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Abstract
We overview the current status and future development directions of our framework for developing particle simulator (FDPS). 
Many of particle-based simulation codes share the same characteristic that the most time-consuming part of the simulation 
is the calculation of the interactions between particles, and a large fraction of programming effort is spent for procedures 
to make the force calculation efficient, such as the decomposition of computational domain, exchange of particles between 
domains, exchange of information necessary to calculate the interaction to particles in different domains, and efficient 
neighbor search. The basic idea of FDPS is to provide generic and high-performance library for these procedures. Using 
these procedures, researchers or application programmers in various fields can write their programs without taking care of 
parallelization and performance tuning. In order to make FDPS useful on advanced HPC platforms at present and in (near) 
future, we investigated its performance on several modern platforms and learned what can be the bottleneck. In this paper 
we summarize what we learned.

Keywords  Particle-based simulations · High-performance computing

1  Introduction

1.1 � Background

Large-scale particle-based simulations are now used to 
model physical systems of all scales, from molecular scale 

to cosmological scale. As a result, a number of simulation 
programs have been developed and are being maintained. 
Just to give several examples, Amber (Salomon-Ferrer et al. 
2012), NAMD (Phillips et al. 2005), and GROMACS (Pronk 
et al. 2013) are used for classical molecular dynamics simu-
lations of biomolecules, LAMMPS (Plimpton 1995). For 
cosmological N-body or N-body+SPH simulations, PKD-
GRAV (Potter et al. 2017), Gadget (Springel et al. 2001), 
and GreeM (Ishiyama et al. 2009) have been available. It is 
certainly the case that for each research field several groups 
are developing their own codes for particle-based simula-
tions to meet their specific needs.

On the other hand, it has become quite difficult to achieve 
good, or even moderate efficiency for large-scale parallel 
particle-based simulation code on modern platforms, and 
will be even more difficult in future. There are many reasons 
for this difficulty. To illustrate them, let us start with one of 
the most efficient and scalable code, GreeM. It is designed 
for large-scale cosmological N-body simulations on large 
HPC systems, and it was used for the cosmological simula-
tion on K computer which was awarded the 2012 Gordon 
Bell Prize. It uses the multisection method with sampling 
algorithm (Makino 2004) for the domain decomposition, and 
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parallel Barns-Hut treecode modified for periodic boundary 
(TreePM) based on the LET(local essential tree (Salmon 
et al. 1990)). The force calculation within one MPI process 
is further parallelized by Barnes’ vectorization algorithm, 
to make use of the SIMD execution units of modern com-
puters. It achieved the efficiency of more than 50%, for the 
cosmological N-body simulation of 10,2403 particles on the 
entire K computer with 82,944 nodes.

Each node of K computer has one 8-core SPARC64 
VIIIfx CPU with the theoretical peak performance of 128 
Gflops, and one MPI process runs on one node. K computer 
has very fast memory (peak B/F number of 0.5) and rich 
network of 6D torus ( 24 × 18 × 16 × 3 × 2 × 2 ). Thus, each 
node has 10 links, and the speed of each link is 5 GB/s bidi-
rectional. Also, SPARC64 VIIIfx processor has two unique 
features. First one is that its L2 cache is physically shared 
by all eight cores, and the second one is that the barrier 
synchronization of cores is supported by hardware and thus 
extremely fast.

Many of other modern HPC systems lack these features. 
Table 1 shows some of the biggest modern HPC systems. We 
can see that K has exceptionally fast memory and rich net-
work, and other systems have relatively weak memory and 
network. Even in the case of Fugaku, the relative network 
bandwidth is much less than that of K. Thus, applications 
which works fine on K (or Fugaku) do not necessarily run 
efficiently on other platforms, and we need to modify the 
implementation or introduce new algorithms to reduce the 
necessary memory/network bandwidth.

It is also necessary to rewrite the code on systems 
which offer platform-specific programming environment. 
For example, Cuda is used on NVIDIA GPGPUs. Though 
in principle Sunway Taihulight can be programmed with 
OpenACC, in many cases we need to write codes using Ath-
read library. GYOUKOU offers PZCL, a dialect of OpenCL, 
as its only available programming environment.

The architectures, in particular the structures of the 
memory systems, are also all different on these machines. 
NVIDIA V100 has rather traditional host-accelerator archi-
tecture with cache-based memory systems on both sides. 
PEZY-SC2, at least as planned, would have single physi-
cal memory shared by both of its MIPS64 cores and pro-
prietary SC2 cores, and both have cache memories (but 

non-coherent on the SC2 side). The SW26010 processor 
of Sunway Taihulight also has a single physical memory 
shared by MPE (management processor element) and CPE 
(computing processor element). MPE and CPE share the 
same ISA. However, CPEs do not have data cache but local 
memories. In addition, processor architectures are also all 
different. NVIDIA Volta have relatively small number of 
“Streaming Multiprocessors”, each with a number of float-
ing-point arithmetic units. PEZY-SC2 is an MIMD proces-
sor with 2048 SC2 cores and 6 MIPS64 cores, and each of 
SC2 cores has one floating-point units. An SW26010 proces-
sor has four “core groups”, each with one MPE with data 
cache and 64 CPEs with local memories. A unique and very 
important feature of CPEs is that they are organized as an 
8 × 8 grid. Within each rows of columns of this grid, both of 
point-to-point communication and broadcast are supported.

