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Abstract
Emotion recognition can be helpful in many fields such as elderly healthcare. Existing emotion recognition approaches are 
usually based on wearable sensors or computer vision analysis, which are intrusive or inconvenient to use. In recent years, 
radio frequency identification (RFID) has been exploited to monitor physiological signs (e.g., respiration and heartbeat) of 
users in a contactless and convenient way. Motivated by such progresses, we conduct an experimental study on recognizing 
the emotion of users with commercial RFID devices. We propose Free-EQ, an emotion recognition framework which first 
extracts respiration-based features and heartbeat-based features from RFID signals and then uses these features to train a 
classifier to recognize different emotions of a target user. Experiments on commercial RFID hardware show that Free-EQ 
can distinguish different emotions with relatively high accuracy.

Keywords  Emotion recognition · RFID · Vital signal · HeartBeat segmentation

1  Introduction

1.1 � Motivation

Emotion recognition has a significant impact on improv-
ing the interaction between machine and human, such as 
smart home that can adaptively adjust the setting according 
to human emotions. Recently, radio frequency identifica-
tion (RFID) has been used to perform contactless vital signs 
monitoring of people, e.g., respiration and heartbeat Zhao 
et al. (2018) and Hou et al. (2017). By analyzing the col-
lected respiration and average heart rate, according to the 
interaction of emotion and physiological signals, the goal 
of emotion recognition can be achieved by analyzing the 
training feature data Adib et al. (2015).

At present, many researches on emotion recognition 
methods have been proposed, and some of them are in prac-
tice. Among them, the audio-visual method of emotional 
expression is the mainstream technology of emotional rec-
ognition, that is, facial expression, body movement and 
speech to identify human emotions Kahou et al. (2016), 
Cowie et al. (2001) and PPG (2017). The other part is to use 
physiological means to achieve the purpose, which requires 
users to wear special physiological sensors (PPGBrugarolas 
et al. 2016; Jia et al. (2016); ECGKahou et al. 2016, etc). 
Recently, some researchers have tried to measure heart rate 
through a smartphone camera (Gregoski et al. (2012) and 
Lagido et al. (2014)), which requires users to put their fin-
gertips on the camera. Both methods have their limitations. 
Audio visual technology only uses the external expression 
of emotion and cannot accurately judge the inner feelings 
Picard et al. (2001). There are situations in which facial 
expressions can be controlled or body movements can be 
reduced to change the system’s recognition of someone’s 
emotional state. There are also some significant limitations 
in the use of physiological signals in emotion recognition. 
One is that it is very troublesome to use special sensors, 
expensive equipment and intrusion into users’ lives to dis-
turb users’ emotional state, which makes this method not 
suitable for long-term and extensive use. Second, it is a very 
difficult task to map physiological patterns to specific emo-
tional states Kim and Andre (2008).
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On the other hand, the biggest advantage of using physi-
ological signals for emotion recognition is that vital signs 
are more related to people’s inner feelings, because it takes 
advantage of the interaction between autonomic nervous 
system and heart rhythm Quintana et al. (2012). In daily 
life, invasive methods using special equipment are not suit-
able for continuous long-term monitoring. Therefore, the 
research of non-contact emotion recognition monitoring 
method based on wireless becomes more and more urgent. 
Some systems rely on expensive or special broadband hard-
ware, which makes them unable to carry out large-scale and 
long-term deployment, such as Doppler radar Droitcour 
et al. (2009), UWB radar, FMCW radar Adib et al. (2014), 
ZigBee and Wi-Fi signals can also be used to obtain human 
physiological signals to achieve the purpose of emotion rec-
ognition, but these systems require users to be close to the 
line of sight(LOS) path, and their performance deteriorates 
near the Fresnel boundary Wang et al. (2016). In addition, 
these systems usually have multiple users, even if both users 
have different emotional states, it is difficult to know who 
a signal belongs to, which hinders further personalized 
services.

