https://developer.github.com/
webhooks/.

27. Xia, X., Lo, D., Wang, X., Yang, X.: Who should review this change?: putting text and file
location analyses together for more accurate recommendations. In: Proc. of ICSME, pp. 261–
270. IEEE (2015)

28. Yu, Y., Wang, H., Filkov, V., Devanbu, P., Vasilescu, B.: Wait for it: Determinants of pull re-
quest evaluation latency on github. In: Proc. of MSR, pp. 367–371. IEEE (2015)

29. Yu, Y., Wang, H., Yin, G., Wang, T.: Reviewer recommendation for pull-requests in github:
What can we learn from code review and bug assignment? Information and Software Tech-
nology 74, 204–218 (2016)

30. Zanjani, M., Kagdi, H., Bird, C.: Automatically recommending peer reviewers in modern
code review. Transactions on Software Engineering 42, 530–542 (2016)

