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Abstract
Large online networks are most massive and opulent data sources these days. The inherent growing demands of analyses 
related data fetching conflict greatly with network providers’ efforts to protect their digital assets as well as users’ increas-
ing awareness of privacy. Restrictions on web interfaces of online networks prevent third party researchers from gathering 
sufficient data and further global images of these networks are also hidden. Under such circumstances, only techniques 
like random walk approaches that can run under local neighborhood access will be adopted to fulfill large online network 
sampling tasks. Meanwhile, the presence of highly clustered community like structure in large networks leads to random 
walk’s poor conductance, causing intolerable and hard-to-foresee long mixing time before useful samples can be collected. 
With lack of techniques incorporate online network topology features being the context, in this paper we focus on taking 
use of community affiliation information that possibly comes with metadata when querying objects in online networks, and 
proposed a speeded version of random walk by raising the probability of inter-community edges being selected. Assuming 
the community structure is well established as promised, the community speeded random walk expects better conductance 
and faster convergence. Our method forces the sampler to travel rapidly among different communities that conquers the bot-
tlenecks and thus the samples being collected are of higher quality. We also consider the scenario when community affiliation 
is not directly available, where we apply feature selection algorithms to select features as community.

Keywords  Random walk · Online social networks · Graph sampling · Network topology · Community inference

1  Introduction

Online networks (ON) have long been serving a vital 
role in data tasks over a broad range of topics either for 
research or commercial purposes for the considerably tre-
mendous amount of information being created, exchanged 
and archived every second. They can be very representative 
data reproduction of real-world information notably with 

semi-structured data objects. Comparing to the complicated 
natural language context in real world, ONs offer a more 
analysis friendly arena. As their scales’ growing up, more 
interests rise to dig into these rich data sources, inherently 
making efficient sampling and analysis techniques over large 
networks an important topic to explore.

With these being stated, respectable number of researches 
have already been cast to learn ON data (Wilson et al. 2012), 
adding impressive and fruitful outcomes to practical appli-
cations ranging from demographic studies, locating trends 
in public affairs to economics or marketing purposed infer-
ences. While challenges also emerges along with the inflat-
ing of the network scale and data volume, restricting the 
feasibility of many known statistical tools to be appropri-
ately applied.

1.1 � Problem motivation

Mostly, ONs can be modeled as directed or un-directed 
graphs with objects (e.g. users, products, etc.) or object 
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groups as nodes, and the interaction relationships (e.g. fol-
lower/followee, co-purchase,co-author, etc.) as identical or 
weighted edges. In order to efficiently analyze ON buried 
information, very commonly we’ll have to deal frequently 
with graphs with ON characteristics, answering global or 
conditional aggregates and statistics such as sum, average, 
and count (e.g. the average age of all users, total users of a 
community or entire network).

One major barrier for these tasks is the absence of global 
information from most ONs (De Choudhury et al. 2010; 
Zhou et al. 2016). With data now being valuable digital 
assets and a rising awareness of privacy and security after 
many famous disclosures like the Cambridge Analytica 
scandal (Wikipedia Contributors 2019a), there are plenty 
of reasons for ON providers to keep details of their networks 
away from the public. Unless the providers are willing to 
release public data, it is not possible to observe the network 
graphs in a global scope.

Hence in the very majority of practical problems involv-
ing ON, third party researchers only have topical vision of 
the graphs from where they landed through provided web/
API interfaces. Query to a node in the networks barely 
reveals little information on its immediate neighborhood. 
Also for similar concerns and to prevent any malicious users 
from sending harmfully many requests causing performance 
issues, large ON providers make great efforts to enhance 
their web crawlers defencing features, limiting the number 
of queries/transactions can be committed in a certain time 
window from a single source (Efstathiades et al. 2016).

Under such circumstances approaches based on the 
retrieval of entire graph, considering the huge size of ON 
nowadays, are wiped out due to the prohibitively expen-
sive third party query cost. More practical data interfaces 
are calling for effective localized alternatives to tackle the 
challenges.

1.2 � Existing techniques

As a result, ON involved studies resort to sampling meth-
ods that collect samples from networks following a pre-
determined distribution. Then estimations of desired data 
aggregation can then be calculated via sampled data used in 
place of ground truths. Few existing statistical approaches 
but the random walk family techniques (Grimmett 2010), 
being capable of sampling under designed stationary distri-
bution after a period of ”burn-in” and running locally with-
out knowing global topology, can fulfill the requirements 
and fit into practical interface limitations. More specifically, 
simple random walk (SRW), with its adaptability to different 
scenarios as well as ease of implementation, has been widely 
adopted and considered a golden baseline of the sampling 
techniques, on which I focused to compare and evaluate our 
proposed method in the paper.

However, these techniques used by majority of current 
works (Gjoka et al. 2010; Katzir and Hardiman 2015; Pons 
and Latapy 2005) involving ON sampling are mostly topol-
ogy oblivious techniques that do not intentionally lever-
age any special property of real-world networks. Instead, 
they are for general-purpose graphs that, roughly speaking, 
work well so long as the underlying graph features a large 
conductance (which is in graph theory known to be a key 
factor affecting convergence speed for random walks Avin 
et al. 2018). Unfortunately, the conductance of real world 
social networks is often substantially lower than expected 
(Leskovec et al. 2009). This creates the dilemma for all 
random walk techniques of possibly intolerable long wait-
ing time known as the “burn-in” periods (or mixing time), 
when large numbers of queries or transactions are required 
before the random walks’ sampling distributions can con-
verge to desired stationaries and start to draw samples. The 
prolonged burn-ins are a result of real-world networks’ 
tendency to exhibit highly clustered topology (Traud et al. 
2012) which generates bottle-necks hard for random walks to 
cross through (Pons and Latapy 2005; Ravasz and Barabási 
2003). Without sufficient knowledge of entire networks, it’s 
also difficult to foresee the mixing costs or monitor actual 
convergence.