1.2 � Challenges

(1)	 In device-free case, it is easy to hide breath and heart-
beat signals from environmental noise, and RFID is 
not sensitive to small chest motion because of its long 
wavelength. Moreover, the RF signal reflected by 
human body is modulated by respiration and heart-
beat. In this paper, before data analysis, the signal is 
preprocessed and the respiratory and heartbeat signals 
are extracted by two-step extraction method using the 
frequency characteristics of respiratory and heartbeat 
signals to solve Zhao et al. (2018).

(2)	 The respiratory signal is much stronger than the heart-
beat signal, and the heartbeat in the RF signal lacks the 
peak of the characteristic ECG signal, which makes it 
more difficult to identify the heartbeat boundary accu-
rately. How to extract the heartbeat signal effectively 
is also a big challenge. In this paper, the algorithm is 
designed to reduce the impact of respiration. The accel-
eration of respiration is smaller than that of heartbeat. 
The acceleration of RF signal is operated to suppress 
the respiration signal and emphasize the heartbeat.

(3)	 The respiratory patterns captured by heartbeat and RF 
reflection are transmitted to an emotion classification 
subsystem. By consulting the characteristics of heart-
beat and respiration recommended in the emotion clas-
sification subsystem, and using support vector machine 
classifier to distinguish different emotional states, RFID 
technology is used to detect and identify human emo-
tions.

1.3 � Contributions

This paper extends the application of RFID in the field 
of emotion recognition. Our solution uses passive RFID 
tags to monitor the heartbeat and breath to achieve the 
purpose of emotion recognition, while achieving a better 
recognition effect of emotion and physiological signals, 
that is, directly measuring the interaction between emo-
tion and physiological signals, without requiring users to 
carry special sensors on their bodies. Not only that, this 
paper attempts to use the movie watching to stimulate 
the subjects to get physiological changes to identify their 
emotional state, obtain the physiological data set of the 
subjects in the experimental process, find the emotional 
correlation and specificity through various feature con-
tent, and design an emotional classification method. After 
calculating the features of different feature domains (15 
features in total), we try to use the combination of embed-
ded feature selection method Guyon and Elissee (2003) 
and support vector machine to identify human emotion. 
This is a more lightweight, scalable and unlimited battery 
life solution, and RFID tag serial number can effectively 
distinguish different users, improve personalized services.

2 � Related work

In recent years, RFID technology has gradually begun to 
play its unique role in positioning due to its advantages 
such as high reading rate of reader, low cost of contact-
less reading and writing and low tag cost. At present, in 
the RFID positioning technology research, the absolute 
positioning development earlier, the research results are 
remarkable.

In addition to the application of RFID technology in 
traditional positioning, the newly developed application 
fields of RFID technology such as HRV detection Wang 
et al. (2018), Ding et al. (2015) and Liu et al. (2017) have 
brought new opportunities for human emotion identifica-
tion, because RFID tag is a very lightweight, non-contact 
sensor, and its identification characteristics can effectively 
and easily distinguish different human bodies. Free-EQ is 
inspired by the possibility of monitoring breath and heart-
beat based on RFID sensor system and emotion recogni-
tion system based on physiological signal.

RF-based breath and heartbeat detection Recent 
research shows that RF signal is very sensitive to the 
changes of multipath environment, and the chest fluctua-
tion caused by inhalation–exhalation and heartbeat can 
adjust the RF signal. Therefore, the heartbeat and respira-
tion can be detected according to the RF signal channel 
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information, without the need for the user to hold or wear 
any device Zhao et al. (2018). However, most of the exist-
ing RF signal monitoring mechanisms rely on special 
hardware, such as the use of Doppler radar and FMCW 
radar to monitor vital signs of respiratory and heart rate. 
Wi-Fi and ZigBee signals can also be used for breath and 
heartbeat monitoring Liu et al. (2015), but these systems 
require users to be close to LOS path.

Previous research on RFID system used the reported 
channel information to get the position sensing and activity 
of something or someone. TagBreathe Hou et al. (2017) uses 
RFID tags on multiple individuals to detect respiration rate 
(RR), but it can only monitor respiration and lacks heart-
beat monitoring. RFID based human heart rate variability 
monitoring method RF-ECG Wang et al. (2018) pastes a 
set of COTS-RFID tags on the chest area of human clothes, 
but does not detect RR. Free-EQ can not only obtain the 
respiratory rate of human body, but also extract the heartbeat 
interval.