Thus, programs developed for machines with different 
processors, such as K/Fugaku, GYOUKOU, TaihuLight 
and Summits can easily become very different, because (a) 
programming environments are different (usual OpenMP, 
OpenCL, Athread and Cuda), (b) memory structures are all 
different, and (c) ISA and many other things are different.

With such a wide variety of both hardware and software, 
it is now very difficult for one research group to develop 
efficient programs for different architectures. Thus, almost 
all widely used programs for HPC are optimized for Intel 
x86 processors, with some support for NVIDIA GPGPUs 
but nothing else, and porting them to other architectures and 
achieve reasonable performance requires years or work of a 
large group of researchers.

This situation is clearly not ideal. From the viewpoint of 
developers of large-scale simulation software, it is unprac-
tical to develop and maintain multiple versions optimized 
for very different architectures, and concentrating on one or 
two most widely used ones makes perfect sense. From the 
viewpoint of developers of processors and HPC systems, it is 
necessary to change the architecture in many different ways 
to improve the performance. Thus, the “best” strategies are 
completely different.

The companies which develop the processors understand 
this problem very well, and try to port and optimize as many 
important application programs as possible, and in some 
cases such effort proved to be successful. The problem of 
this approach is that it requires huge amount of resources, 
in particular human resources, much more than what is nec-
essary to develop hardware. The success of an architecture 
depends primarily on the amount of human resources avail-
able for application development.

1.2 � Portability by language?

In principle, if we could develop portable application 
programs, which can achieve high efficiency on various 

Table 1   Performance parameters of modern HPC systems

System Processor Memory B/F Network B/F

K SPARC64 VIIIfx 0.5 0.12
Fugaku A64fx 0.34 0.013
GYOUKOU PEZY SC2 0.03 0.0005
Taihulight SW26010 0.03 0.003
Summit NVIDIA V100 0.12 0.0006
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architectures without significant rewriting, that would be the 
solution for this problem. The traditional approach in this 
direction is the standard language and/or libraries for paral-
lel execution. Unfortunately, though the parallel languages 
have been and still is the target of the active research, they 
have never widely used with a handful of exceptions such as 
CM-Fortran (and later HPF). CM-Fortran was the language 
for TMC CM-2 and CM-5, and HPF was one of the practi-
cal choices on distributed-memory vector-parallel machines 
such as Earth Simulator.

The problem with parallel language like HPF is that it’s 
parallel operation is defined at the level of arithmetic opera-
tions on elements of distributed arrays. Thus, the generated 
machine code tends to loop over large arrays, and there is no 
easy way to make use of the cache hierarchy.

Modern approaches are limited to parallelization within 
one node, and there are several proposed open standards 
such as OpenCL, OpenACC and OpenMP. OpenCL is 
designed for the host-accelerator architecture with sepa-
rate memory spaces, and the data transfer between the host 
and the accelerator is controlled explicitly by the applica-
tion programmer. Both OpenACC and OpenMP support 
both shared- and separate-memory architectures, and rely 
on directives to implicitly specify the data transfer. Here, 
again, even when the application program is written with an 
open standard supported by different hardware platforms, to 
achieve high efficiency with a “portable” code is difficult, 
since in order to achieve high efficiency architecture-specific 
optimizations are necessary.

1.3 � Portability by library/framework

We have been working on a different approach. Instead of 
trying to provide a solution for all application areas, we 
limit ourselves to particle-based simulation programs, since 
they have a sufficiently wide range of actual applications in 
many areas of science and engineering. In many particle-
based applications, the interaction between particles can be 
expressed as

where N is the number of particles in the system, �i is a 
vector which represents the state of particle i, � is a function 
which describes the contribution of particle j to the total 
“interaction” on particle i, and � is the total interaction used 
to update the state of particle i.

In the case of the gravitational N-body simulation, �i con-
tains position, velocity, mass, and other parameters of parti-
cle i, � is the gravitational force from particle j to particle i, 
and �i represents the gravitational acceleration on particle i 
from all other particles in the system.

(1)�i =

N
∑

j

� (�i, �j),

Our software, which we call FDPS (Framework for 
Developing Particle Simulator (Iwasawa et al. 2016)), pro-
vides functions necessary for large-scale parallelization of 
particle-based simulations. The basic functions are

–	 domain decomposition
–	 exchange of particles between nodes
–	 interaction calculation

FDPS is designed as a template library in C++ language, 
so that it can accept the data structure of particle as a class 
definition and the function to calculate interaction between 
particles in written in C++. We have extended FDPS so 
that now the struct in C language and interaction function 
written in C can be used. Thus, it is now possible to use 
FDPS from any language which can call functions written 
in C.

