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Abstract
Previous studies have shown that about 90% of traffic accidents are due to human error, which means that human factors 
may affect a driver's braking behaviors and thus their driving safety, especially when the driver makes a braking motion. 
However, most studies have mounted sensors on the brake pad, ignoring to some extent an analysis of the driver's behavior 
before the brake pad is pressed (pre-braking). Therefore, to determine the effect of different human factors on drivers' pre-
braking behaviors, this study focused on analyzing drivers' local joints (knee, ankle, and toe) by a motion capture device. A 
Hilbert–Huang Transform (HHT)-based local human body movement analysis method was used to decompose the realistic 
complex pre-braking actions into sub-actions such as intrinsic mode functions (IMF1, IMF2, etc.). Analysis of the results 
showed that IMF1 is a common and necessary action when pre-braking for all drivers, and IMF2 may be the safety assur-
ance action that allows right-foot transverse movement at the beginning part of the pre-braking process. We also found that 
the experienced, male, and Phys.50 groups may have consistent characteristics in the HHT scheme, which could mean that 
such drivers would have better performance and efficiency during the pre-braking process. The results of this study will be 
useful in decomposing and discerning the specific actions that lead to accidents, providing insights into driver training for 
novice drivers, and guiding the construction of daily automated driver assistance or accident prevention systems (advanced 
driver assistance systems, ADASs).

Keywords  Hilbert–Huang Transform · Empirical Mode Decomposition · Motion Measurement · Vehicle Driving · Braking 
Behaviors Analysis · Driver Characteristics Analysis

1  Introduction

The number of private cars continues to grow, and traffic 
accidents have become one of the most serious social prob-
lems in the world (Rongqiang et al. 2016). About 90% of 
traffic accidents are due to human causes (NHTSA 2002). 
In particular, drivers’ braking-related behaviors are consid-
ered to be an important cause of accidents (Ren et al. 2011). 
For example, some inexperienced drivers may use the gas 
pedal instead of the brake and cause an accident (Schmidt 
et al. 1997).

According to our previous studies (Wu et al. 2020b) and 
related research (Lyu et al. 2017, 2018; Hault-Dubrulle et al. 
2011), drivers’ experience, gender, and physique as human 
factors may affect a driver's braking behavior and thus his 
driving safety. However, most studies have mounted sensors 
on the brake pad. Only a few studies (Stahl et al. 2014; Hou 
et al. 2019) focused on the analysis of driver's behavior pre-
braking, but they used inconsistent definitions that differed 
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from this paper (i.e., driver’s body actions before the brake 
pad are pressed).

Therefore, an in-depth analysis of driver pre-brake-related 
behaviors is necessary to determine the relationship between 
various human factors and possible traffic accidents.

With the advancement of sensors and Internet of Things 
(IoT) technology, human in-vehicle behavior can already be 
collected and analyzed with great accuracy. Among them, 
an accelerometer-based motion capture device to record the 
subject's whole-body movements can be applied to many 
different scenarios (Wu et al. 2020a). A dedicated kit with 
acceleration sensors and similar devices to capture motion 
can collect data on the subject’s body movements with high 
accuracy, even outside of a laboratory environment.

Moreover, based on the collected human body move-
ments data, motion features with different action purposes 
can be decomposed in the frequency domain (Winter 2009). 
Thus, to facilitate the analysis of the similarities and differ-
ences between actions, action frequency analysis in previ-
ous studies has mainly used Fourier transform (Bruderlin 
and Williams 1995) and wavelet transform (Aminian and 
Najafi 2004), which are not suitable for decomposing human 
actions due to interpretation difficulties.

Therefore, based on a set of experiments performed at a 
vehicle test field, this study focused on analyzing drivers’ 
pre-braking actions and tried to propose an action decompo-
sition-based local human body movement analysis method to 
discover similarities and differences in pre-braking actions 
among drivers with different driving experience, gender, 
and physique. The motion capture device called Xsens 
MVN Animate (Xsens 2022) was used for the data collec-
tion. Unlike traditional motion capture instruments, MVN 
can additionally collect human joint data, such as for spinal 
joints and toes, to calculate more joint angles to represent the 
subject's posture for motion analysis. Based on related joint 
angle calculations, an action decomposition method, such as 
Hilbert–Huang Transform (HHT), is applied to analyze the 
pre-braking actions in the instantaneous frequency domain. 
The HHT method is a kind of empirical decomposition, 
which can better decompose the realistic complex actions 
of human beings through nonlinear decomposition.

The results of this study will be useful in decomposing 
and discerning the specific actions that lead to accidents, 
providing insights into driver training for novice drivers, and 
guiding the construction of daily automated driver assistance 
or accident prevention systems (advanced driver assistance 
systems, ADASs).

The remainder of this paper is organized as follows: an 
overview of related studies on driver behaviors analysis, 
braking motion analysis, and Hilbert–Huang Transform 
will be provided in Sect. 2. In Sect. 3, the methodology, 
related measures definitions, and description of the dataset 
will be provided. Then, the experimental design, dataset, Ta
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analysis results, and discussion will be provided in Sects. 4 
and 5. Finally, we will summarize the research results and 
provide our perspective regarding promising future research 
in Sect. 6.

2 � Related studies and hypotheses

2.1 � Driver behaviors analysis

Most research has focused on driver behaviors to improve 
the safety of driving performance. For example, Cao et al. 
(2014) modeled the cognitive architecture underlying driv-
ers’ skills and supported quantitative simulation of the 
driving behavior. Jia et al. (2020) analyzed different driv-
ing styles, including extreme acceleration and emergency 

braking behavior and other behaviors by using long short-
term memory and convolutional neural network methods. 
Driving data metrics show that there is no specific time 
point after which driving behavior stabilizes for all driv-
ers (Stavrakaki et al. 2020). However, Lodha et al. (2021) 
showed that the braking time in chronic stroke disease survi-
vors was longer than in other groups. Nugroho et al. (2021) 
predicted the remaining age of brake lining by studying 
various driving behaviors and braking power. In summary, 
although there are many studies about driver behaviors, 
braking behaviors, and braking time, few are related to pre-
braking behaviors.

Fig. 1   The pre-braking behav-
iors in this study

Fig. 2   The Xsens MVN motion 
capture device
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2.2 � Braking motion analysis and pre‑braking 
behavior

Braking is a common manipulation during the driving 
process, and it is most related to traffic accidents. Proper 
braking behavior can keep driving safe and comfortable for 

the beings in the vehicle. Many researchers have analyzed 
the braking behaviors in some urgent scenarios related to 
potential accidents (Wu et al. 2018; Li et al. 2020; Pawar 
et al. 2020). Moreover, other researchers studied the brak-
ing actions in usual driving environments (Tu et al. 2015; Li 
et al. 2017; Xiao et al. 2019; Zhu et al. 2021). Most of the 
research investigated braking as a whole process but did not 
focus on pre-braking separately.

In summary, Table 1 shows that related studies have 
focused more on the accident itself, with the driver’s pre-
braking action usually studied as one of the main maneuvers 
to avoid a collision. Not much research has been done on 
everyday driving behaviors, such as turning and stopping, 
with respect to pre-braking.