Vital signal-based emotion recognition The work of emo-
tion recognition system based on physiological signals is 
divided into two stages: firstly, the physiological signals 
related to emotion are acquired by sensors; secondly, they 
input these signals into classifiers to recognize emotion. 
In the MIT lab, some emotional states can be identified by 
physiological data, including temperature, heart rate, skin 
conductivity (SC), muscle activity and RSP speed Healey 
and Picard (1998) and Picard et al. (2001). Unfortunately, 

the existing sensors that can extract these signals are mostly 
used in clinical scenarios so that they are not suitable for 
public use.

Based on the existing research on the detection of physi-
ological signals by frequency signals, Free-EQ does not need 
users to wear any sensors, but only relies on wireless signals 
reflected from users’ bodies to use two-dimensional emo-
tional model for classification.

3 � Free‑EQ overview

The structure of the system is shown in Fig. 1, which is 
divided into four parts: preprocessing, breath extractor, 
heartbeat extractor and emotion classifier.

The basic idea of the design method is to paste three 
tags to three specific positions of the volunteers’ chest, 
abdomen, chest and abdomen center. The reader is placed 
on the human body to collect the original data. During 
data acquisition, the reader will constantly ask for tags, 
and the three tags will feed back the phase value of RF 
signal at a certain time point. Due to the existence of 
environmental noise, multiple tags are deployed to 
improve the robustness of the system, because the noise 
effect of different points is different. The breath or heart-
beat component of the signal received from one tag can 
be hidden, but the breath causes the chest to expand and 
contract, resulting in compound displacement, and the 

Fig. 1   Free-EQ architecture
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tiny vibration of the body caused by the heartbeat can be 
reflected in the phase change extracted from other tags. 
From the tag feedback information received by the reader, 
the time phase two-dimensional vector of each tag in a 
period of time can be obtained.

As shown in Fig. 2, when the reader antenna is 1 m 
away from the chest, the RF signals fed back by the three 
closed tags show regular wavy patterns as the chest moves 
rhythmically. The 0–43 s signal ripple pattern is clear, the 
phase value fluctuates significantly, the chest movement 
caused by respiration corresponds to the figure, and the 
phase value after 43 s is almost a constant, indicating 
that volunteers leave the monitoring area. The experimen-
tal results show that the signal phase has obvious quasi 
periodicity without device.

Based on the above experimental basis, this paper uses 
signal preprocessing to reduce the impact of environmen-
tal noise. The breath and heartbeat extraction module real-
izes the separation of breath signal and heartbeat signal. 
The feature extraction module realizes the extraction of 
emotion related features. The obtained features are input 
into the emotion classifier for training and ultimately 
achieve the purpose of human emotion recognition.

4 � Preprocessing

Smothing: By analyzing the phase information fed back by 
the reader, it is found that the phase is folded, termed as 
wrapped phase. The phase calculation formula is as follows:

Because the value range of arctangent function is (− �

2
,
�

2
) , 

the calculated result is not the actual phase, but the actual 
phase is the package phase value which is redundant to 2� 
and folded in an interval, and the difference between the 
actual phase and the measured result is an integral multiple 
of 2� , resulting in the periodic multi value problem.

Phase unwrapping can be realized by adding and sub-
tracting � on each pixel according to the phase difference 
between adjacent pixels. Z�(m) represents the folded phase 
signal, Zu(m) represents the phase signal expanded after 
operation, so the phase expansion steps are as follows: 

(1)	 Z�(m) = Zu(m);
(2)	 Based on the second point of Z�(m) , the difference 

between the previous point and the current point is 
calculated Δ;

(3)	 If Δ >
𝜋

2
 , then Zu(m) the current point and all subse-

quent points minus �;

(1)�(�) = arctan[
ℑ(z)

ℜ(z)
], z = a + bi.