1.3 � Speed up random walk by leveraging 
community affiliation

Assuming the existing random walk approaches’ getting 
trapped in one or several communities is due to the low inter-
community travel probabilities, we then consider a novel 
problem of how to significantly increase the conductance 
of large ONs with highly clustered topology by leveraging 
community information (Papagelis et al. 2013).

Here first we shall state the concept of ”community” in 
our paper and its relation to graph conductance before pro-
pose our idea. Though universal definition of community is 
pretty ambiguous, from intuition (see example in Fig. 1) 
communities are well knitted clusters of node collections in 
a graph with a few ties to the rest of the system, inside which 
more edges are often observed than crossing among them. 
Social communities in the context of social networks can be 
any subgroups of people are all friends to each other or have 
very few degree of separation (Luce and Perry 1949), and 
online communities can then be extended to any meaningful 
collection of objects. According to the definition, graph con-
ductance of a certain set of nodes S is given by P(S,S)

min(�(S),�(S))
 

(Bollobás 1998) with P being the probability to leave S and 
� being the sampling probability. This could be relatively 
low for the nature of community to be less likely connected 
to other part of graph.
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Intuitively, increasing the weight of crossing community 
edges will significantly increase the conductance and con-
quer these bottlenecks. Our proposed community affiliation 
incorporated random walk (CRW) shows a way to address 
the task by choosing next step uniformly among commu-
nities instead of neighbors. CRW forces the sampler to 
jump through communities and leads to rapid exploration 
of the entire graph. On the other hand, we are still able to 
re-balance the random walk to a reversible Markov chain by 
introducing Metroplis Hastings (MH) algorithm (Wikipedia 
Contributors 2019b) so that an identical stationary distribu-
tion as current random walk approaches (e.g. SRW) can be 
guaranteed.

In the process we take use of the community affiliation 
information (i.e. the community value a node has a member-
ship with: C(x)), that is any meaningful community defini-
tion per information available on hand (e.g. organizations 
could be a reasonable choice). And we could encounter dif-
ferent interfaces with ideal ones sometimes where a ”per-
fect community affiliation information” is given based on 
knowledge (explicit and well-defined C(x)). Then a direct 
application of CRW will be applied. While in cases C(x) 
is not immediately available, workarounds are required to 
give inference on these values. In this paper we focus on 
selecting candidate metadata attributes to make affiliation 
inferences. Though there have been a wide selection of more 
precise community detection algorithms adopted in current 
literature, they either conflict with our lacking of topology 
knowledge or come with unacceptable query costs ( O(n2) or 
so) (Bedi and Sharma 2016), which have been dumped here.

1.4 � Contribution outline

In this paper, we show our design of a topology oriented, 
or more specifically, community affiliation based approach 

CRW to speed up random walk based sampling techniques 
used over ONs, and discuss the application of them being 
used facing different data interface.

Our contributions also include comprehensive sets of 
experiments over both synthetic data and real-world online 
data sets (Leskovec and Krevl 2014), using the original 
SRW as a baseline comparison, to verify the correctness, 
effectiveness and efficiency of CRW.

After clarifying the terminologies and notations that 
we will be using as well as briefly reviewing related con-
cepts in preliminaries. We’ll detailed expand original 
CRW design in Sect. 3 with assumption of perfect com-
munity affiliation. Theoretical analysis is given to prove 
the mathematical fundamental behind CRW, attached with 
the experiment results. In Sect. 4 we discuss the scenario 
of implicit community information when inferences are 
required. Among several solutions we choose to adopt 
feature selection algorithm to locate attributes as ground 
truth communities. We also place experiments of real-
world data sets for this workaround to evaluate. Then we 
summarize our outcomes and think about possible future 
improvements in conclusion.

2 � Preliminaries

2.1 � Graph model of online networks

In this paper, we consider all networks of interest to be un-
directed graphs G = (N,E) , with |N| nodes and |E| edges. 
Any x ∈ N  represents a node interface that contains the 
objects’ meta information (e.g., user name, profile, prod-
uct info), and an edge e(x, y) ∈ E, x, y ∈ N  means there’s 
an interaction between the two nodes (e.g. two users are 
’friends’, co-occurence of 2 authors). We use d(x) to denote 
the degree (i.e. number of edges incident to the node) of 
node x, and likewise n(x) as the set of nodes in x’s neigh-
borhood (i.e. n(x) = {y|e(x, y) ∈ E, y ∈ N}).

The model is capable of summarizing major ONs in 
arbitrary categories. For directed interaction like Twitter’s 
followee/follower-ship (followee as in edges and follower 
as out edges), the transformation to un-directed graph is 
simply taking unions of node’s in and out neighborhood 
(e(x, y) ∨ e(y, x) ⇌ e(x, y)).

Mostly web interface of ONs in real world only allows 
local neighborhood queries. Namely we only have knowl-
edge of queried nodes set X0 and the neighborhood n(x0) 
of node x0 for all nodes in X0 (Zhou et al. 2016). We also 
assume the knowledge of known nodes include other meta-
data that can be used for community affiliation decision, 
either explicitly or indirectly (Papagelis et al. 2013).

Fig. 1   A highly clustered large network
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2.2 � Sampling via random walk

Then we take a brief look at majorly used random walk 
techniques that is naturally fitting to these restrictive web 
interfaces due to their capability of running locally yet gain-
ing unbiased samples to certain distribution from the entire 
network.

Random walk Given a graph G and a starting node x0 , we 
select the next node x1 from its neighborhood n(x0) accord-
ing to a transition matrix P(x, y), x, y ∈ N  and then query 
the selected node to gain its neighborhood. The process 
would be repeated for a number of iterations until desired 
samples are drawn. This is a Markov Chain Monte Carlo 
(MCMC) approach with N as the state space. We will then 
review some important properties of random walks (Grim-
mett 2010).