A parallel particle-based simulation program developed 
using FDPS works roughly as follows 

1.	 Initial setup, including the generation of the initial 
condition for particles. Particles are stored in the usual 
array of particles allocated in the user memory. At this 
moment, particles can be in arbitrary MPI processes.

2.	 Generate the domain decomposition by calling FDPS 
functions.

3.	 Exchange the particles so that they are in their appropri-
ate MPI process by calling FDPS functions.

4.	 Evaluate the interaction between particles by calling 
FDPS functions.

5.	 Update the data of particles and evaluate other necessary 
quantities such as total energy and other diagnostics, 
next times etc.

6.	 Go back to step (2) if the termination time has not been 
reached.

Note that operations other than the three operations listed 
above are done in the usual user-written code. Thus, I/O, 
time integration, diagnostic output are all done in the user 
code, which can access particles as array elements.

At first sight, the requirement that the problem should 
be written in the form of Eq. (1) might look too restric-
tive. Contributions from different particles must be lin-
early added, and interactions on all particles should be 
calculated at each step. In practice, these are not a severe 
restriction, since many problems for which large-scale 
parallel calculation is currently applied satisfy the above 
conditions. FDPS is now being used by many researchers 
to develop their own high-performance parallel codes for 
their problems.

In the rest of this paper, we discuss what should be done 
to achieve high efficiency for particle-based simulations on 
modern and future HPC systems, based on our experience 
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on evaluating and optimizing FDPS-based programs on 
TaihuLight, GYOUKOU, and NVIDIA GPGPUs. As dis-
cussed earlier, the potential bottlenecks for the performance 
are the bandwidth of main memory, interconnect and host-
accelerator connection. In Sect. 2, we discuss the cost of 
internode communication and possibilities to further reduce 
them. We will see that the limiting factor for the scalability 
to very large number of processes is that there are operations 
whose cost increase as we increase the number of processes 
p. Their cost is negligible when p is small, but becomes 
dominant when p is large, in particular when p becomes 
much larger than the number of particles per node n. We 
discuss if we can make the cost of operations less than O(p), 
ideally O(1) but in the worst cases O(p1∕d) , where d is the 
number of dimensions. In Sect. 3, we discuss the limiting 
factors which come from the node architecture, such as the 
main memory bandwidth and host-accelerator communica-
tion bandwidth, and overview the algorithms we developed 
and implemented. In Sect. 4 we overview the achieved per-
formance on several systems. Section 5 is for summary and 
future directions.

2 � Reduction of the communication cost

In this section, we discuss the communication cost of par-
allel particle-based simulation code. We first consider the 
standard procedure used in FDPS, in which the Barnes-Hut 
tree algorithm is used, and we discuss mainly the long-range 
interactions. For simplicity, we assume that the distribution 
of particles is not too far from uniform. One advantage of 
FDPS is actually that it can handle highly inhomogenous 
particle distributions without significant increase in the cal-
culation time, because of its use of the adaptive tree struc-
ture and adaptive domain decomposition. Thus, estimation 
of calculation time under the assumption of uniform particle 
distribution is not too bad.

2.1 � Standard procedure

As discussed in Introduction, the basic steps for parallel 
particle-based simulation code on distributed-memory par-
allel platforms are 

1.	 Domain decomposition
2.	 Particle exchange
3.	 Interaction calculation
4.	 Miscellany operations such as I/O, time integration and 

so on.

In the following, we overview the algorithms and perfor-
mance characteristics of these procedures.

2.2 � Domain decomposition

FDPS uses the 3D multisection algorithm (Makino 2004) 
modified to achieve better load balance (Ishiyama et al. 
2009). The multisection algorithm is the generalization 
of the orthogonal recursive bisection (ORB (Salmon et al. 
1990)). As its name suggests, ORB divides the compu-
tational domain recursively to two subdomains, in x, y, 
and z directions. In the multisection method, the division 
in one dimension can be of arbitrary size, and we divide 
the domains only once per one dimension. Thus, instead 
of recursively divide domains log2 p times, where p is the 
number of MPI processes, we divide the domains three times 
for three-dimensional tree. The main advantage of the mul-
tisection method is that it can be used for number of MPI 
processes not an integer powers of two.

Early versions of FDPS uses the sampling method 
(Blackston and Suel 1997) to determine the coordinates of 
subdomains. In the sampling method, all MPI processes send 
randomly sampled subsets of their particles to the rank-0 
process (or root process), and the rank-0 process performs 
necessary calculations to determine the coordinates of 
subdomains.

This sampling method works fine for thousands or even 
tens of thousands of MPI processes, or as far as the num-
ber of particles in one MPI process is significantly larger 
than the number of MPI processes. Since the root process 
receives sampled particles from all other processes, if the 
number of particles per process becomes less than the num-
ber of MPI processes, the amount of data the root processes 
receives becomes more than the amount of the particle data 
itself of the root process, and the time for the internode com-
munication would become visible.

In the current version of FDPS, we adopted the hierarchi-
cal sampling (Iwasawa et al. 2016, 2019b) in which the com-
munication cost is O(p1∕d) , where d is the number of spatial 
dimensions. The basic idea here is to re-sample particles 
at each dimension so that at each dimension the number of 
sample particles received is proportional to p1∕d.