Fig. 2   Time-phase diagram of 
three tags. The above image 
depicts the human body 
reflected RF signals read by 
three tags. The RF signal fluctu-
ates rhythmically with chest 
undulation
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(4)	 If Δ < −
𝜋

2
 , then Zu(m) the current point and all subse-

quent points plus �;
(5)	 Repeat the above steps until you traverse Zu(m) all 

points.

Interpolation: After smoothing, due to the collision between 
tags, the response of RFID tags is uneven in the time 
domain. In order to solve this problem, the Lagrangian four 
point interpolation method is used to obtain the phase flow 
with the same interval. The interpolation frequency set in the 
system is 50 Hz. Low interpolation frequency can reduce the 
computation, but it will reduce the system accuracy.

where k is a polynomial degree, yi is the function value of 
point i(i = 1, 2,… , k + 1) . The general formula of Lagrange 
interpolation is shown in formula (2), so we can get the 
unique polynomial f (x) in the complexity of O(k2).

After data processing with 50 Hz as interpolation fre-
quency, the reported phase baseline drifts because the 
propagation distance will be changed by small movements, 
such as sitting straight or leaning on a chair. Free-eq uses 
exponentially weighted moving average (EWMA) to remove 
these trends and make the system environment independ-
ent. EWMA increases different weights by a given node, 
obtains the moving average value according to the given 
different weights, and determines the prediction value based 
on the final moving average value. Its weighting coefficient 
decreases exponentially, and the weighted influence of each 
node decreases exponentially with time. The closer the cur-
rent time is, the greater the weighted influence of data is. 
The recursive formula is as follows:

where st is the actual phase value at time t, vt is the weighted 
mean value at time t, v1 = s1 and � ∈ (0, 1) represents the 
speed of weight decrease, the smaller the value is, the faster 
the weight decreases. In the optimization algorithm, we 
usually choose � ≥ 0.9 . According to the frequency of res-
piratory and heartbeat signals (0.1–1.5 Hz), in the actual 
processing, we set � to 0.99, so the amplitude fluctuation of 
frequency response after the cut-off frequency is relatively 
small.

5 � Breath extractor

There are three main sources of phase fluctuations from 
reader feedback, namely, environmental noise, respira-
tion and heartbeat. Among them, the fluctuation caused by 

(2)f (x) =

k+1∑

i=1

yi

∏

j≠i

x − xj

xi − xj
,

(3)vt = �vt−1 + (1 − �)st,

respiration and heartbeat is the main one, and the frequency 
range of respiration and heartbeat is different for different 
objects. After preprocessing, the noise is randomly distrib-
uted in the whole frequency domain. However, most of the 
energy, i.e. the fluctuation caused by respiration and heart-
beat, is concentrated in some frequency range.

In order to extract the coarse-grained respiratory and 
heartbeat signals, we collect the prior knowledge of human 
respiratory rate (RR) and heartbeat rate (HR), the normal 
RR is 12–20 bpm (0.2–0.33 Hz) and the normal HR is 
60–100 bpm (1–1.67 Hz) when the healthy adults are calm. 
Free-EQ uses fourth-order Butterworth filters with two dif-
ferent cut-off frequencies (FFT to get the frequency range of 
energy concentration, usually 0.2–0.33 Hz and 1–1.67 Hz). 
Their frequency response is the most flat, there is no ripple 
in the passband, and they roll to zero in the stopband. The 
rough RR and HR signals are reflected in the frequency-
domain peaks of these signals.

In order to obtain the sub-band spectrum of the heartbeat 
signal and the respiratory signal, after the typical fast Fou-
rier transform is adopted in this paper, the curve in Fig. 3 
can clearly reflect the maximum amplitude of the spectrum 
in the range of 0.2–0.4 Hz and 1–1.2 Hz. Combining the 
actual respiration and the heartbeat frequency of the human 
body, the first peak of the spectrum can be the centralized 
distribution frequency range of the respiratory signal, and 
the second peak is the heartbeat.

Next, we use Butterworth filter to set the above frequency 
as the cut-off frequency to filter the coarse-grained respira-
tory signal we need. The filter order is set as 4 in Free-
EQ, and the cut-off frequency is 0.2–0.4 Hz. The results are 
shown in Fig. 4.