Stationary distribution The sequence of nodes selected 
is a random walk on G with finite state space N and P(x, y) 
being its irreducible and aperiodic transition matrix. Because 
these random walks are finite Markov chains that are time-
reversible, as long as a random walk can reach all nodes in 
N in finite time space (depending on how P is chosen), the 
probability distribution for the walk to land on each node 
will converge to a stationary distribution � after a number of 
’burn-in’ steps (or mixing time) (Geyer 2011), which is then 
used as the sampling distribution in many analysis works. 
By the condition of Markov chain convergence (Levin et al. 
2006), the edge measure Q(x,y) which is the probability of 
moving from node x to y at stationary distribution, should 
be identical among all node pairs. Namely:

The theory of stationary distribution provides foundation for 
most existing analysis tools for ON sampling.

Simple random walk Among the popular random walk 
techniques, simple random walk (SRW) is still the one con-
sidered as a golden baseline (Gjoka et al. 2010). It selects the 
next-hop node y uniformly at random among the neighbors 
n(x) of the current node x. More specifically, for SRW whose 
transition matrix P is simply:

Its stationary distribution is proportional to the node 
degrees: �(x) ∝ d(x) , and would be given by:

Metropolis Hastings Based Random Walk Metropolis Hast-
ing based random walks are applications of the Metropolis 

(1)
Q(x, y) =�(x) ⋅ P(x, y)

Q(x, y) =Q(y, x), e(x, y) ∈ E

(2)P(x, y) =

{
1

d(x)
, e(x, y) ∈ E

0, else
x, y ∈ N

(3)�SRW(x) =
d(x)

2|E|

Hasting (MH) algorithm,wiki:MH that is capable of cor-
recting transition probabilities and achieve convergence to 
some specifically designed stationary distributions. In MH, 
a proposal distribution (an initial transition matrix without 
correction) g(x, y) is chosen, and it come with an accept-
ance probability matrix �(x, y) calculated by the condition 
mentioned in Eq. 1. Starting from node x0 , a candidate 
move is generated from the proposal g(x, y) in n(x0) . Let 
the candidate be node y, the move is then censored with the 
probability 1 − �(x0, y) . That is, with probability �(x0, y) , y 
is ”accepted” as the next state x1 , and otherwise x0 , with the 
remaining probability 1 − �(x0, y) , is adopted as x1 and y is 
dumped. The detailed calculation of MH’s transition matrix 
PMH(x, y) would be given:

In this manner we’d be able to design both proposal and 
stationary distributions as desired that fits to our motiva-
tion. In fact, one notable application of MH in random walk 
techniques is to curve SRW’s stationary to a uniform distri-
bution on N. In this paper, our proposed CRW will caused 
a different stationary distribution than SRW, where we will 
illustrate how we can use MH to curve it back thus a strict 
comparison can be conducted.

Mixing time As stated, random walk requires a ”burn-in” 
period before its convergence, also know as the mixing time, 
which is regarded as a crucial measurement of performance. 
It is the time required by a random walk for the distance to 
stationary to be sufficiently small (a pre-determined threshold 
� ). The mixing time is defined by:

where the threshold � is usually set to 1
4
 (Levin et al. 2006). 

Mixing time captures the number of steps a random walk 
needs to converge to a satisfying state from starting state. 
Less mixing time is an indication of faster sampling and less 
auto-correlation (i.e. higher quality samples).

2.3 � Conductance

Graph conductance is also called bottleneck ratio, which is 
known to hard bound the mixing time. Definition of commonly 
used term conductance can be summarized as following (Bol-
lobás 1998). For a graph G, a cut (S, S) is a partition of N into 
two disjoint subsets. We denote the conductance of cut (S, S) 
in a graph G as:

(4)𝛼(x, y) =

{
min[

𝜋(y)g(y,x)

𝜋(x)g(x,y)
, 1], if 𝜋(x)g(x, y) > 0

0 otherwise

(5)PMH(x, y) = �(x, y) ⋅ g(x, y)

(6)tmix(𝜀) = min

{
t ∶ max

x,y∈V ,y∈n(x)
|Pt(x, y) − 𝜋(y)| < 𝜀

}
,
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The conductance of the whole graph is the minimum con-
ductance over all the possible cuts:

The lower bound �(G ) places on mixing time tmix satisfies 
the inequality (Levin et al. 2006) of:

Thus conductance can be a direct indicator for random walk 
performance. And it should be noted that conductance of 
different stochastic processes with regard to the same target 
graph G might be different, and we’ll be using notations 
with subscripts (e.g. �SRW(G) ) to differentiate among those 
conductance measures.

2.4 � ”Community‑Structured” graph and community 
affiliation information

According to current literature (Leskovec et al. 2009; Traud 
et al. 2012; Girvan and Newman 2002), large real-world net-
works tend to exhibit a highly-clustered topology, or so called 
”community-structured” topology. While in graph theory the 
definition of ”community” is ambiguous, there exists greatly 
many popular definitions and a very rich context of techniques 
have been proposed to detect, measure and define the term. 
Intuitively, communities are groups of well knitted nodes in 
the graph, whose real-world reflections could probably involve 
interactive relationships (e.g. friends, family), shared proper-
ties (e.g. interests) or similar roles (e.g. key opinion leaders) 
within the graph (Jebabli et al. 2018; Hric et al. 2014). For 
instance, if we consider students from same institution on 
Facebook, the possibility of connections within would be 
much higher than those to outside of the institution, which 
makes institutions as naturally ground truth communities. On 
the other hand, because of the absence of universal adopted 
definition, different divisions of a same graph can all be appro-
priate community selections and there might be overlapping 
in the communities (Yang and Leskovec 2015; Li et al. 2018).