Even with this scheme, the communication cost is still 
O(p), where p is the total number of MPI processes, since all 
processes receives the physical dimensions of all other sub-
domains and for very large number of process, this O(p) 
term can be the limitation of the scalability.

We therefore need a new algorithm in which the amount 
of data received by each process is less than O(p). If we keep 
using the 3D multisection algorithm, one possibility is that 
each process has only one division data in each dimension. 
The division in x direction is shared by all processes, but 
that in y direction is shared only by processes in the same x 
coordinate in the processor grid, and z direction only by in 
the same x–y coordinates. This change reduces the amount 
of data received by each process from O(p) to O(dp1∕d) , 
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where d is the number of dimensions. With this change, 
however, each process no longer knows the physical dimen-
sions of other processes, and cannot directly determine the 
destinations of particles moved or the LET. This scheme 
is not implemented yet in FDPS but in the following we 
also discuss how algorithms should be changed and how the 
communication cost scales with this scheme.

2.3 � Particle exchange

The standard algorithm used in FDPS to exchange particles 
is simple and straightforward. After the new coordinates 
of all subdomains are determined and shared by all MPI 
processes, each process determines for each particle if it 
is still in its subdomain or not, and if not, to which process 
it should be sent. Then with one call to MPI_alltoall, each 
process tells all other processes how many particles it wants 
to send, and then using MPI_alltoallv sends actual particle 
data. This scheme works fine when the number of MPI pro-
cesses is small, and works reasonably well for around 100K 
nodes (K computer) if (a) the hardware vendor provides rich 
interconnect and fast implementation of alltoall(v) and (b) 
calculation time for one timestep is large, order of several 
seconds or more. However, we want to solve problems of 
practical size on big machines, and thus the calculation time 
per one timestep should be much shorter, much less than 
one second. However, even with ideal implementation the 
throughput of the alltoall operation is determined by the 
bisection bandwidth, which does not scale on very large 
machines. Moreover, the actual performance of alltoall for 
short messages can be extremely low, while the total amount 
of data need to be sent/received is large simply because the 
number of MPI process is large. Thus, it has become critical 
to eliminate alltoall(v) operation completely.

For the particle exchange operation, though in principle 
particles can move from any node to any other node, in prac-
tice the actual movement is between subdomains which are 
physically nearby, and thus with our multisection method 
between nearby nodes in the three-dimensional process grid. 
Our current implementation makes use of this fact. For each 
of six directions ( ±x,±y,±z ), we first determine the largest 
distance particles move in the process grid, and then we loop 
over all possible relative displacement within the process 
grid. If the maximum distance is independent of the total 
number of the processes, the communication time would not 
increase when the number of processes increases.

There are many other possible implementations of the 
particle exchange which might be more efficient on some 
types of interconnect. For example, consider the following 
algorithm. If process (i1, j1, k1) wants to send its particles to 
process (i2, j2, k2) , it first sends its data to process (i2, j1, k1) . 
Similarly, all processes sends all their data to ±x directions, 

so that all data transfers in the direction of the x axis are 
finished. Then all processors send data in y direction, and 
then in z direction. In practice, on machines with direct torus 
network such as K and Fugaku, we should consider sending 
data in multiple directions in parallel, to make more efficient 
use of the communication links. With this algorithm the total 
number of point-to-point communications is at the maxi-
mum O(p1∕3) and is usually much smaller, and thus fairly 
good performance might be achieved.

When the scalable implementation of the domain decom-
position in which each node does not have all information of 
subdomains is used, the above algorithm would still work 
without problem.

2.4 � Interaction calculation

In FDPS (and also in many other parallel particle-based 
simulation codes), Barnes-Hut tree algorithm (Barnes and 
Hut 1986) is used for the calculation of long-range interac-
tion. In some codes FMM (Greengard and Rokhlin 1987) is 
used, but as far as the parallelization strategy and algorithm 
to exchange the necessary data between processes are con-
cerned, there is no essential difference between the tree algo-
rithm and FMM. Therefore, what is discussed here applies 
to FMM as well. In fact, we are currently working on the 
integration of a variation of FMM into our FDPS framework.

The parallel version of Barnes-Hut tree algorithm used in 
FDPS consists of following steps 

1.	 Each process constructs its local tree.
2.	 Each process (process i) determines, for each of all other 

processes (process j), the information of the tree of pro-
cess i that process j needs to evaluate the total interac-
tion on particles in process j. This can be done locally 
since each process already know the geometry of other 
subdomains. This information is called “local essential 
tree”, or LET (Warren and Salmon 1992).

3.	 Each process receives the LETs from all other proces-
sors.

4.	 Each process constructs the “global” tree using LETs it 
received.

5.	 Each process evaluates the interaction on its particles 
using the global tree.

We can see that the internode communication takes place 
only at step 3. In the following, we discuss the several 
possible implementations of step 3 and their performance 
characteristics.