According to the experimental results, the filtered sig-
nals show periodic fluctuations, each of which is roughly 
the same as a single respiratory cycle of human body. The 
specific error analysis will be explained in the Sect. 7.

6 � Heartbeat extractor

6.1 � Enhanced heartbeat

The purpose of this processing is to suppress the respira-
tory signal and improve the signal-to-noise ratio of the 
heartbeat signal. Recall that the phase of the RF signal 
is proportional to the composite displacement due to 
the inspiratory expiratory process and the pulse effect. 
Because the displacement caused by inspiratory expiratory 
process is one order of magnitude larger than that caused 
by heartbeat, the RF phase signal is mainly controlled by 
respiration. However, the acceleration of respiration is 
less than that of heartbeat. This is because breathing is 
usually slow and steady, and the heartbeat includes rapid 
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muscle contraction. Therefore, we can suppress breathing 
and emphasize heartbeat by operating signals proportional 
to acceleration rather than displacement.

By definition, acceleration is the second derivative of 
displacement. Using this characteristic, we can simply cal-
culate the second derivative of RF phase signal. Because we 

Fig. 3   FFT for reported phase 
of a tag
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Fig. 4   Waveform obtained by 
filtering 0.2–0.4 Hz with three 
tags
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don’t have the analytical expression of RF signal, we must 
calculate the second derivative by numerical method. There 
are many such numerical methods with different properties. 
We use the following second-order differentiator because 
it is robust to noise Holoborodko (2014), and its general 
expression is:

The parameters in Eq. (4) are as follows:

where N ≥ 5 is the filter length (must be odd), M is the 
center of symmetry, f (xk) is the function value at point xk , 
x∗ is the sample point. The experimental results show that 
the ideal effect can be achieved when the filter length is 7, 
so the differentiator can be specified as follows Noise Holo-
borodko (2014):

where f ′′
0
 refers to the second derivative of a specific sam-

ple, fi refers to the distance value of time series i samples, 
and h is the time interval between consecutive samples. As 
mentioned in Sect. 4 interpolation, we use 50 Hz interpola-
tion frequency, so that there is one data point every 0.02 s. 

(4)f ��(x0) ≈
1

2N−3h2

(

s0f0 +

M∑

k=1

sk(fk + f−k)

)

.

(5)fk = f (xk), xk = x∗ + kh, k = −M,… ,M,M =
N − 1

2
,

(6)f
��

0
=

(f3 + f−3) + 2(f2 + f−2) + (f1 + f−1) − 4f0

16h2
,

Combined with the experiment, we can set the step h to 
0.12 s.

In Fig. 5, we show the original RF signal and the accel-
eration signal processed by two different differentiators. 
Figures 6 and 7 respectively show the comparison between 
the coarse-grained heartbeat signal filtered by the filter in 
the 1–1.2 Hz frequency band and the acceleration signal 
obtained by the differential second-order differentiator and 
the noise robust second-order differentiator. Figure 7 shows 
that the curve fluctuation of the two is similar. In the accel-
eration signal, each heartbeat cycle has a periodic mode, and 
the respiratory effect can be ignored. However, because the 
signal is noisy and lacks clear features, it is still difficult to 
describe the beat boundary, so we need to use the heartbeat 
segmentation algorithm.

6.2 � Segmentation algorithm of heartbeat

In Free-EQ, the acceleration signal needs to be divided into 
separate heartbeat. The key challenge is that we don’t know 
the morphology of heartbeat and can’t guide the segmen-
tation process. In order to solve this problem, we refer to 
the optimization algorithm in Zhao et al. (2016), which can 
jointly restore the shape and segmentation of heartbeat.

This optimal intuition is that the continuous human 
heartbeat should have the same shape. Therefore, although 
they may stretch or compress due to different heartbeat 
lengths, their overall shape should be the same. This 
means that we need to find a division to minimize the 

Fig. 5   Comparison of signal 
processed by two differentiators 
with the original signal. This 
figure shows the original RF 
signal (top), the signal accelera-
tion calculated by the differen-
tial second-order differentiator 
(called Diff, middle), and the 
signal acceleration calculated 
by the noise robust second-
order differentiator (called Rob, 
bottom)
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shape differences between the resulting beats, taking into 
account that we cannot know the shape of the beat apriori, 
and that the beat may be compressed or stretched. In addi-
tion, our formula is not to use greedy algorithm to seek 

local optimal selection, but to optimize all possible seg-
ments, as follows.