In this paper, we first combine the definition of conductance 
and give our definition for ”community-structured” graph:

Definition 1  We define a graph G = (N,E) as a community-
structured graph if the conductance of SRW on this graph 
satisfies Eq. 10:

(7)�(S) =
Q(S, S)

�(S)

(8)𝜙(G) = min
S⊂N,𝜋(S)≤

1

2

𝜑(S)

(9)tmix = tmix(1∕4) ≥
1

4�(G)

(10)�SRW(G) = min
C
�∈C,�(C�)≤

1

2

(
Q(C�, C�)

�(C�)

)
= �SRW(C

�)

Where C is a partition of graph G C = {C1,C2,C3,… ,Cn} , 
with its union ∪C∈CC = N  . Also, we define C′ ⊂ C where 
C
� ∪ C

� = C . C′ might consists of one or more communities 
in set C , i.e., C� = {Ca, a ⊆ {1, 2,… , n}}.

We assume a community-structured graph’s conduct-
ance at C′ takes the minimal value over the whole graph, 
i.e., �SRW(C

�) = �SRW(G) . Thus, the reason random walk get 
stuck in place and encounter slow convergence is due to low 
conductance inter-communities. On the other hand SRW, 
as most popular random walk algorithm, is an ideal choice 
to place our comparison over. We further define ”Commu-
nity affiliation information” as node x ∈ N ’s membership 
of communities:

2.5 � Measurements of performance

For sampling algorithms, it’s always the case we compare sam-
ple quality versus the cost. Costs could be in a manner of the 
most precious resource involved in sampling, and with regard 
to ONs will be the query times. Sample qualities are ideally 
compared by the distance of sampled distribution to ground 
truth, while in real-world works it’s usually intractable as unac-
ceptably large number of samples are required especially when 
sampling space is massive. Considering the interface restric-
tion before, we’ll have to choose alternative measures.

Effective sample size (ESS) as an measure of information 
quantity a sampler carries, can be considered as the sam-
ple’s independent and identically distributed (i.i.d.) sample 
equivalence. It tells the auto-correlation of sample and thus 
is a good indicator of sample quality. We use Stan’s method 
(Carpenter et al. 2017) to estimate ESS in experiments. The 
next measure involved is the empirical total variance or 
alternatively the L1 norm distance,wiki:norm of samples and 
target distribution. Although the analytical sampling distri-
bution of random walks can hardly be calculated, we can still 
use frequencies of data points to approximately estimate the 
values. And We also compare CRW’s community coverage 
speed over SRW by defining a measurement, hitting time 
(query cost versus number of communities reached), to ver-
ify our claim that CRW travels much faster inter communi-
ties. Random walks are know to have ”fake convergence” on 
highly clustered graphs when the walks are trapped in sev-
eral communities and the diagnostics are stable (Brooks and 
Gelman 1998). In such cases the samples collected might not 
be a good representation of entire graph. Hitting time could 
reveal the proportion of graph being explored.

2.6 � Graph generative models

For latter use of theoretical analysis and easier experi-
ments, simulation of ONs from graph generating models 

(11)C(x) = Ci, ⟺ x ∈ Ci, i > 0
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are required before step into larger real world data sets. We 
reviewed popular graph generative models and choose to 
use the Lancichinetti–Fortunato–Radicchi benchmark graph 
(LFR) (Lancichinetti et al. 2008).

LFR model captures both the power law degree distri-
bution of large networks and the community structure. It 
first generate an |N| node graph having the degree sequence 
with power law exponential �1 at a mean degree of d(x) . 
A mixing parameter � is chosen to decide the fraction of 
edges for each node that is inner-community. Community 
sizes are then generated by power law exponential �2 , sum 
of which is equal to the node count |N|. The minimal and 
maximal sizes should satisfy: min(|Ci|) > min(d(x)) and 
max(|Ci|) > max(d(x)) . Nodes of the graph are randomly 
assigned to some community if community size is not vio-
lated. The leftover nodes are then iteratively been assigned 
to random communities and kick random nodes out as new 
leftovers if target community is full until no nodes are alone 
without a community assignment. Final step of LFR is a 
rewiring of each nodes to meet the mixing factor � of inner-
community edge ratio without change the degrees. As the 
model has complimentary community affiliation information 
and capture major features of large ONs, we consider it an 
ideal fit for our experiment.

3 � Community affiliation based random walk

In this section, we proposed a twisted random walk (CRW) 
giving priority to edges crossing communities to be selected. 
We firstly discuss the main design of the algorithm, followed 
by a theoretical analysis showing a conductance surpassing 
using CRW over SRW on same community-structured graph. 
We assume a perfect knowledge on community information 

in this section and extend our discussion to tackle less 
informative scenarios later in Sect. 4.

3.1 � Basic design

At the ease of implementation and flexibility of being 
adapted to arbitrary interface, SRW is considered as a 
”golden standard” for random walk like sampling tech-
niques, and is adopted by very majority data tasks involving 
ON sampling (Gjoka et  al. 2010; Katzir and Hardiman 
2015). However, SRW’s performance on community-struc-
tured graphs could be significantly slowed due to the low 
probability of exiting communities. The transition matrix of 
SRW that uniformly picks a neighbor gives all the edges 
identical margin probability of being chosen. While commu-
nity-structured graphs are much densely connected intra-
communities than inter-communities, preventing SRW from 
travelling smoothly through the entire graph. For instance, 
if we consider a barbell graph with corresponding two com-
munities, the only one edge connecting two different com-
munities in the graph carries an incredibly low probability 
of being selected (i.e. 1

2|E| ). Even if SRW is able to reach one 
of the two connected nodes, the chance of pick the cross-
community edge is still relatively low as the nodes have 
much stronger connectivity to their own communities.

Intuitively one will want to raise the weight of crossing 
community edge to encourage random walk sampler to travel 
through it Zhou et al. (2016). We came up with a rough idea 
of CRW that take use of community affiliation information 
of nodes (see Fig. 2).