Furthermore, different studies used different defini-
tions for pre-braking behaviors. For example, some studies 
defined the braking action as the action of slowing down 
when encountering an accident (Susumu et al. 2009).

Therefore, in this paper, we define “pre-braking behav-
iors” as the action behaviors exhibited by a driver's foot 
before it touches the brake pedal during a whole braking 
action.

As shown in Fig. 1, the entire braking behavior of the 
driver's right foot is divided into four stages: (a) starting to 
brake, (b) lifting the foot to the highest point, (c) descend-
ing to touch the brake pad, and (d) depressing the brake pad. 
Therefore, the “pre-braking behaviors” are defined as actions 
(a) to (c). Because action (d) has been extensively studied by 
previous research, this paper will not focus on it.

Table 2   Details of calculated 
measures for analysis

No Name of Joint

1 Pelvis
2 L5
3 L3
4 T12
5 T8
6 Neck
7 Head
8 Right Shoulder
9 Right Upper Arm
10 Right Forearm
11 Right Hand
12 Left Shoulder
13 Left Upper Arm
14 Left Forearm
15 Left Hand
16 Right Upper Leg
17 Right Lower Leg
18 Right Foot
19 Right Toe
20 Left Upper Leg
21 Left Lower Leg
22 Left Foot
23 Left Toe

Fig. 3   The angles for calcula-
tion
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2.3 � The xsens MVN motion capture device

As shown in Fig. 2, the high precision accelerometer-based 
motion capture device named Xsens MVN (Troje 2002) 
was used in this study to collect the data on drivers’ body 
movements. Xsens MVN can record the 3D coordinates of a 
subject’s joints at a frequency of once every 4 ms. As a wear-
able motion capture system, unlike traditional camera-based 
motion capture devices, Xsens MVN can provide continuous 
data recording services including the outdoor situation by 
connecting a battery-operated dedicated recording device.

The MVN has 17 wearable ultra-small trackers that are 
designed to withstand high impacts such as rolls and stunts. 
In contrast to traditional motion capture devices, the Xsens 
MVN device can collect data on 23 joints including spinal 
segments T12, T8, L5, L3, and toes as XML files with high 
precision. The details of the collectible joint data are shown 
in Table 2.

2.4 � Hilbert–Huang transform

Hilbert–Huang Transform is applied to analyze and gener-
ate motion data collected by motion capture systems due 
to its high performance in dealing with nonlinear data in 
the instantaneous frequency domain. Dong et al. (2020b) 
proposed a framework to analyze human captured motions 
using HHT based on multivariate empirical mode decom-
position (MEMD). The previous research revealed that a 
common human action could be decomposed into multiple 
sub-actions with different purposes. For example, decom-
posed high-frequency sub-actions could be removed by 
HHT to achieve motion smoothing for robot motors (Dong 
et al. 2020a). Using these decomposed multiple sub-actions, 
Dong et al. (2021) also presented a method to generate real-
istic motion features for robot motion design, which dem-
onstrated that HHT could provide motion training data for 
deep learning.

In summary, previous research showed that HHT could 
be adopted in human motion analysis and editing. However, 
different human actions contain distinct motion features and 
multiple sub-actions, according to the biomechanical mech-
anism of the human body structure (Winter 2009). Thus, 
it is necessary to perform an in-depth analysis of distinct 
human actions, such as pre-braking actions using statistical 
methods.

3 � Methodology

3.1 � Angle calculation of key joints

The MVN motion capture device used in this study can sup-
port the acquisition of coordinate data for a total of 23 joints 

in the whole body (Troje 2002). In order to better represent the 
driver's movements during the pre-braking action, as shown in 
Fig. 3, this study focused on three joint angles related to brak-
ing behaviors: the waist, right knee, and right ankle. Therefore, 
because an aimed angle needs to be calculated from the coor-
dinates of three joints, the following data for seven joints were 
analyzed: pelvis, spinal joints L3 & L5, right upper leg, right 
lower leg, right foot, and right toe tip.

Specifically, for the calculation of the knee angle, we can 
take the coordinates of the three joints, upper leg U (Xu, Yu, 
Zu), lower leg L (Xl, Yl, Zl), and foot F (Xf, Yf, Zf) and calculate 
the angle of knee �k by Eq. (1):

where the vectors �����⃗LU and ����⃗LF can be obtained by Eqs. (2) 
and (3):

Finally, the driver’s three joint angles include the angle 
of knee �k , angle of ankle �a , and angle of waist �w can be 
calculated. By analyzing the changes of these three joint 
angles, we can gain a description of the driver's relevant 
actions during pre-braking.

3.2 � Hilbert–Huang transform

The Hilbert–Huang transform (HHT) is a process of empiri-
cal mode decomposition (EMD) of the original signal that 
applies the Hilbert Transform (HT) to each decomposed 
frequency component. Because HHT decomposes signals 
nonlinearly, it can achieve better results when analyz-
ing nonlinear and nonstationary motion capture data than 

(1)�k = arccos
�����⃗LU × ����⃗LF

|
||
�����⃗LU

|
||
×
|
||
����⃗LF

|
||

(2)�����⃗LU =
(
Xu − Xl,Yu − Yl,Zu − Zl

)

(3)����⃗LF =
(
Xf − Xl,Yf − Yl,Zf − Zl

)

Fig. 4   An example Hilbert spectrum
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other methods such as short-time Fourier transform (STFT) 
(Huang and Shen 2014).

An analytic signal z(t) is defined as Eq. (4) in the complex 
plane, where zr(t) is the real part observed in the real world, 
and zi(t) is the imaginary part calculated by HT (Bracewell 
1978).

As shown in Eq. (5), HT transforms the real part zr(t) into 
its imaginary part zi(t) by considering the observed signal 
zr(t) = A(t) cos (�(t)t) (Bracewell 1978).

After the real part zr(t) and imaginary part zi(t) of z(t) 
are obtained, the instantaneous amplitude (AMP) A(t) and 
frequency �(t) are calculated according to Eq. (6).

(4)z(t) = zr(t) + izi(t)

(5)zi(t) =
1

�
PV∫

+∞

−∞

zr(�)

t − �
d� =

1

�t
∗ zr(t)

(6)A(t) =

√
zr

2(t) + zi
2(t),�(t) =

d

dt
���

−1
zi(t)

zr(t)

However, as we can see from the definition of HT, only 
monochromatic wave signals, that is, only A(t) cos (�(t)t) , 
can be transformed by HT to calculate its imaginary part. 
Consequently, the instantaneous AMP and frequency of a 
composite wave made of distinct monochromatic waves 
cannot be obtained correctly. Meanwhile, because human 
motion data is not a monochromatic signal, HT is not satis-
fied by adopting nonlinear and nonstationary data such as 
motion capture data.

To deal with this issue, Huang and Shen (2014) provided 
a method called empirical mode decomposition (EMD), 
empirically decomposing a composite wave consisting 
of multiple monochromatic waves into a finite number of 
pseudo monochromatic waves, a so-called intrinsic mode 
function (IMF), and a residual without any frequency com-
ponent, a so-called trend. Equation (7) demonstrates that an 
observed signal x(t) is decomposed into several IMFs ci(t) 
and a trend r(t).