Set x = (x1, x2,… , xn) represents a sequence of length N, 
segment S =

{
s1, s2,…

}
 is to divide x into non-overlapping 

Fig. 6   Comparison of filtered 
heartbeat signal with Diff
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continuous subsequences, in which each subsegment si by 
|
|si
|
| points. In order to identify each heartbeat cycle, we 

need to find a segment to make the segments most similar, 
that is, to minimize the changes between segments. We 
use variance as the measurement standard. Since statisti-
cal variance is only defined by scalars or vectors with the 
same dimension, we need to do linear warping for vec-
tors of different lengths which is realized through a cubic 
spline interpolation (McKinley and Levine (1998)).

The algorithm Zhao et al. (2016) does not estimate the 
segmentation point and template at the same time, but fix 
another template while updating the segmentation point 
and template. In each iteration, our algorithm updates 
the segmentation of the given current template, and then 
updates the template of the given new segmentation. For 
these two subproblems, our algorithm can get the global 
optimal solution with a time complexity of O (kn), where k 
is the number of iterations before the algorithm converges. 
Because the number of possible segments is limited and 
the cost function of each iteration decreases monotonically 
before convergence, the convergence of the algorithm is 
guaranteed. Finally, it can be found that the global optimi-
zation is not guaranteed by the global algorithm, but each 
subproblem achieves its global optimization. In practice, 
the convergence speed of the algorithm is very fast, and it 
can converge to a local optimum. The average number of 
iterations k is 8, and it is not more than 16.

Figure 8 shows the final beat division of the heartbeat 
signal. As shown in the figure, we have basically success-
fully divided a single heartbeat sequence and the length of 
the segment pulse is basically the same as the human heart-
beat cycle.

7 � Emotion classifier

After recovering a single heartbeat from the RF reflex, it 
uses the human breath pattern and heartbeat interval features 
to recognize other people’s emotions. Next, we describe the 
emotion model used in this system, and elaborate its feature 
extraction and classification methods.

Emotional modeling: Researchers often use two different 
methods to simulate emotions. One method is to divide emo-
tions into different categories, that is to say, emotion judg-
ment must be selected from the list of specified tags, such as 
happy, sad, surprised, angry and so on. one problem of this 
method is that human emotions may contain mixed emotions 
of the above tags, because the choice of vocabulary is lim-
ited. Another method is to classify emotions from multiple 
dimensions. Express their impressions of each stimulus on 
several consecutive scales, such as pleasant and unpleasant, 
simple and complex, etc. The common scale of this method 
is price and wake-up. The price represents the pleasure of 
stimulation, one is positive, the other is negative. Free-EQ 
chooses the latter to construct a 2D emotional model, which 

Fig. 8   Segmentation result. 
The figure above shows the 
preprocessed reflected signal 
obtained by applying the heart-
beat segmentation algorithm. 
Every two dotted lines represent 
a heartbeat signal
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divides emotions into four states: joy, pleasure, anger and 
sadness. In the past researches related to human emotion 
recognition, scholars usually use the value combination of 
evocation dimension and valence dimension to represent 
people’s emotional state Kim and Andre (2008) and Lang 
(1995). In this paper, we explore the four basic emotions 
in the two-dimensional emotion model, namely, anger, joy, 
sadness and pleasure. See Sect. 7 for details.

Feature extraction 
In this paper, we extract features from respiratory sig-

nal and heartbeat sequence. There are a lot of literatures 
on extracting emotion related features from human heart-
beat Picard et al. (2001), Kim and Andre (2008) and Calvo 
and Dmello (2010), which can be divided into time-domain 
analysis, frequency-domain analysis, time-frequency analy-
sis, etc. In this paper, 15 features are extracted from the IBI 
sequence and respiratory cycle, as shown in Table 1.