After CRW reaches at node x that is connected to at least 
one other community, it step into the decision of which 
neighbor to be the next hop. Instead of picking uniformly 

Fig. 2   CRW’s choice of next hop (When random walk reaches node x, CRW choose a community first, thus probability of exit current commu-
nity at the node is raised to 2

3
 while SRW will give 1

2
 with treating edges identically)
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at random among n(x) as SRW, CRW picks a community c 
uniformly at random firstly from all different communities 
in x’s neighborhood, then pick one among all x’s neighbors 
that is a member of c at random to be the candidate. And the 
sampling probability, although intractable at this point, can 
be later curved by MH algorithm to desired.

3.2 � Theoretical analysis

In this section, we’re going to discuss the theoretical funda-
mental behind CRW.

3.2.1 � Transition matrix and stationary distribution

By definition of conductance �(C) at cut (C,C) in Eq. 7, the 
weight of cross-community edges can be assigned arbitrar-
ily large to achieve better value. CRW choose communities 
uniformly at random each step in order to place identical 
transition probability to each of them. Hence a naive transi-
tion function of any node pair x and y would be given by:

In Eq.  12, I(x) denotes the set of different communi-
ties in neighborhood of x, i.e. I(x) = {C(y)|e(x, y) ∈ E} . 
We also denote O(x,  y) as set of the neighbors of 
x that belongs to same community as node y, i.e., 
O(x, y) = {z|e(x, z) ∈ E, z ∈ C(y)}.

Obviously the transition function result in CRW’s differ-
ent stationary distribution from SRW. For the purpose of fair 
and strict comparison, we use MH algorithm described in 
Sect. 2 to curve the stationary distribution to the same as that 
of SRW, namely our desired �(x) = d(x)

2|E| . With g(x, y) as the 
proposal and acceptance matrix �(x, y) calculated using 
Eq. 4, the transition matrix of CRW is given by:

which ensures CRW keeps a same stationary distribution 
as SRW.

3.2.2 � Conductance analysis

Next we prove the conductance on ”community-structured” 
graph using CRW is greater than or equal to the conductance 
of same graph using SRW, and so CRW will expect a quicker 
convergence according to Eq. 9.

As defined in Sect.  2, node set N of graph G is 
partitioned into disjoint subset of nodes, namely 

(12)g(x, y) =
1

|I(x)|
1

|O(x, y)|.

(13)PCRW(x, y) =
1

|I(x)|
1

|O(x, y)| ⋅ �(x, y),

communities, C = {C1,C2,C3 … ,Cn} . And we define 
C
′ ⊂ C as a set consisting of one or more communities in 

C : C� = {Ca, a ⊆ {1, 2,… n}} . And we also claim that com-
munity-structured graph satisfy: �SRW(G) = �SRW(C

�) . Here 
introduced Theorem 1:

Theorem 1  For a given graph G = (N,E) , if it satisfies the 
community-structured given in Definition 1, the conduct-
ance of CRW​ �CRW(G) over G is greater than or equal to the 
conductance of SRW over G �SRW(G).

Proof  As stated earlier in this section, we set CRW’s station-
ary same as SRW for a straightforward comparison versus 
baseline, hence we only need to compare Q(C�, C�) using dif-
ferent approaches. (Recap that Q(x, y) is the probability of 
moving from x to y at stationary distribution, and 
Q(C�, C�) =

∑
x∈C�,y∈C�

Q(x, y) , see Sect.  2). Given SRW’s 

transition matrix PSRW(x, y) =
1

d(x)
 and that of CRW derived 

in Eq. 13, we’ll have:

and:

To fur ther expand Eq.  15, we define f(x ,   y): 
f (x, y) = |I(x)| ⋅ |O(x, y)| , where

Since 1

f (x,y)
 is convex with regard to f(x,y), from Jenson’s 

inequality (Jensen 1906) we have:

(14)

QSRW(C
�
, C

�) =
∑

x∈C�,y∈C�

d(x)

2|E| and e(x, y) ∈ E

1

d(x)

=
∑

x∈C�,y∈C�

1

2|E|

(15)

QCRW(C
�
, C

�)

=
∑
x∈C�

∑
y∈C�,e(x,y)∈E and 𝛼(x,y)<1

d(y)

2|E|
1

|I(y)|
1

|O(y, x)|

+
∑
x∈C�

∑
y∈C�,e(x,y)∈E and 𝛼(x,y)>=1

d(x)

2|E|
1

|I(x)|
1

|O(x, y)|

(16)E[f (x, y)|x] = ∑
y∈n(x)

|I(x)||O(x, y)|
|I(x)||O(x, y)| = d(x).

(17)
E

[
d(x)

f (x, y)

]
= E

[
d(x) ⋅ E

(
1

f (x, y)
|x
)]

≥ E

[
d(x) ⋅

1

E(f (x, y|x)
]
= 1

,
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and thus our estimation of QCRW(C
�
, C

�) is: 3.3 � Algorithm

Summing up the discussion above, here’s a brief look of 
CRW: 

Finally, combining Eqs. 7, 14, 15, 18 we’ll have the conduct-
ance over G using CRW:

	�  ◻

(18)

E[QCRW(C
�
, C

�)]

=
1

2�E� ⋅
⎛⎜⎜⎝
�
x∈C�

�
y∈C�,e(x,y)∈E and 𝛼(x,y)<1

E

�
d(y)

f (y, x)

�

+
�
x∈C�

�
y∈C�,e(x,y)∈E and 𝛼(x,y)>=1

E

�
d(x)

f (x, y)

�⎞⎟⎟⎠
≥

�
x∈C�,y∈C� and e(x,y)∈E

1

2�E�

(19)

E[�(C�)CRW ] =
E[QCRW(C

�
, C

�)]

�(C�)

≥

∑
x∈C�,y∈C� and e(x,y)∈E

1

2�E�
�(C�)