The definition of IMF is as follows:

(1)	 The number of extremes is equal to the number of zero 
crossings, or the difference between them is 1.

(2)	 At any given time, the average of the envelopes con-
necting the maximum and minimum values is zero.

Based on the definition above, IMF is extracted from high 
frequency to lower frequency using an algorithm (Huang 
and Shen 2014). Then, the trend is the residual with no fre-
quency component after extracting all IMFs. Because the 
IMF satisfies the HT assumption, after decomposing nonlin-
ear and nonstationary data into IMFs, we can let zr(t) = ci(t) 
to obtain zi(t) by Eq. (5). Then, the instantaneous AMP and 
frequency can be obtained correctly by Eq. (6) for each IMF.

(7)x(t) =

n∑

i=1

ci(t) + r(t)

Fig. 5   Map of the CAV test 
field

Table 3   Specific demographic information about the subjects

No Gender Driving Experience Months of Driv-
ing Experience

Knee Height 
(cm)

1 Female Novice 0 50
2 Male Novice 0 50
3 Male Novice 0 55
4 Male Experienced 306 50
5 Male Experienced 180 55
6 Female Novice 36 50
7 Male Experienced 180 45
8 Female Experienced 120 50
9 Male Experienced 216 45
10 Female Novice 0 50
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To demonstrate how IMFs are shown in the instantaneous 
frequency domain, we used an artificial signal s(t) consist-
ing of three monochromatic waves, Eq. (8), as an example 
of Hilbert spectral analysis (HSA). Please note that we used 
this example only to demonstrate HSA. Thus, for simplicity, 
the three monochromatic waves in artificial signal s(t) are 
stationary with constant frequency, while motion data are 
nonstationary with variable frequency.

Figure 4 shows the instantaneous AMP and frequencies 
of all decomposed IMFs obtained by HT. The results are 
displayed in time on the horizontal axis, frequency on the 
vertical axis, and AMPs are presented by color.

In this paper, we numbered the index of each IMF from 
low frequency to high frequency. Thus, IMF1 corresponds 
to cos( �t

40
) , IMF2 corresponds to 2sin

(
�t

20

)
 , and IMF3 cor-

responds to sin
(

�t

10

)
 . Using the HSA, we can analyze pre-

braking actions by decomposing angle of knee �k , angle of 
ankle �a , and angle of waist �w and calculate their instanta-
neous frequency and AMP for statistical analysis.

In addition, many studies have been conducted to extend 
the EMD from univariate to multivariate, expanding the 
range of applications of the HHT (Rehman and Mandic 
2010). Therefore, in this study, we focused on the multi-
channel of motion capture data in pre-braking actions and 
applied the MEMD to decompose the pre-braking actions 
into multivariate IMF signals.

As can be seen from the definition of EMD, HHT dif-
fers in principle from Fourier transform (FT). FT linearly 
decomposes a signal into monochromatic waves based on 

(8)s(t) = sin

(
�t

10

)
+ 2sin

(
�t

20

)
+ cos

(
�t

40

)

Fig. 6   Different action modes from the pre-braking behaviors

Table 4   The measures using for 
analysis

No Measure Abb Description

1 Waist freq. 1 Wf1 Average IMF 1 frequency for waist
2 Knee freq. 1 Kf1 Average IMF 1 frequency for knee
3 Ankle freq. 1 Af1 Average IMF 1 frequency for ankle
4 Waist amp. 1 Wa1 Average IMF 1 amplitude for waist
5 Knee amp. 1 Ka1 Average IMF 1 amplitude for knee
6 Ankle amp. 1 Aa1 Average IMF 1 amplitude for ankle
7 Waist freq. 2 Wf2 Average IMF 2 frequency for waist
8 Knee freq. 2 Kf2 Average IMF 2 frequency for knee
9 Ankle freq. 2 Af2 Average IMF 2 frequency for ankle
10 Waist amp. 2 Wa2 Average IMF 2 amplitude for waist
11 Knee amp. 2 Ka2 Average IMF 2 amplitude for knee
12 Ankle amp. 2 Aa2 Average IMF 2 amplitude for ankle
13 Waist freq. sd 1 Wfs1 Standard variance of IMF 1 frequency for waist
14 Knee freq. sd 1 Kfs1 Standard variance of IMF 1 frequency for knee
15 Ankle freq. sd 1 Afs1 Standard variance of IMF 1 frequency for ankle
16 Waist amp. sd 1 Was1 Standard variance of IMF 1 amplitude for waist
17 Knee amp. sd 1 Kas1 Standard variance of IMF 1 amplitude for knee
18 Ankle amp. sd 1 Aas1 Standard variance of IMF 1 amplitude for ankle
19 Waist freq. sd 2 Wfs2 Standard variance of IMF 2 frequency for waist
20 Knee freq. sd 2 Kfs2 Standard variance of IMF 2 frequency for knee
21 Ankle freq. sd 2 Afs2 Standard variance of IMF 2 frequency for ankle
22 Waist amp. sd 2 Was2 Standard variance of IMF 2 amplitude for waist
23 Knee amp. sd 2 Kas2 Standard variance of IMF 2 amplitude for knee
24 Ankle amp. sd 2 Aas2 Standard variance of IMF 2 amplitude for ankle
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mathematical proof. In contrast, EMD empirically decom-
poses the signal into pseudo monochromatic waves, IMFs, 
with variable frequency and AMP. Therefore, HHT is more 
beneficial for analyzing pre-braking actions that are nonlin-
ear and nonstationary motion capture data.

4 � Experiments and dataset

4.1 � Experiments

To obtain the target data, we conducted a set of driving 
experiments at Chang'an University, on the Connected and 
Automated Vehicle (CAV) Test Field, located in Xi’an, 
China in September 2019. A general civilian car (Volkswa-
gen Sagitar, Automatic/1.6 L/3-box/5 seats) was used for the 
experiments. The steering wheel of the experimental vehicle 
was on the left side. As shown in Fig. 5, the CAV test field 
was oval-shaped, and all subjects were required to start at the 
green point (garage), drive clockwise for one lap, and then 
stop and reenter the garage. All subject drivers were asked 
to perform their usual driving in the test site while wearing 
the MVN motion capture device.

This research focused on the driving movements before 
the driver turned right (right angle) and during parking (red 
points) where braking actions were certain to occur. Statisti-
cally, the average speed of the driver at the time of reaching 
the red point was 20 km/s. Some red balloons were set at the 
roadside to remind the driver to perform the relevant actions, 
but the specific operation was entirely up to the driver to per-
form according to daily habits (no verbal instruction). The 
starting time of the data used for analysis was determined 
based on the driver's foot movements.

Drivers’ physical data including knee height, ankle height 
and shoe length, etc. were collected before the main experi-
ments to increase the accuracy of the collected data. On the 
other hand, being difficult to wear, this experiment did not 
use the sensor carrier suit of Xsens MVN Animate. Instead, 
a more convenient vest carrier suit from the Xsens Awinda 
is used.