A simple and straightforward implementation would 
just use MPI_alltoallv for the LET exchange. As in the case 
of the particle exchange, alltoall communication should 
be avoided since even with rich interconnect and highly 
optimized software, it would be the limiting factor of the 
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performance if the number of MPI processes is not much 
smaller than the number of particles in one MPI process.

Unlike in the particle exchange, where processes would 
actually exchange particles only with nearby processes, in 
the LET exchange all processes have to receive some infor-
mation from all other processes. Thus, at first sight alltoall 
communication looks unavoidable. However, actually there 
are several approaches to avoid it. The following is the list 
of known schemes. 

(a)	 Use TreePM
(b)	 Use allgather for distant communication
(c)	 Construct higher-level inter-process tree

We briefly discuss each of them below.

2.4.1 � TreePM

When the periodic boundary condition is used, FFT is the 
natural way to solve the Poisson equation, and the TreePM 
algorithm (Bagla 2002) has been widely used. The basic idea 
of the TreePM method is to replace the particle–particle part 
of the P3M scheme (Eastwood et al. 1984) by the tree algo-
rithm, so that the calculation cost would not increase sig-
nificantly when the distribution of particles becomes highly 
inhomogeneous. Also, since the PP part is replaced by the 
tree algorithm, the calculation cost of the tree part depends 
only weakly on the cutoff radius, and thus the necessary 
number of grid points for FFT is relatively small.

Consider the case where we have p processors, with n 
particles each, and use g grid points per process for FFT. 
Theoretically, the communication efficiencies of both the 
LET exchange and FFT are limited by the bisection band-
width, and the amount of data passed in one dimension is 
O((np)2∕3) and O(pg). Therefore, to make the cost of FFT 
smaller than LET exchange, g should satisfy

Since we are dealing with very large systems with 105 or 
even 106 MPI processes, for most of practical applications 
n < p , and thus g should be very small. The fact that g is 
small implies the cutoff length is significantly larger than 
the size of subdomains assigned to MPI processes, and thus 
the processes should still communicate with a fairly large 
number of processes. Even so, the alltoall communication 
can be eliminated.

2.4.2 � Use allgather for distant communication

The idea here is that when a very large number of processes 
is used, many subdomains would actually be regarded as 

(2)g ≤
n2∕3

p1∕3
.

points (or single multipole expansions). Thus, even in princi-
ple the LETs that one process should send to other nodes are 
different for different nodes, many of them receive a single 
expansion, which is the same for all of them. Thus, we can 
replace most of the transfers of LETs by single allgather 
operation, through which each node receives the top-level 
multipole expansions of all other nodes. Then, each node 
sends LETs only to nodes which require lower-level tree 
structures. Since in our current algorithm all processes 
know the physical dimensions of all other processes, we 
can use usual send/receive pairs to guarantee that all data 
are exchanged correctly.

With this scheme, only global communication is through 
allgather, and thus its bandwidth is not limited by the bisec-
tion bandwidth but by the injection bandwidth, and thus the 
scaling in the case of ideal implementation is much better. 
In the case of naive alltoall implementation, the necessary 
time is O(p2∕bbisect) , where bbisect is the bisection bandwidth. 
With allgather, it is O(p∕binject) , where binject is the effec-
tive bandwidth of the network port of a single MPI process. 
Thus, even when we have the full-bisection network where 
bbisect = pbinject , the allgather-based implementation would 
show comparable or better performance than alltoall-based, 
and on large machines with bbisect ≪ pbinject , the allgather-
based algorithm is much better.

However, this algorithm still has the problem that the 
amount of the data received by each process is O(p) and 
the cost of tree construction is O(p ln p) . If p ≫ n , which is 
likely the case for large systems, the single allgather opera-
tion can be the limiting factor of the scalability, as in the 
case of the domain decomposition. We will address this 
issue in the subsections below.

2.4.3 � Construct higher‑level inter‑process tree

As seen in Sect. 2.4.2, the problem with the LET scheme is 
that when inter-process communication takes place, there is 
no information concerning the structure higher than those 
of local trees, and that information of higher levels of the 
tree is constructed by each process redundantly. Thus, if we 
construct the global higher-level structure and let each pro-
cess access them, in principle the amount of data received 
by each process can be reduced.

With the multisection method, it is not clear how we 
can make higher-level tree. One possibility is to map eight 
neighboring subdomains to one higher-level tree node and 
apply that process recursively to top level.

One problem with this approach is that if the data of one 
tree node in this higher-level tree exists in one MPI pro-
cess, that process will be accessed by many processes, and 
the communication bottleneck is not removed. This can be 
avoided if we use FMM or at least FMM-like communica-
tion pattern, in which tree nodes communicate only with 
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the nodes in the same level. for all nodes the amount of 
data transfer can be independent (or only O(log p) ). In this 
scheme, LET is built at each level of the tree, and the infor-
mation of the distant nodes is not directly sent but sent 
through high-level nodes.