Moreover, the system has the function of extracting 
breath. In order to extract the irregularity of respiration, the 
peak value detection after low-pass filtering is used to iden-
tify each respiratory cycle. Because the time-domain feature 
is recommended in the past work, the time-domain feature is 
selected in the experiment Picard et al. (2001).

Because we only calculate these features based on signal 
analysis, there may be redundant features in the calculated 
features, which are essentially independent of the classifica-
tion of four emotion types. This garbage feature will even-
tually degrade the performance of the emotion classifier. 
Combined with the above literature, the use of all these fea-
tures in the case of limited training data may lead to over 
fitting. Selecting some of the most relevant features can not 
only reduce the amount of data needed for training, but also 
improve the classification accuracy of test data.

We choose to use 1-normal SVM Zhu et al. (2003), which 
can select a subset of relevant features and get better sparse 
solution when training SVM classifier.

8 � System evaluation

8.1 � Experitmental setup

Implementation. The Free-EQ consists of an Impinj R420 
commercial reader, several antennas and UHF passive Tag. 
The antenna model is Laird S9028PCR, and the tag model 
is AZ-9654. The computer is equipped with Intel (R) core 
(TM) IU-5200U CPU@2.20 GHz and 16 GB of memory.

Setup In our experiment, there were a female participant 
and a male participant, who wore daily clothes with different 
fabrics. The experiment was carried out in the room with 
pure experimental environment. The assessment environ-
ment includes office furniture, including desks, seats and 
computers. The distance from antenna plane to human chest 
tag is 1 m. Due to the human body impedance, it will cause 
errors in RFID measurement. In the experiment, there is a 
solid paper strip with a thickness of 1 cm between the tag 
and the human body. The three tags are respectively located 

Table 1   Signal correlation characteristics used in Free-EQ

Domain Feature

Time Mean, Median, Std, MSE, RMSSD Sztajzel (2004), 
Kurtosis, Skewness

Frequency Welch PSD: LF/HF, peakLF, peakHF.
Burg PSD: LF/HF, peakLF, peakHF

Nonlinear SampEntroy Lake et al. (2002), DFA Penzel et al. (2003)

Fig. 9   The system experimental 
setup
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in the abdomen, the upper part of the abdomen and the mid-
dle of the ribs, and the antenna plane is set 1 m away from 
the chest. Figure 9 shows the working scene of the system 
measurement.

8.2 � Error estimation of respiratory cycle

In this paper, the peak estimation method is used to cal-
culate the period of respiratory signal, and the respiratory 
frequency of the measurer is controlled at 18 bpm by respira-
tory training method. First, we compare the estimated respir-
atory period of the system with the given period. Figure 10a 
shows the scatter diagram, where the X and Y coordinates 
are the period calculated by the wave peak (defined as peak 
circle) and the period calculated by the wave peak (through 
circle), respectively. The color represents the density of the 
midpoint in a specific area. The diagonal represents the 
standard respiratory cycle of 3.33 s, and the distance to the 
diagonal is proportional to the error. The experimental scat-
ter diagram shows that all the points are evenly distributed 
on both sides of the diagonal, and the points close to the 
diagonal are relatively dense, so the respiratory cycle can 
be estimated accurately.

We quantitatively evaluate the errors in the Fig. 10b, 
which shows the cumulative distribution function (CDF) of 
the difference between the coarse-grained respiratory cycle 
estimates obtained by the two-step extraction method and 
the cycle estimates obtained based on respiratory training.

Figure  10b shows the CDF calculated by the period 
of wave crest on the left and the CDF calculated by the 
period of wave trough on the right. The error of the 97th 
percentile is 0.091 s in the left figure and 0.079 s in the 

right figure. In our experiment, the average values of peak 
circle and through circle are 3.3394 s and 3.3365 s, respec-
tively. The average values of the two errors are 0.0129 s and 
9.4386e−04 s, respectively. Therefore, the estimated cycle 
length is within 0.39% and 0.03% of its correct value.