As shown in Table 3, a total of 10 drivers with different 
driving experiences, genders, and physiques were invited to 
participate in the experiments, including five taxi drivers, 
four university students, and one university teacher. Because 
one’s knee height is correlated with one’s stature (RxKinet-
ics 2020), knee height was used as a variable to differentiate 

Table 5   Basic statistics for HHT method results

Measure N Range Mean Std deviation

statistic Std. Error

Wf1 100 11.19 3.80 0.26 2.64
Kf1 100 13.49 3.21 0.23 2.29
Af1 100 13.73 3.14 0.24 2.36
Wa1 100 0.27 0.05 0.00 0.04
Ka1 100 2.30 0.42 0.05 0.47
Aa1 100 8.99 1.30 0.14 1.41
Wf2 51 3.20 4.18 0.11 0.81
Kf2 51 3.71 3.50 0.12 0.84
Af2 51 3.82 3.30 0.12 0.82
Wa2 51 0.12 0.04 0.00 0.02
Ka2 51 0.45 0.17 0.02 0.11
Aa2 51 1.43 0.45 0.05 0.38
Wfs1 100 15.34 3.99 0.29 2.87
Kfs1 100 15.64 3.58 0.30 2.98
Afs1 100 12.51 3.24 0.25 2.52
Was1 100 0.08 0.02 0.00 0.02
Kas1 100 1.08 0.19 0.02 0.18
Aas1 100 3.42 0.62 0.06 0.63
Wfs2 51 8.45 4.14 0.26 1.89
Kfs2 51 6.17 4.00 0.21 1.48
Afs2 51 9.46 4.11 0.28 1.97
Was2 51 0.07 0.02 0.00 0.02
Kas2 51 0.42 0.16 0.02 0.11
Aas2 51 1.94 0.45 0.06 0.40

Table 6   Amount of data for the IMF2

Measure N (Total)

Experienced 
(48)

Novice (52) Male (57) Female (43) Phys.45 (18) Phys.50 (65) Phys.55 (17)

Wf2/Wfs2 28 23 31 20 9 32 10
Kf2/Kfs2 28 23 31 20 9 32 10
Af2/Afs2 28 23 31 20 9 32 10
Wa2/Was2 28 23 31 20 9 32 10
Ka2/Kas2 28 23 31 20 9 32 10
Aa2/Aas2 28 23 31 20 9 32 10
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physiques. The group with extensive driving experience had 
driven an average distance of more than 1000 km, and the 
novice drivers were basically students who just got their 
licenses, which means they almost did not have any practical 
driving experience. Statistically, the average age of experi-
enced drivers was 42.4 years, and the average age of novice 
drivers was 24.6 years. All subjects were in good health and 
were asked to perform 10 experiments each. No additional 
instructions were given by the data recording staff during 
the experiment.

4.2 � Dataset selection and pre‑processing

Based on the pre-processing, a total of 100 sets of driv-
ing data of pre-braking actions (including whole-body joint 
coordinates, speed, moving distance, etc.) were selected for 
the following movement decomposing via the HHT method. 
Finally, the aimed measures were calculated for each data 
set, including the action trend, the standard variance of all 
IMFs’ frequency and AMP for drivers' waist, knee, and ankle 
during the pre-braking actions.

The traditional HHT method mainly focuses on the 
decomposition of whole-body movements, which means a 
large amount of redundant data needs to be processed before 
the main analysis. In this paper, according to the charac-
teristics of the target joints’ movement, we innovatively 
established a method for local movements decomposition 
and analysis. This meant that instead of disassembling the 
whole-body movements directly, in order to calculate the 
joint angle changes, we disassembled only the selected key 
joints’ changing movements into different sub-actions for 
the analysis.

Specifically, based on the key joints calculation and HHT 
method mentioned above, the drivers’ pre-braking actions 
for their “body–right leg” part (waist, knee, and ankle) were 
decomposed into different sub-actions by the motion data’s 
frequency.

As shown in Fig. 6, through a pre-analysis, a set of 
braking actions can be decomposed into many sets of 
IMFs according to the frequency, which can be numbered 
according to frequency as IMF 1–6. A larger IMF number 
(e.g., IMF 6) indicates a higher frequency of the action 
performed by the subject.

Table 7   Results of Mann–
Whitney U tests for driving 
experience (average data)

‡ p-value < 0.1
* p-value < 0.05

Measure Driving exp N Mean rank U W Z p Effect size

Wf1 Novice 52 49.1 1175 2553  – 0.504 0.615  – 0.050
Experienced 48 52.02

Kf1 Novice 52 54.60 1035 2211  – 1.47 0.142  – 0.147
Experienced 48 46.06

Af1* Novice 52 56.79 921 2097  – 2.256 0.024  – 0.226
Experienced 48 43.69

Wa1 Novice 52 51.17 1213 2389  – 0.241 0.809  – 0.024
Experienced 48 49.77

Ka1 Novice 52 54.13 1059 2235  – 1.304 0.192  – 0.130
Experienced 48 46.56

Aa1 Novice 52 53.42 1096 2272  – 1.049 0.294  – 0.105
Experienced 48 47.33

Wf2 Novice 23 24.22 281 557  – 0.776 0.438  – 0.109
Experienced 28 27.46

Kf2 Novice 23 29.65 238 644  – 1.59 0.112  – 0.223
Experienced 28 23.00

Af2 Novice 23 29.78 235 641  – 1.647 0.100  – 0.231
Experienced 28 22.89

Wa2 Novice 23 23.30 260 536  – 1.174 0.241  – 0.164
Experienced 28 28.21

Ka2 Novice 23 27.00 299 705  – 0.435 0.663  – 0.061
Experienced 28 25.18

Aa2 Novice 23 26.48 311 717  – 0.208 0.835  – 0.029
Experienced 28 25.61
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However, based on previous studies (Thorpe et  al. 
1996), when converting frequency to seconds, if the time 
of an IMF is less than 0.1 s, then the subject has no con-
trol over it, which means that it can be considered a noise 
action. Therefore, in this paper, only IMFs with a time 
greater than 0.1 s after conversion are discussed.

The AMP of each IMF can also be obtained and rep-
resented in different colors. The closer the color is closer 
to red, the greater the AMP. A stronger AMP represents a 
greater change of joint angle, which means a greater use 
of force.

In this research, in order to distinguish the actions 
represented by different IMFs and to analyze the differ-
ences between different groups of subjects, we converted 
the graph-based data to row data and pre-processed them. 
Because their frequency/AMP fluctuates with time, except 
the average value, we also converted the IMF data into 
computable values by taking the standard variance.

Therefore, because only IMF 1 and 2 were eligible 
(> 0.1 s) in our data set, the measures shown in Table 4 
were used for the following inter-group comparative 
analysis.

5 � Analysis results and discussion

To compare the similarities and differences in pre-braking 
actions between drivers with different experience, gender, 
and physique, this section will discuss the results both 
statistically and graphically.

5.1 � Statistics‑based comparative analysis

As the first step, the values of the quantity, range, standard 
deviation, and standard error, etc. of the data were confirmed 
using basic statistics (Table 5).