2.4.4 � Combination with new domain decomposition 
scheme

If we use the scalable algorithm for the domain decomposi-
tion discussed in Sect. 2.2, we need to modify the LET based 
scheme, since one process no longer has the geometries of 
other nodes. We can use multi-stage LET algorithms, in 
which the LETs are constructed step by step.

First, each process constructs LETs, not for each pro-
cesses but for all “slabs” along the x directions (slabs 
extends to y and z directions) and send them to the process 
with same y and z coordinates in each slab. Now each node 
(i, j, k) has LETs from nodes (1, j, k) to (nx, j, k) , where nx , 
ny , and nz are the numbers of divisions in x, y, and z direc-
tions, respectively. Then each node constructs the tree from 
both its local particles and received LETs. Here, the opening 
criterion of the tree cells must be for the slabs and not for 
its subdomain. Now, each slab has the information of the 
entire system. So the communication in x direction will not 
occur. In the second stage, we will do the same thing for 
“columns”, created by cutting the slabs in y direction, and 
construct LETs for all other columns in the same slab and 
send them, and reconstruct the tree by adding new LETs. 
Finally, do the same thing in z direction. After this procedure 
each process has the information of the entire system.

This scheme does remove the O(p) part of the LET algo-
rithm and reduce the total number of communications from 
O(p) to O(dp1∕d) . One drawback of this scheme is that the 
tree need to be constructed four times per timestep: initial 
local tree and communications in x, y, and z directions. 
However, the dominant part of the calculation cost of the 
tree construction is sorting, and for global trees the sorting 
cost can be made practically O(n) since the local particles 
are already sorted, or even smaller if we keep the local tree 
and tree for the global information separate. Therefore, we 
believe the additional cost is acceptable and the gain by 
removing the O(p) communication is larger.

3 � The effect of node architecture

In this section we discuss the limiting factors of the node-
level performance of particle-based codes on present and 
near-future machines and new algorithms to improve the 
performance. The factors we need to consider include the 
following. 

1.	 Main memory bandwidth for sequential and random 
accesses.

2.	 In the case of accelerators, communication bandwidth 
between the host and the accelerator.

3.	 Also in the case of accelerators or heterogeneous archi-
tecture, the ratio of host performance and accelerator 
performance.

In the following we discuss these factors.

3.1 � Main memory bandwidth

For many large-scale simulation codes, the effective main 
memory bandwidth tends to be the limiting factor of the effi-
ciency. Let us first derive the theoretical minimum necessary 
bandwidth to achieve a reasonable efficiency for particle-
based simulation codes, assuming that we are using explicit 
time stepping,.

As in Sect. 2, we consider the procedures for domain 
decomposition, particle exchange, and interaction calcula-
tion using Barnes-Hut tree algorithm.

3.1.1 � Domain decomposition

As far as the memory access is concerned, this part is neg-
ligible since the calculation time here is dominated by the 
communication bandwidth which is much smaller than the 
memory bandwidth.

3.1.2 � Particle exchange

For all particles we need to check if it is still in its subdo-
main. Thus, we read the data of all particles a least once per 
timestep.

3.1.3 � Interaction calculation

As discussed in Sect. 2.4, the LET-based parallel Barnes-
Hut tree algorithm with Barnes’ vectorization for interaction 
calculation consists of the following steps: 

1.	 Local tree construction
2.	 LET exchange
3.	 Global tree construction
4.	 Creation of the interaction lists
5.	 Interaction calculation using the interaction lists

The dominant part of the tree construction is the sorting of 
particles using keys. With any algorithm, we need to read 
each particle at least once to make its key, and write once 
to store the sorted result. With our current implementation 
the cost of sorting is much higher (Iwasawa et al. 2019a), 
and that implies there are rooms to improve algorithms, 
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We ignore the cost of LET exchange, since that part is 
smaller compared to the actual interaction calculation.

The cost of the construction of the interaction lists 
depends on many factors, in particular the choice of the 
parameter ng , the maximum number of particles to share 
the same interaction list. We should chose this parameter 
so that the total calculation time is minimized, and that 
means the optimal choice of this parameter depends on 
the processor architecture. To make rough estimate, let 
us assume that the length of the interaction list is n0 + ng , 
where n0 is a constant which depends on the required accu-
racy, and the ratio between the calculation time of one 
interaction and that for adding one entry in the interaction 
list is X. The total cost of interaction list and interaction 
calculation per particle in unit of the time for single inter-
action calculation is then given by

and the optimal value of ng is given by

If we assume that the data of one particle is around 30bytes 
and single interaction calculation 30 floating-point opera-
tions, we have

where b is the B/F number for the random access of the 
main memory, which on modern machines around 1/30 or 
less of the B/F number for the sequential access. Thus, for 
a machine with B/F = 0.03, we have X = 1000 , and that 
means the optimal value of ng would be around 1000. This 
is, however, quite a bit too large, since such a large value of 
ng results in the significant increase of the total calculation 
cost. We thus need some new approach to reduce the main 
memory access.

One method to reduce the main memory access is to use 
the same tree structure and interaction lists for multiple 
time steps. This method, which we call the reuse method, 
turned out to be quite effective on all of modern platforms 
we have so far tested, and helped us to achieve near-peak 
performance on all of them.