8.3 � Evaluation of emotion recognition

In this section, we will study whether the system can accu-
rately classify human emotions according to the RF signals 
reflected by the human body. It is difficult to obtain high-
quality data for sentiment analysis, especially in identifying 
basic real emotions. Therefore, it is very important to design 
the experiment carefully. Our experiment is based on the 
previous research on emotion recognition using physiologi-
cal signals Picard et al. (2001) and Kim and Andre (2008). 
Specifically, before the experiment, the subjects prepared 
stimuli (such as personal memory, music, photos and videos) 
separately. During the experiment, the subjects sat in the 
laboratory alone. In this paper, the video was used to trig-
ger some emotional state of the subjects, and the changes 
of the subjects’ expressions were recorded by the camera 
as the basis of the emotional state. At the same time, the 
single experiment was completed, and the subjects reported 
The period when she or he develops this emotional state. In 
combination with the two, data were collected at the corre-
sponding time period and marked as the emotions reported 
by the subjects.

In the frequency domain of HRV time series, scholars 
are generally interested in three frequency bands: VLF band 
range 0.003–0.04 Hz, LF band range 0.04–0.15 Hz and HF 
band range 0.15–0.4 Hz Kim and Andre (2008). The high 
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frequency component is related to parasympathetic nerve, 
while the low frequency component is related to both sym-
pathetic and parasympathetic nerve. From these subband 
spectra, we integrate the power spectral density (PSD) 
obtained by Welch algorithm and Burg algorithm, and the 
ratio of power in LF band to power in HF band (LF/HF). 
Because parasympathetic activity is dominant in heart fail-
ure, it is generally believed that LF/HF ratio can distinguish 
sympathetic effect from parasympathetic effect Malliani 
(1999). Figure 11 shows the IBI-PSD of the experimenter 
at one time.

Under the 50% cross validation, the results of individual 
independent emotion classification are shown in Table 1 
system can judge whether a subject is in a state of calm or 
not. Only from the data of the subject, the average accuracy 
is 83.3%.

For the recognition of four emotional states, i.e. sadness, 
anger, ease and happiness, under the 50% cross validation, 
the four classification results of individual independent emo-
tions are shown in Table 2. Only from the data of the sub-
jects, the average accuracy rate was 54.8%.

Table 2 shows the confusion matrix between the predicted 
results and the actual results. By observing the four matrices, 
it can be found that the prediction of calmness and other 
emotional states can not be well distinguished. There are two 
possible results: one is that the model is not accurate due to 
the small amount of other emotional data, and the other is 
that the obtained heartbeat IBI value is not reined enough, 
leading to the characteristics.

Table 3 and Table 4 show the evaluation criteria for the 
results of two and four categories of emotion. We list 7 indi-
cators, such as correctly and incorrectly classified instances, 

kappa statistics and mean absolute error. Obviously, the 
binary classification model is better than the polychotomous 
in each index.

9 � Conclusion

This paper designs and implements a cots-rfid based device 
to recognize human emotions by reflecting wireless signals 
to his or her body. This system uses a series of signal pro-
cessing technology to separate breath and heartbeat, extracts 
signals from human tiny movement and noise, and uses 
related algorithm to obtain heartbeat rhythm segmentation 
sequence.

We have carried out some experiments in typical scenar-
ios, and the experimental results obtained from the existing 
data show that the system is reliable and robust. In the case 
of no equipment, the average error of the system is less than 
0.39% and 0.03% for the period estimation of respiratory sig-
nal (peak and trough), and the average accuracy of the result 
of emotion classification is 83.3% . The system also offers the 
possibility of many other applications, such as remote and 
long-term vital signs monitoring and stress level assessment. 
We believe that this marks an important step in the new field 
of emotion recognition. It is also based on people’s growing 
interest in the use of wireless systems and radio-frequency 
signal sensing. Therefore, this paper extends the scope of 
radio-frequency sensing to the field of emotion recognition.

In addition, although this paper has realized the human 
emotion recognition by radio frequency, but now it is in 
the special period of new coronavirus, the insufficient and 
incomplete experimental data will lead to the decrease of 
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the accuracy of the system, but there will be more precise 
emotion recognition by supplementary work in the future
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