Table 8   Results of Mann–
Whitney U tests for experiences 
(standard variance data)

‡ p-value < 0.1
* p-value < 0.05

Measure Driving exp N Mean Rank U W Z p Effect size

Wfs1 Novice 52 52.06 1167 2343  – 0.559 0.576  – 0.056
Experienced 48 48.81

Kfs1 Novice 52 48.58 1148 2526  – 0.690 0.490  – 0.069
Experienced 48 52.58

Afs1 Novice 52 50.02 1223 2601  – 0.172 0.863  – 0.017
Experienced 48 51.02

Was1 Novice 52 47.44 1089 2467  – 1.097 0.273  – 0.110
Experienced 48 53.81

Kas1‡ Novice 52 45.83 1005 2383  – 1.677 0.094  – 0.168
Experienced 48 55.56

Aas1 Novice 52 46.52 1041 2419  – 1.428 0.153  – 0.143
Experienced 48 54.81

Wfs2 Novice 23 28.09 274 680  – 0.909 0.364 -0.127
Experienced 28 24.29

Kfs2* Novice 23 19.43 171 447  – 2.858 0.004  – 0.400
Experienced 28 31.39

Afs2 Novice 23 23.65 268 544  – 1.022 0.307  – 0.143
Experienced 28 27.93

Was2 Novice 23 22.35 238 514  – 1.590 0.112  – 0.233
Experienced 28 29.00

Kas2* Novice 23 20.57 197 473  – 2.366 0.018  – 0.331
Experienced 28 30.46

Aas2 Novice 23 24.52 288 564  – 0.644 0.520  – 0.090
Experienced 28 27.21
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As shown in Table 5, the basic statistical results showed 
that all results had the first layer of IMF (IMF1), but only 
a portion of the data had the second layer of IMF (IMF2). 
Because the different levels of IMF layers represent different 
sub-actions, it was necessary to investigate the characteris-
tics of the data that had IMF2. Therefore, the data related to 
IMF2 were counted separately according to different driving 
experience, gender, and physique before the analysis.

As shown in Table 6, the amount of data for IMF2 was 
relatively balanced when grouped by driving experience and 
gender. However, when grouped by physique (knee height), 
the amount of data for the Phys.50 group was higher than the 
other two groups by almost three times. This may represent 
a higher probability that subjects in the Phys.50 group will 
perform the sub-action represented by IMF2 relative to the 
other groups.

Therefore, to explain the findings, we compared the dif-
ferences in detail for IMF1 and IMF2 values among the dif-
ferent groups, which were classified by driving experience, 
gender, and physique.

5.1.1 � Differences between drivers with different driving 
experience

According to the preprocessing of row data by Kolmogo-
rov–Smirnov Normality Test, we determined that the results 
did not conform to a normal distribution. Therefore, to com-
pare the differences in pre-braking actions exhibited by sub-
jects with different driving experience, the two types of data 
(average and standard variance data for IMF1 and IMF2 fre-
quency and AMP) were analyzed using independent-samples 
Mann–Whitney U tests.

For the average data, as shown in Table 7, significant 
differences (p < 0.05) were identified only for the indicators 
Af1 of IMF1, which means that the experienced drivers had 
a lower speed of ankle joint movement change for sub-action 
IMF1.

For the standard variance data, as shown in Table 8, 
no significant differences (p < 0.05) were identified for all 
indicators of IMF1, which means that for drivers with dif-
ferent driving experience, there was no difference in their 

Table 9   Results of Mann–
Whitney U tests for genders 
(average data)

‡ p-value < 0.1
* p-value < 0.05

Measure Gender N Mean rank U W Z p Effect size

Wf1 Female 43 51.05 1202 2855  – 0.164 0.870  – 0.016
Male 57 50.09

Kf1 Female 43 55.21 1023 2676  – 1.410 0.159  – 0.141
Male 57 46.95

Af1‡ Female 43 56.84 953 2606  – 1.897 0.058  – 0.190
Male 57 45.72

Wa1 Female 43 53.91 1079 2732  – 1.020 0.308  – 0.102
Male 57 47.93

Ka1* Female 43 61.98 732 2385  – 3.436 0.001  – 0.344
Male 57 41.84

Aa1 Female 43 54.77 1042 2695  – 1.278 0.201  – 0.128
Male 57 47.28

Wf2 Female 20 25.15 293 503  – 0.328 0.743  – 0.046
Male 31 26.55

Kf2 Female 20 27.15 287 783  – 0.444 0.657  – 0.062
Male 31 25.26

Af2 Female 20 30.05 229 725  – 1.563 0.118  – 0.219
Male 31 23.39

Wa2 Female 20 24.15 273 483  – 0.714 0.475  – 0.100
Male 31 27.19

Ka2* Female 20 32.1 188 684  – 2.354 0.019  – 0.330
Male 31 22.06

Aa2 Female 20 27.7 276 772  – 0.656 0.512  – 0.092
Male 31 24.9
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first sub-action (IMF1)’s frequency or AMP during the pre-
braking action. However, unlike the results of IMF1, a sig-
nificant difference was identified for measure Kfs2 and Kas2 
from IMF2 (p < 0.05). This result indicates that in the group 
of subjects who performed the IMF2 sub-action, the experi-
enced drivers did the IMF2 action with a greater knee vibra-
tion in both frequency and AMP than the novice drivers.

5.1.2 �  Differences between drivers of different genders

Next, to compare the differences in pre-braking actions 
exhibited by subjects of different gender, independent-sam-
ples Mann–Whitney U tests were used to analyze the data 
of IMF1 and IMF2’s frequency and AMP.

For the average data, as shown in Table 9, significant dif-
ferences (p < 0.05) were identified for the indicators Ka1 of 
IMF1 and Ka2 of IMF2, and significant differences (p < 0.1) 
were identified for the indicator Af1, which means that the 
male drivers had a lower force on their knee joint for both 
sub-actions IMF1 and IMF2, and the male drivers may also 

have had a lower speed of their ankle joint movement change 
for sub-action IMF1. The results for Af1 and Ka2 were 
very similar to the results in Sect. 5.1.1 for the differences 
between drivers with different driving experience.

For the standard variance data, as shown in Table 10, 
although there was a significant difference at p < 0.1 for the 
Afs2 and Was2 measures of IMF2, there was no significant 
difference at p < 0.05 for all indicators. This means that 
for drivers with different gender, there was no difference 
in either sub-action (IMF1 and IMF2)’s frequency or AMP 
during the pre-braking action.

5.1.3 � Differences between drivers with different physiques

Finally, to compare the differences in pre-braking actions 
exhibited by subjects with different physiques, since 
some of the data does not fit the normal distribution, the 
Kruskal–Wallis test, one-way ANOVA test, and related post-
hoc tests were used to analyze the data of IMF1 and IMF2’s 
frequency and AMP.