=�(C�)SRW

Input : x0 ∈ N,C(x0) = C0
Output: sample set X = (X1, X2, X3, ...Xn), n > 0
Initialization;
Node x = x0;
for i = 1 → Sample size do

Send a query to node x, GET attributes;
Record node x → xi;
Get the community-affiliation mapping → C(y), y ∈ n(x);
Calculate the number of C(y), y ∈ n(x) → k;
Uniformly pick a number at random j ∈ (1, k);
Uniformly pick the node y ∈ n(x) that C(y) = Cj ;
Draw u from U(0, 1);
if u ≤ a(x, y) then

y → x;
else

x → x;
end

end
Algorithm 1: CRW

3.4 � Experimental evaluation

3.4.1 � Synthetic data using the LFR benchmark model

As mentioned in Sect. 2, we choose the LFR Benchmark 
Model that captures both degree distribution features as 
well as the community structure of large ONs to verify our 
theoretical claim. Starting from small graph at |N| = 500 
for the purpose of convenient visualizing, we tested and 
draw the walk paths of CRW over SRW (see Fig. 3). The 
graph is generated at a mixing factor � = 0.1 , which gives 
P(e(x, y) ∈ E&C(x) ≠ C(y)) = � . (i.e. the approximate con-
ductance at cuts of communities would be around 0.1). Due 
to the low cross community probability, SRW spend quite a 
long period wandering in a small neighborhood before it’s 
able to leave while CRW has already reached most of the 
communities.

With the promising performance on small graph, we set 
up parameter to gain graph of a larger size, and summarized 
the parameter settings and basic statistics for both graphs 
we tested in Table 1.

3.4.2 � Real world data sets

Besides tests on synthetic graphs, we also set up experiments 
on real world large data sets from SNAP (Leskovec and 
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Krevl 2014) repositories‘ section of networks with ground 
truth communities. Yang and Leskovec (Yang and Leskovec 
2015) provided a series of networks with community affilia-
tion being set to comprehensive real-world concepts, among 
which we select three covering different ON topics.

Youtube data set (Mislove et al. 2007) contains user cre-
ated groups where other users can join. Edges represents 
user’s mutual subscription-ships, and users in a group are 
considered a community. DBLP data set (Yang and Lesko-
vec 2015) is researcher’s co-authorship network that edges 
are given to those pairs who at least co-publish 1 article. 
The ground truth community of the data is chosen to be 
the journals and conferences, where authors who published 
at least once are considered a member. Finally, EU email 
network,EUcore is constructed from members of an Euro-
pean research institution that department affiliation informa-
tion are used directly as communities. The edges are those 
who have email interaction for at least once.

Cleaning of data As mentioned in Sect. 2, we consider all 
graph in the context un-directed so the data sets are trans-
formed accordingly, and isolated nodes are removed. In fact 

all random walk related experiments on graphs are tested on 
the largest connected component on graphs. The used data 
sets are collected in a manner of measuring best real-world 
communities on original graphs, thus over-lapping is allowed 
for different community definitions and not all nodes are 
assigned a community value. In our experiment we remove 
all overlapping by assign nodes to the first community we 
read, and take the induced graph of those who have a com-
munity value. The statistics of these data sets are summarized 
in Table 2, and we also noticed that real world network tends 
to form more communities than synthetic data.

We then discuss our experiment measurements followed 
by our test results.

3.4.3 � Performance measures

Effective sample size Random walks are MCMC processes 
known to be collecting samples with high auto-correlations, 
for which we want to know the i.i.d. equivalence of the 
chains. Effective sample size(ESS) is widely used to meas-
ure the number of individual draws required to achieve the 
same expected precision from samples of interest over the 
same distribution. It’s a direct indicator of the sample qual-
ity and how well Markov chains have mixed. We run Stan’s 
(2017) ESS estimation on our collected samples to compare 
2 methods, and a detailed ESS estimation strategy was illus-
trated by Geyer (2011).

Hitting time And yet we’ll need to verify our claiming 
that CRW explore entire graph much faster, the regular diag-
nostics used to monitor convergence (and thus conclude the 
chain’s exploration of sample space) might be less powerful 
in community structured graphs as it’s known that diagnos-
tics could be inconsistent if the chains don’t hold over-dis-
persion (Brooks and Gelman 1998). On large ONs with mas-
sive sample space (|N|), being trapped in small communities 
is a cause for these false positive, and hence we define the 
hitting time as the community coverage (number of com-
munities sample S reached) at query cost t.

Hitting time is very explicit sign of whether the random 
walks are able to explore graph thoroughly.

(20)
H(S, t) = |Ch(S[∶ t])|,where
Ch(S) = {Ci|∃s ∈ S,C(s) = Ci}

Fig. 3   SRW and ORW’s paths in LFR benchmark graph

Table 1   The LFR benchmark 
graphs tested

∗ min(|C
i
|) is minimum commu-

nity size, and C is total number 
of communities

Data set LFR_1 LFR_2

|N| 500 5000
|E| 2811 71,801
�1 3 3
�2 1.5 1.5
� 0.1 0.1

d(x) 10 25

min(|C
i
|) 50 100

|C| 8 12

Table 2   The real world data sets tested

Data set Youtube DBLP EU

|N| 52,675 260,998 1005
|E| 318,432 950,059 16,706

d(x) 12.0904 7.28 33.25

|C| 10,426 12,390 42
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Total Variance As described in Sect. 2, random walks 
are monitored by their distance to the stationary distribution 
from its sampling distribution. We might use any measure-
ment that detects the distance, and we choose to implement 
the total variance (or interchangeably L1 norm) (Wikipe-
dia Contributors 2019c). In practice the sampling distribu-
tion calculation are often intractable, where we applied the 
empirical distribution over our observed samples. We use 
both the community irrelevant degree distribution together 
with community distribution to compare two algorithms.