With the reuse method, the necessary memory access 
per particle are one for local tree (momentum update), 
two for global tree (reordering and /momentum update), 
and a few times for the construction of the interaction list 
and interaction calculation. Thus, the amount of memory 
access per particle per timestep is less than ten times, and 
most of them are fast, near-sequential access. Thus, the 
ratio between the memory access time and the calculation 
time is now given by

(3)C = X(n0 + ng)∕ng + n0 + ng,

(4)ng =
√

Xn0.

(5)X = 1∕b,

Since n0 is of the order of 1000, roughly speaking the reuse 
method would work for systems with B/F > 0.01 . Right now 
all HPC processors provide B/F > 0.02 , but in near future we 
might see machines with B/F < 0.01 , and how we can make 
use of such systems is an important question.

The absolute minimum of the amount of the memory 
access necessary per timestep per particle is one read and 
one write. Therefore, there is still rooms of improvement by 
a factor of five.

The reuse method is quite effective when we can use it. 
However, there are physical systems for which the reuse 
method does not work. How we can minimize the main 
memory access is an important research direction for such 
systems. One possibility is to make better use of on-chip 
memories. If we divide the systems not just by the number 
of processes but to smaller blocks which can fit into on-chip 
memories of processors, in principle we can reduce the main 
memory access by a large factor by processing one block at 
a time. In a naive implementation we would still need one 
read for particle exchange and another read for LET, and yet 
another read/write for the interaction calculation and time 
integration. Thus, we could reduce the memory access to 
three reads and one write per particle per timestep. Such 
implementation would be advantageous on machines of near 
future.

3.2 � Host‑accelerator communication

The standard way to use accelerators in FDPS or other large-
scale parallel particle-based simulation codes is to use them 
only for the interaction calculation using the interaction lists. 
The amount of data transferred between the host and accel-
erators is essentially one read and one write per timestep per 
particle, since interaction list can be the list of the indices 
of particles and thus its total size in bytes is smaller than 
that of particles. Very roughly, unless the interaction is of 
very short-range nature and inexpensive, for host-accelerator 
interface the necessary B/F number is around 0.002. Unfor-
tunately, interface bandwidth of modern GPUs are approach-
ing to this value. For example, NVIDIA Tesla V100s, used 
with PCIe gen3 interface, has the interface B/F number of 
around 0.003.

If all particles of one process, or those processed by one 
accelerator card, can fit to the memory of the accelerator 
card, we can in principle reduce the necessary interface 
bandwidth in several ways, at least when the reuse method 
is used.

When we use the reuse method, it is straightforward to 
move all operations except for communications in reuse 
steps to the accelerator side, since they can be expressed 

(6)R =
10

bn0
.
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in simple loops without conditional branches. In this case, 
the necessary communication is only for LETs, and if the 
number of particles per accelerator card is large enough, 
we can reduce the necessary bandwidth of host-accelerator 
communication by a large factor.

Another possibility is to use some form of data compres-
sion for the host-accelerator communication. Since the nec-
essary bandwidth of the host-accelerator communication 
so small, we can pay fairly large calculation cost for data 
compression and restoration. On the other hand, efficient 
compression is not easy for the data from numerical simu-
lation, in particular when it is being used for simulation. 
One possibility is to construct the same “predictor” on both 
side, and to send only the correction terms. Whether or not 
such a strategy works or not depends very strongly on the 
nature of the system and the methods used for the interac-
tion calculation and time integration. When we use the reus-
ing method, we can expect that the orbits of particles are 
generally smooth and predictable, since otherwise the reuse 
method would not work.

In the case of the simulation of galaxy formation, for typi-
cal galaxies, we will use the timestep of around 105 years 
for particles which represent stars and gas. Their dominant 
motion is the orbital motion within the galaxy with the time-
scale of 108 years. Thus, if we can construct second-order 
prediction polynomial, its local relative truncation error is 
around 10−9 . For the interaction calculation, this accuracy 
might be already sufficient and we may be able to send only 
a small number of bits as the correction terms of the predic-
tion, and we should be able to apply a similar procedure to 
the calculated interaction. Also, similar consideration can 
be applied to other systems like planetary rings and proto-
planetary nebulae.

In prediction we make use of the data redundancy in the 
temporal domain. It should also be possible to use the redun-
dancy in the spatial domain. For example, the difference of 
Morton keys of near neighbors is usually small, and thus 
we can compress the sequence of sorted Morton keys by 
taking the difference of two consecutive keys and use vari-
able-length integer format, or by using any general-purpose 
compression algorithms. The advantage of this algorithm is 
that it does not require that the orbits of particles are smooth.