Table 10   Results of Mann–
Whitney U tests for genders 
(standard variance data)

‡ p-value < 0.1
* p-value < 0.05

Measure Gender N Mean rank U W Z p Effect size

Wfs1 Female 43 51.09 1200 2853  – 0.178 0.859  – 0.018
Male 57 50.05

Kfs1 Female 43 50.67 1218 2871  – 0.052 0.958  – 0.005
Male 57 50.37

Afs1 Female 43 51.35 1189 2842  – 0.254 0.799  – 0.025
Male 57 49.86

Was1 Female 43 49.35 1176 2122  – 0.345 0.73  – 0.035
Male 57 51.37

Kas1 Female 43 54.12 1070 2723  – 1.083 0.279  – 0.108
Male 57 47.77

Aas1 Female 43 45.42 1007 1953  – 1.521 0.128  – 0.152
Male 57 54.33

Wfs2 Female 20 29.65 237 733  – 1.408 0.159  – 0.1972
Male 31 23.65

Kfs2 Female 20 23.95 269 479  – 0.791 0.429  – 0.1108
Male 31 27.32

Afs2‡ Female 20 21.6 222 432  – 1.698 0.09  – 0.2378
Male 31 28.84

Was2‡ Female 20 21.5 220 430  – 1.736 0.083  – 0.2431
Male 31 28.9

Kas2 Female 20 26.2 306 802  – 0.077 0.938  – 0.0108
Male 31 25.87

Aas2 Female 20 22.65 243 453  – 1.293 0.196  – 0.1811
Male 31 28.16
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For the average data, as shown in Table 11, for IMF1, 
significant differences (p < 0.05) were identified for the 
indicators Wa1 and Ka1 of IMF1 and the indicators Wa2, 
Ka2, and Aa2 of IMF2. Moreover, when the significance 
level was relaxed to 0.1 (p < 0.1), a significant difference 
was confirmed for Aa1.

As shown in Table 12, the results of post-hoc tests 
showed that for drivers with different physiques, a differ-
ence could only be confirmed between the Phys.50 and 55 
levels. This means that drivers of Phys.50 may use a higher 
force than others on all joints (waist, knee, and ankle) for 
both sub-actions IMF1 and IMF2.

For the standard variance data, as shown in Table 13, 
significant differences (p < 0.05) were identified only for 
the indicator Kas2 of the IMF2. Moreover, when the sig-
nificance level was relaxed to 0.1 (p < 0.1), a significant 
difference was also confirmed for Was2.

Similar to the results of the average data, based on the 
post-hoc tests for Kas2 (Table 14), the results indicate that 
the drivers at the Phys.55 level may have a significantly 
smaller knee vibration on AMP than the others for the 
sub-action of IMF2.

5.1.4 � Summary and discussion

In summary, for both types of data about sub-action IMF1, 
the results showed significant differences for measures Af1 
(for different driving experience), Ka1 (for different gen-
ders), and Wa1 and Ka1 (for different physiques). Because 
the IMF1 sub-actions were similar for almost all subjects 
in terms of speed and power, IMF1 can be indicated as the 
common and necessary main action when pre-braking.

The results showed that during pre-braking, the experi-
enced drivers’ ankle joint changing speed was slower than 
the novices, and female drivers may have had a higher force 
on their knee joint during the motion. Based on the results, 
one possible explanation is that the experienced drivers had 
enough anticipation of their future actions, so they moved 
their ankles more smoothly to maintain safety. Besides, 
the female drivers needed to use more force to move their 
lower legs via the knee joint to brake. Because braking is 
a common action in driving, this may cause female driv-
ers to burn out faster while driving than males. Moreover, 
the related post-hoc tests for different physiques indicated 
similar results: the drivers that had Phys.50 needed to spend 
more force while pre-braking.

However, for sub-action IMF2, which existed only as 
part of drivers’ pre-braking behaviors, the results were more 
complicated. For example, the results indicated that the 
experienced drivers had a higher score on the measures of 
kfs2 and kas2, which means that for the sub-action IMF2, the 
experienced drivers’ knee joint’s changing movements were 
heavier than for the novices. These results are consistent 
with our previous studies (Wu et al. 2020b) that during pre-
braking, experienced drivers’ foot movement distance was 
longer than the novice for safety (an experienced driver’s 

Table 11   Results of Kruskal–Wallis ANOVA test for physique (aver-
age data)

‡ p-value < 0.1
* p-value < 0.05

Measure Physique N Mean rank Sig

Wf1 Phys.45 18 58.50 0.434
Phys.50 65 48.69
Phys.55 17 48.94

Kf1 Phys.45 18 51.89 0.526
Phys.50 65 52.02
Phys.55 17 43.24

Af1 Phys.45 18 49.44 0.363
Phys.50 65 53.05
Phys.55 17 41.88

Wa1* Phys.45 18 40.33 0.002
Phys.50 65 57.94
Phys.55 17 32.82

Ka1* Phys.45 18 43.78 0.011
Phys.50 65 56.54
Phys.55 17 34.53

Aa1‡ Phys.45 18 43.89 0.090
Phys.50 65 55.09
Phys.55 17 39.94

Wf2 Phys.45 9 26.89 0.828
Phys.50 32 25.06
Phys.55 10 28.20

Kf2 Phys.45 9 29.67 0.710
Phys.50 32 25.03
Phys.55 10 25.80

Af2 Phys.45 9 27.44 0.196
Phys.50 32 27.97
Phys.55 10 18.40

Wa2* Phys.45 9 27.33 0.002
Phys.50 32 30.16
Phys.55 10 11.50

Ka2* Phys.45 9 18.67 0.000
Phys.50 32 32.78
Phys.55 10 10.90

Aa2* Phys.45 9 22.89 0.021
Phys.50 32 30.12
Phys.55 10 15.60
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foot is kept away from the pedals to ensure the pedals are 
not depressed by accident), so experienced drivers needed to 
move their foot to the brake pad with a higher speed.

Based on our assumptions about experienced drivers (i.e., 
experienced drivers are safer and rationalize their driving 
behaviors), it can be deduced from the results that the IMF2 
sub-action may be a relatively necessary safety assurance 
action during pre-braking.

Besides, the results also indicate that female drivers had a 
higher score on the measure of Ka2, similar to the sub-action 
IMF1. This result confirmed our hypothesis once again that 
female drivers tend to burn out faster while driving than 
males.

In addition, similar to the results of sub-action IMF1, the 
related post-hoc results of IMF2 indicate that the drivers 
with Phys.50 had a higher score on the measures Wa2, Ka2, 
Aa2, and Kas2, than the other two physiques, especially for 
Phys.55. Given the results for drivers with different driv-
ing experience, the results for different physiques can be 
explained because drivers with Phys.50 may have more 
consistent driving behaviors than the others. One possible 
explanation is that the driving environment of vehicles was 
designed primarily for divers of average size.

Therefore, in order to better explain these results, in par-
ticular to explain the results of IMF2, the motion data of 
subjects were compared and analyzed specifically using 
HHT spectra.

5.2 � Graph‑based Comparative Analysis

As described in Sect. 3.1, this paper focused only on the 
pre-braking part of the whole braking actions of the driv-
ers. Unlike the statistical analysis, which did not take into 
account time, before analyzing the pre-braking actions’ HHT 
spectrum with time attributes, we first determined its time-
relationship with the braking action of drivers.

First, we extracted the coordinates data of one driver's 
tiptoe during the pre-braking action and depicted in Fig. 7 its 
height change trajectory on the z-axis. This driver’s move-
ments typically took about 6 s. In Fig. 7a, we can clearly see 
that the driver's tiptoe action during the pre-braking action 
went through a process of raising, reaching the peak, starting 
to land, and then touching the brake plate. The green dotted 
line shows the approximate area where the toe moves to its 
highest point, and the red dotted line shows the approximate 
point at which the pre-braking action ends.