3.4.4 � Experimental results

In each single trial of the experiments, starting point of both 
algorithms are randomly picked at uniform with samples 

being collected along the paths and the algorithms walk for 
same length. The random walk length depends on the graph 
size |N| until we observe approximate convergence. Each 
data set has been tested for 30 replications through the above 
process and the mean measurements are thus calculated and 
plotted.

Plotted result of the experiments are showed in Figs. 4 
and 5. Firstly we see a very promising result that CRW over-
comes SRW in the manner of ESS on tests over all data sets, 
which indicates a lower correlation of samples collected by 
our method. With these being observed, the expected preci-
sion of estimators driven by the samples will naturally be 
higher by definition of ESS. As ESS grows linearly with 
cost, CRW is in fact collecting usable samples at a higher 
rate.

Fig. 4   Test results of LFR benchmark graphs

Fig. 5   Test results of real world data sets
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Not surprisingly, CRW’s dominance in hitting time is also 
significant. The algorithm travels very fast inter communities 
at the beginning state that ensure the sample will spread the 
entire graph. For graphs with large amount of smaller commu-
nities, CRW will need a longer time to explore but maintains 
its advantage over SRW. It then can avoid the false positive in 
convergence due to an under exploration of the graph.

We compare both methods on total distribution variance 
with regard to both degree and community distribution. 
For community irrelevant parameters like degree, the two 
methods are indifferent in performance since samples from a 
small portion of graph is representative if degree distribution 
isn’t correlated with position in graph. But if we check for 
community distribution, we observed CRW’s outperforming 
in general. The result also proved our claiming that SRW 
might report convergence due to some diagnostics when it’s 
still inconsistent at other dimension. As a result, for com-
munity-structured graphs SRW’s estimators might be less 
precise than expected and CRW can be considered instead.

We noted that our algorithm isn’t beating SRW on the EU 
graph despite its perfectly structured community affiliation 
(each node belongs to exactly one department with no nodes 
left). We were confident that department fits the community 
definition well and shall expect a good performance, so we 
tested for the conductance of the cuts for all department 
cuts. The average conductance is as high as around 0.9 while 
other graphs are much lower. Considering its high average 
degree for a |N| of 1005, it’s not hard to understand that the 
community structure of the graph is very weak in this data 
set. This is a sign that well-defined ground truth communi-
ties might not agree with a topology wise good community, 
of which the topic is also explored by some recent literature 
(Newman and Clauset 2016; Hric et al. 2014). However, 
though indifferent in total variance, CRW is still capable of 
higher ESS rate and faster community reaching.

To conclude, CRW explores graphs with community-
structured topology rapidly by crossing through different 
communities, leading to less correlation of the samples col-
lected than SRW and shall expect a better performance on 
topology sensitive graph data. As long as a graph’s commu-
nity structure is well established and captured by the chosen 
affiliation information, CRW is better in all three dimension 
of measurements we choose, while we’ll have to pay atten-
tion to the possible disagreement between ground truth com-
munity and topology communities.

4 � Dealing with community inference

4.1 � Community detection algorithms

In this section we discuss the very realistic scenario when 
no perfect community affiliation information is explicitly 

reachable. We firstly think of using established community 
detection algorithms which is already very well studied in 
many works (Bedi and Sharma 2016; Newman and Girvan 
2004).

We first dump the global wise detection algorithms calls 
for a thorough knowledge of the graph, and found that major 
methods to infer unknown community affiliation information 
running locally lies on an exploration starting from the seed 
node/nodes (Tang et al. 2017) and try to minimize modularity 
or maximize node similarity (Newman and Clauset 2016). 
Either way encounters an local exploration that leads to mul-
tiplication of queries we need to know each node. Hence we 
think of developing our cost-effective algorithms to infer C(x) 
leveraging the node features as queries to web applications 
usually comes with metadata other than the graph topology.

4.2 � Naive community affiliation inference

One intuitive idea is to directly choose community affiliation 
using extra knowledge on feature similarities among nodes 
in different communities. For instance a similar taste in 
music genre for music forums, close check-in geo-locations 
for those applications involving GPS or products with simi-
lar key words (Girvan and Newman 2002). These non-rigor-
ous criteria, although not explicitly show strong affiliation, 
give us an in-expensive alternative to bet on C(x) without 
any extra cost. We simply pick an (or several if necessary) 
attribute A, and assign C(x) = A(x).

Pros of the method not only come from the easy imple-
mentation and flexibility over all networks, but taking use 
of researchers’ prior knowledge as well. The con is obvi-
ously strong assumption on relevance between community 
structure and arbitrary attribute we pick, which lies heavily 
on individual knowledge and preferences. The result might 
not be consistent per the choice of different community 
definition.

4.3 � Community affiliation inference with attribute 
selection

Then we come up with the attribute (or feature) selection 
techniques that are widely used in statistical learning to 
select a subset of features best fit to the model of calculat-
ing a classification variable (James 2013). Feature selec-
tion detects attributes with the strongest correlation with 
the output variable through training sufficient inputs and 
outputs, and then forms a classifier by calculating empirical 
probabilities over the whole result space given a set of input 
attributes it selected. We choose to use popular ”Minimum-
redundancy–maximum-relevance” (mRMR) (Peng et al. 
2005) algorithm in later experiment.

As we mention above, random walks tend to get stuck 
in densely connected parts corresponding to communities 
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(Pons and Latapy 2005). Therefore it’s reasonable to sup-
pose that most samples we gain from very short random 
walks belong to a same community. I.e., we assume 
C(s0) = C(st) when t is relatively small. In real world net-
works, its pretty convenient for us to gain a set of starting 
nodes who are nearly impossible to be in the same com-
munity (e.g. products in totally different languages, topics 
and categories, people from extremely different geologi-
cal places and have no explicit common friends). If we 
are able to perform many short runs starting from the set 
of seeds, we can get the input and output data points for 
attribute selection. If we write all short random walks as 
S, the attributes of node x being A ( x ) with coefficient 
�  , we’ll optimize: �(S) ⋅ � = C(S).

It should be pointed out that the sample space by the 
process above is incomplete, and further our scenario 
call for a complete partition of the graph, thus we’ll be 
only using mRMR for selection and use the subset being 
selected directly as an classifier. Calculating for prob-
ability is inappropriate for the above reason, and hence we 
need to limit the number of attributes in subset to avoid 
over partition. We summarize our idea as follows:

1.	 Collect Samples using multiple short random walks 
We pick M starting nodes and assume C(x) is known by 
simply assign numerical identifier as the value. Then 
short SRW with T steps are performed from these seeds. 
We could repeat the process for R times as well for each 
starting point and have T ∗ R ∗ M samples (with pos-
sible duplicates).

2.	 Discard irrelevant attributes manually (optional) The 
step is optional. Although attribute selections algorithms 
themselves will detect irrelevant attributes while some-
times large cost from the requirement on sample size are 
assigned to ensure the accuracy of the result. We would 
take any effort to avoid query cost, so if some attributes 
are explicitly irrelevant we would dump it before start 
running mRMR. It should be noted that this step is not 
the same as naive inference in last subsection, as we only 
ignore those that are almost absolutely irrelevant (e.g. 
communities are very not likely to be based on time of 
registration especially on those content based networks).

3.	 Adapt attribute selection algorithms For all the 
samples s we collected from the same starting node 
s0 we assign C(s) = C(s0) , and load the attributes 
from metadata of corresponding nodes to mRMR. We 
limit the number of attributes in our selected subsets 
to relatively small if the mutual information isn’t sig-
nificantly improved with later variables. Finally we use 
the selected attributes �′ as a direct classifier, namely 
C(x) = C(y) ⟺ �

�(x) = �
�(y).

4.4 � Experiments

We also tested CRW with inference on real world data set. 
On SNAP we are able to find the amazon product meta-
data which collected earlier (Leskovec et al. 2007). The 
data comes with a number of raw attributes including but 
not limiting to identifier, category hierarchy, sales, etc, in 
which we extract similar products as edges. After an initial 
cleaning we found the majority of products, at that moment, 
is under the large ”Books” category, so we take the induced 
graph of all books nodes as our data source to make the 
community structure more ambiguous. We also eliminate 
the identifier as it seem to be randomly distributed and is 
irrelevant, and remove all nodes appear in similar products 
but have no meta information. The cleared data set’s basic 
statistics are: |N| = 270347, |E| = 741124, d(x) = 5.48.

4.4.1 � CRW with naive selection

It seems to be not hard to decide a naive choice of com-
munity affiliation as categories are pretty plausible candi-
dates, while the data set come with a category of up to 7 
layers of category hierarchy which makes our choice pretty 
arbitrary. We decide to be very conservatively using the 
subcategory of book subjects, and run the same experi-
ment as shown in Sect. 3 (see Fig. 6).

The assumption has been strong when the result isn’t 
disappointing though. At no cost CRW is still able to 
maintain its leading position over SRW, which means the 
naive assumption did help the diffusion of CRW’s explor-
ing the network. At the same time, the shrinkage of our 
dominance is also the indicator of weaker community 
structure of our current partition at subcategory.

Fig. 6   The Amazon product data of books under naive attribute selec-
tion
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4.4.2 � CRW with mRMR

Finally we implement our idea of mRMR powered com-
munity inference by selecting the starting seed books from 
10 different subjects with widely spread sales ranking and 
ensure there’s no immediate common neighbor. In real world 
network this can be feasible at acceptable cost, by randomly 
browsing users/products on different tags/categories and 
make one query to each of then to get their neighborhood.

We then collect 5 replications of a 5 step short run on each 
seed, labeling each group numerically as the collecting order. 
These values are regarded as the output C(x) for mRMR, and 
all raw metadata from original data are extracted as attributes 
being inputs. We again labeled categorical data by numbers 
according to different values, with all missing inputs be filled 
as -1 (a common strategy for mRMR). We show our analysis 
results of choosing a size 5 subset in Table 3, while other size 
choices are not giving significant difference.

By our design to avoid over partition of graph, we shall 
neglect any variables that wont help the model too much, 
which in this case is dumping all but the 3rd level cate-
gory as it contributes to the majority of mutual information 
(mRMR score is 3.201) in the model. We then use the result 
as a classifier and rerun the experiment.

The result in Fig. 7 shows a slightly better performance 
especially in ESS, and yet maintain performance in all other 

dimensions. In addition, it should be noted that the explora-
tion of communities and the total variations can be very dif-
ferent when community number grows so direct comparison 
of 2 set of experiment is not perfectly fair, and meantime the 
subcategory itself is also a fairly good candidate in mRMR. 
The experiments prove that either method could be effective 
and chosen accordingly, while mRMR inference backed by 
stronger statistical fundamental might be considered first as 
the extra cost is negligible.

5 � Conclusion and future discussion

In this paper we propose a community information leverag-
ing random walk, CRW, to overcome poor graph conductance 
caused by the very commonly presence of communities like 
structure in large online networks. We showed theoretically 
that the proposed method has improved conductance and thus 
will converge faster. For graphs without explicit community 
affiliations we showed how feature selection algorithms can 
incorporate metadata available and help to select features as 
ground truth community. Our experiments on both synthetic 
and real world large networks demonstrate that CRW promis-
ingly explores the network better and gains higher quality sam-
ples using same number of queries with SRW being a baseline.

We’ve thought of some extension discussion options. 
Firstly the choice of our feature selection algorithm is by our 
knowledge being mRMR, where there might be newer and 
more powerful analytical tools (Dai et al. 2017) as our task 
involves plenty of categorical data. And our transformation 
of categorical data right now would simply be mapping them 
to arbitrarily numerical data, and it might be a source of false 
correlation. We might discuss the possibly better processing 
(Bateni et al. 2019) of these variables in future works.
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