Meanwhile, to facilitate comparison, we standardized the 
data for different lengths of time and resampled all motion 
samples to 0.65 s (average time) using linear interpolation. 
As the result, we calculated the average HHT spectrum for 
waist, knee, and ankle from all collected data (Fig. 7b–d). 
To compare these spectra by each group, the amplitudes of 
waist, knee, and ankle were set to 0 ~ 0.1 degrees, 0 ~ 0.5 
degrees, and 0 ~ 2.0 degrees, respectively, because these 
ranges were appropriate enough to investigate the features 
among the three groups.

Table 12   Post-hoc test for Kas2 
of IMF2 (average data)

‡ p-value < 0.1
* p-value < 0.05

Sample 1-sample 2 Test statistic Std. Error Std. Test statistic Sig Adj. Sig

Wa1 Phys.55–Phys.45 7.510 9.812 0.765 0.444 1.000
Phys.55–Phys.50* 25.115 7.903 3.178 0.001 0.004
Phys.45–Phys.50  – 17.605 7.727  – 2.278 0.023 0.068

Ka1 Phys.55–Phys.45 9.248 9.812 0.943 0.346 1.000
Phys.55–Phys.50* 22.009 7.903 2.785 0.005 0.016
Phys.45–Phys.50  – 12.761 7.727  – 1.651 0.099 0.296

Aa1 Phys.55–Phys.45 3.948 9.812 0.402 0.687 1.000
Phys.55–Phys.50‡ 15.151 7.903 1.917 0.055 0.166
Phys.45–Phys.50  – 11.203 7.727  – 1.450 0.147 0.441

Wa2 Phys.55–Phys.45‡ 15.833 6.830 2.318 0.020 0.061
Phys.55–Phys.50* 18.656 5.386 3.464 0.001 0.002
Phys.45–Phys.50  – 2.823 5.609  – 0.503 0.615 1.000

Ka2 Phys.55–Phys.45 7.767 6.830 1.137 0.256 0.767
Phys.55–Phys.50* 21.881 5.386 4.063 0.000 0.000
Phys.45–Phys.50*  – 14.115 5.609  – 2.516 0.012 0.036

Aa2 Phys.55–Phys.45 7.289 6.830 1.067 0.286 0.858
Phys.55–Phys.50* 14.525 5.386 2.697 0.007 0.021
Phys.45–Phys.50  – 7.236 5.609  – 1.290 0.197 0.591
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By calibrating the end time (red dashed line, meaning the 
foot touched the brake pad at about 0.6 s) of tiptoe action 
and HHT spectra, the results showed that the values of AMP 
were weaker (bluer) than others in the time period of 0.3 
to 0.5 s (green dashed lines) in all HHT spectra, and the 
time period just coincided with the time period where the 
subject's tiptoe reached the peak (the curve flattened out).

These results may indicate that most drivers tend to 
diminish the forces used by their waist, ankle, and knee 
when the foot reaches the peak. Although each driver took 
slightly different amounts of time to do the pre-braking 
movements, the feature of time period from 0.3 to 0.5 s in 
the figure can be considered as a sign that a driver’s foot 
has reached the longitudinal peak point, which provided an 
important reference for the next analysis of the meaning of 
the various IMF sub-actions. In this study, we defined the 
time period from about 0.1 to 0.6 s as the main period, and 
the time period from 0.3 s to 0.5 s as the P period.

5.2.1 � Sub‑actions IMF1 and IMF2

Because the target IMF1 and IMF2 existed in the complex 
spectrum, we extracted them separately for the analysis at 
first. Figure 8 describes the average spectrum of IMF1 for 
the joints of waist, knee, and ankle.

As shown in Fig. 8, IMF1 had a relatively smooth fre-
quency curve for all joints (waist, knee, and ankle), and 
during the main time period (about 0.1 ~ 06 s, including P 
period), its AMP showed a gentle decreasing trend. Because 
the frequency can represent the action speed and AMP can 
represent the force used, IMF1 fits our understanding of gen-
eral pre-braking behaviors (uniform speed, AMP becomes 
smaller). These results may mean that the sub-action IMF1 
may represent the basic action in whole pre-braking behav-
iors (raising the right foot to the brake plate; regular actions 
a, b, and c in Fig. 1).

However, compared to sub-action IMF1, sub-action IMF2 
had a higher frequency, which may mean that the action 
represented by IMF2 was redundant or contained/involved 
assistant actions that were distinct from the basic action.

As shown in Fig. 9, IMF2 had a more oscillating curve 
than IMF1, which was characterized by a wave peak in P 

Table 13   Results of Kruskal–Wallis ANOVA test for physique 
(standard variance data)

‡ p-value < 0.1
* p-value < 0.05

Measure Physiques N Mean rank Sig

Wfs1 Phys.45 18 50.33 0.991
Phys.50 65 50.75
Phys.55 17 49.71

Kfs1 Phys.45 18 52.83 0.800
Phys.50 65 50.89
Phys.55 17 46.53

Afs1 Phys.45 18 51.33 0.852
Phys.50 65 49.42
Phys.55 17 53.76

Was1 Phys.45 18 45.89 0.275
Phys.50 65 53.85
Phys.55 17 42.59

Kas1 Phys.45 18 55.94 0.275
Phys.50 65 51.51
Phys.55 17 40.88

Aas1 Phys.45 18 54.67 0.729
Phys.50 65 48.89
Phys.55 17 52.24

Wfs2 Phys.45 9 23.67 0.454
Phys.50 32 27.97
Phys.55 10 21.80

Kfs2 Phys.45 9 32.11 0.271
Phys.50 32 25.81
Phys.55 10 21.10

Afs2 Phys.45 9 29.33 0.751
Phys.50 32 25.09
Phys.55 10 25.90

Was2‡ Phys.45 9 30.00 0.090
Phys.50 32 27.72
Phys.55 10 16.90

Kas2* Phys.45 9 24.67 0.27
Phys.50 32 29.72
Phys.55 10 15.30

Aas2 Phys.45 9 27.22 0.523
Phys.50 32 27.16
Phys.55 10 21.20

Table 14   Post-hoc test for Kas2 
of IMF2 (standard variance 
data)

‡ p-value < 0.1
* p-value < 0.05

Sample 1-sample 2 Test statistic Std. Error Std. Test statistic Sig Adj. Sig

Kas2 Phys.55–Phys.45 9.367 6.830 1.371 0.170 0.511
Phys.55–Phys.50* 14.419 5.386 2.677 0.007 0.022
Phys.45–Phys.50  – 5.052 5.609  – 0.901 0.368 1.000
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Fig. 7   Results of tiptoe motion and HHT spectra for waist, knee, and ankle

Fig. 8   Results of average IMF1 spectrum for waist, knee, and ankle during pre-braking
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period (for knee and ankle), which means that the IMF2 
sub-actions in P period would experience a process of surge 
and decrease in speed. Meanwhile, compared with IMF1, we 
also found that its AMP presented a drastically decreasing 
trend, and the stronger AMP occurred outside the P period 
(focus on the front), which could mean that the actions rep-
resented by IMF2 occurred mainly during the lift phase of 
the subject's foot. Combined with the results of statistical 
analysis and the conclusions of our previous research (Wu 
et al. 2020b), we speculate that IMF2 represents the trans-
verse movement of the driver's foot. As a safety precaution, 
some drivers keep their feet as far away from the brake pad 
as possible. This results in significant lateral foot movement 
during braking.

However, according to the statistical analysis results of 
Sect. 5.1, some statistical differences were found between 
the different groups. Therefore, in order to validate our 
discussion of the results and to better analyze the differ-
ences found in Sect. 5.1, we compared the IMF1 and IMF2’s 
graphs of different groupings.

5.2.2 � Graph comparative analysis of IMF1 

As shown in Fig. 10, all drivers performed the IMF1 sub-
action. Based on the results of statistical analysis for differ-
ent driving experience of sub-action IMF1 (Novice > Exp. 
for Af1), we confirmed that the results in the graph were 
consistent with our previous conclusions. The results mainly 
showed that after P period, novice drivers tended to drop 
their foot more quickly, which is consistent with the results 
of our previous research (Wu et al. 2020b). In addition, by 
comparing the AMPs of each graph, we can determine that 
the novice drivers were more inclined to counterbalance the 
force used throughout the pre-braking process, rather than 
being as focused as the experienced driver.

Similar situations were found for different genders. As 
shown in Fig. 11, based on the results of statistical analysis 
of different genders for sub-action IMF1 (Female > Male for 
Ka1), the difference in the graph for the main time period 
was confirmed, especially before P period. In addition, by 
comparing the graphs, we found that the curve of the male 

Fig. 9   Results of average IMF2 spectrum for waist, knee, and ankle during pre-braking
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was relatively smoother, which means that the speed change 
of the female knee joint was more drastic during the pre-
braking process.

Moreover, As shown in Fig. 12, based on the results of 
statistical analysis of different genders for sub-action IMF1 
(Phys.50 > Phys.55 for Wa1 and Ka1), the significant dif-
ference of AMP can easily be confirmed on the graphs. In 
addition, we also found among the graphs, that Phys.50 may 
have the highest performance for AMP during the main time 
period.

In summary, for the sub-action IMF1 of pre-braking 
behaviors, in addition to identifying some differences in 
AMPs (shown in Sect. 5.1), there were no significant differ-
ences between groups in other measures. The results were 
in line with our expectation for IMF1 (a basic action of 

pre-braking). However, some differences for AMPs were big 
enough to be considered in future assisted driving designs.

5.2.3 � Graph comparative analysis of IMF2

Only some of drivers may perform the IMF2 sub-action, 
based on the statistical analysis of different driving expe-
riences for sub-action IMF2 (Exp. > Novice for Kfs2 and 
Kas2). As shown in Fig. 13, we confirmed that the results 
in the graph were consistent with our previous conclusion. 
Similar to the results of IMF1, the experienced drivers’ fre-
quencies changed more smoothly, and their AMP values 
were stable and showed a decreasing trend.

Next, as shown in Fig. 14, based on the statistical analy-
sis of different genders for sub-action IMF2 (Female > Male 

Fig. 10   Results of graph comparative analysis with different driving experience for IMF1
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for Ka2), we found that significantly higher AMP values of 
females mainly occurred before P period, which was consist-
ent with our previous discussion. In addition, we found that 
the frequency curve was smoother for men and experienced 
drivers.

Finally, as shown in Fig.  15, based on the statisti-
cal analysis of different physiques for sub-action IMF2 
(Phys.50 > Phys.55 for Wa2, Ka2, Aa2, and Kas2), we con-
firmed the same difference in the graphs, which supported 
the discussion in the previous section. In addition, similar to 
the results for IMF1, we confirmed that Phys.50 may have 
the highest performance for AMP during the main time 
period. Moreover, by comparing all the plots, we found that 
Phys.50, as well as men and experienced drivers, had the 
smoothest frequency curve.

In summary, for the sub-action IMF2 of pre-braking 
behaviors, we confirmed most of the differences at the AMP 

level, which confirmed our discussion results in Sect. 5.1. 
Moreover, we found a pattern that some groups (experienced 
drivers, males, Phys.50) had smoother frequency curves 
and their AMP decreased at a constant rate. Based on the 
assumption that experienced drivers behave more efficiently, 
we conclude that males and Phys.50 drivers may have per-
formed relatively better under the current experimental 
conditions.

The related results demonstrate that a good driving envi-
ronment needs to be fine-tuned according to the individual 
elements (driving experiments, gender and physique, etc.) 
of the specific driver. Which means that the findings of this 
study can provide data to support future assisted driving 
systems that automate the adjustment of the driving environ-
ment and apply the personalized training of novice drivers 
in the future.

Fig. 11   Results of graph comparative analysis with different gender for IMF1
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6 � Conclusion

To discover similarities and differences in pre-braking 
behaviors among drivers with different driving experi-
ence, genders, and physiques, this study analyzed drivers' 
pre-braking related local body joints movements by using 
a motion capture device and provided a Hilbert–Huang 
Transform (HHT)-based local human body movement 
analysis method to decompose the realistic complex pre-
braking actions into many sub-actions by their frequencies.

Based on the results of angle analysis for 50 sets of 
experimental motion data collected from 10 drivers, the 

Hilbert–Huang Transform method found two important 
sub-actions during pre-braking: IMF1 and IMF2.

For these two sub-actions, based on related statistical 
analyses, the results showed that sub-action IMF1 may be 
the common and necessary action during pre-braking and 
sub-action IMF2 is a relatively necessary safety assurance 
action during pre-braking, because only some drivers per-
formed the IMF2 sub-action. Based on this, we verified that 
IMF2 was the right foot transverse movement at the begin-
ning part of the pre-braking process, which confirmed our 
previous work (Wu et al. 2020b).

Based on the graph-based comparative analysis and the 
assumption that experienced drivers behave more efficiently, 

Fig. 13   Results of graph comparative analysis with different driving experience for IMF2
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we found that some groups (experienced, males, Phys.50) 
had consistent characteristics (smoother frequency curves 
and uniformly decreasing AMP values), which could 
mean that in this experimental environment, such drivers 
would have better performance and efficiency. For exam-
ple, female drivers may tend to use more force to perform 
braking actions. Moreover, existing models of vehicles may 
be designed for people of medium size (Phys.50), so addi-
tional designs or devices may be necessary for drivers of 
other sizes. These results can be applied to the individual-
ized training of new drivers and the development of related 
assistance systems in the future.

This study, which examined the differences in body 
movements during pre-braking between drivers with differ-
ent characteristics, had some limitations: 1) for reasons of 
time and equipment, the sample size of 100 was small; 2) 
this study was merely explorative, and the statistical results 
may not to be taken as confirmatory.

In future work, we plan to conduct more relevant experi-
ments and consider additional elements to enrich the driver 
behavior model. Moreover, we plan to collectively analyze 
eye-tracking data and motion capture data to determine 
the relationship between drivers' eye movements and body 
movements during braking.
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Fig. 14   Results of graph comparative analysis of different genders for IMF2
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