3.3 � Host‑accelerator performance difference

We can regard both of machines with host-accelerator 
architecture and heterogeneous manycore architecture as 
consisting of small numbers of general-purpose cores and 
large numbers of specialized cores. In the case of GPGPU 
systems, the general-purpose side usually consists of Intel 
x86 processors, and the difference of their theoretical peak 
performance is usually not very large. Typically around ten 
or so and only in some extreme systems the ratio exceeds 

30. In the case of heterogeneous many-core systems, This 
ratio is generally much larger, such as 64 for Sunway 26010 
processor, which has 64 CPEs per MPE. When we ignore the 
limitation from the host-accelerator communication band-
width, if this ratio is not very large, like ten or less, it makes 
sense to use accelerator only for the interaction calculation, 
since the calculation cost of the rest of the calculation is not 
very large and it can be performed on the host computer 
without affecting the overall efficiency too much. However, 
if this ratio is very large, such as a factor of 100 or more, 
practically all calculations must be done on the accelerator 
side, even when we use the reusing method.

In many cases, we need to rewrite the application pro-
gram to move part of calculations from host to accelerator, 
or from general-purpose cores to specialized cores. With 
frameworks like FDPS, we can hide these architecture-spe-
cific codes in the FDPS framework and keep the application 
program machine independent. At present, we have not yet 
reached this goal, but we are working in this direction.

4 � Achieved performance

In this section, we briefly discuss the achieved performance 
of FDPS-based applications on three platforms: Sunway 
Taihulight, GYOUKOU, and NVIDIA V100 GPGPU. 
For the first two machines, the performance numbers are 
obtained with several machine- and problem-specific opti-
mizations not included in the public release of FDPS yet. 
The code used for NVIDIA V100 is in github.1 The opera-
tion of GYOUKOU was terminated on March 31st, 2018. 
We have made further optimization of our calculation code 
and measured the final performance numbers on a smaller 
system, Shoubu B, with 512 PEZY-SC2 chips.

4.1 � Test problems and optimizations used

For Taihulight and GYOUKOU, we developed the code for 
large-scale simulations of planetary rings, such as Saturn’s 
ring. The realistic simulation of inner rings of Saturn can be 
done using 1011−12 particles, and such simulation is becom-
ing feasible with the peak speed of 100 PF or more. For 
NVIDIA V100, we report the single-card performance for 
the simple three-dimensional cold collapse problem.

Table 2 shows the algorithms used on each platform. 
Not all algorithms discussed in Sects. 2 and 3 have been 
actually implemented. The domain decomposition without 
O(p) communication is not complete yet, since the current 
implementations for Taihulight and GYOUKOU are special-
ized to simulations of planetary rings. Thus, improvements 

1  https​://githu​b.com/FDPS/FDPS.

https://github.com/FDPS/FDPS
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related to this change are not available in the released ver-
sions of FDPS yet. However, LET exchange without all-
toallv is available in the current FDPS. For the benchmark 
on V100 this feature is not used since we measured single-
node performance only. Also, in the code for Taihulight 
and GYOUKOU, calculations other than interaction cal-
culation using the interaction list are moved to accelerator 
(CPE in the case of Taihulight and PEZY-SC2 processors on 
GYOUKOU). These porting are relatively easy but requires 
machine-specific codes, since we need to make use of spe-
cial features of these processors to achieve acceptable per-
formance. Such porting is a bit difficult on GPGPU and has 
not been done yet.

4.2 � Performance results

Detailed performance and scalability numbers are given in 
Iwasawa et al. (2019a) and Iwasawa et al. (2019b). Here we 
present “best” numbers achieved so far. On Taihulight, the 
measured performance for the run with 1.6 × 1012 particles 
on 160k processes (40,000 nodes) of TaihuLight is 47.9 PF, 
or 39.7% of the theoretical peak performance. On PEZY-
SC2 based systems, we achieved 10.6PF for 8 × 109 particles 
on 8K SC2 chips, or efficiency of 23.3% of the theoreti-
cal peak performance. On 512-chip Shoubu System B, we 
achieved the speed of 1.01 PF, or 35.5%. In all cases, the 
number of particles per MPI process is 10M. The calculation 
time per timestep is 2.88, 0.822 and 0.525 s, on Taihulight, 
GYOUKOU, and Shoubu B. Note that the difference of per-
formance between GYOUKOU and Shoubu B is not due to 
the scalability limitation but purely due to the difference in 
the calculation code used. As we stated earlier the opera-
tion of GYOUKOU was terminated before we completed 
the optimization.

Table 3 shows the breakdown of calculation time. On 
both platforms, we can see that the interaction calculation 
dominates the total calculation time, and the fraction of time 
spent for communication is relatively small, less than 1/10 
of the total time. We should admit that part of the reason 
why the communication time is small is that we simulate 
planetary rings which is very thin, and thus communication 
is effectively limited to x and y directions. Thus, the surface 
area of one subdomain, which is usually proportional to n2∕3 
where n is the number of particles per domain, is in this 
case proportional to n1∕2 , and the amount of communication 
is small. However, even so, efficient calculation on these 
machines would have been impossible without the new algo-
rithms discussed in previous sections. Thus an important 
guideline for extreme-scale parallel calculation is to avoid 
any global communication or anything whose calculation 
time is O(p), even if the coefficient is very small. In particu-
lar, the use of communication pattern of alltoall(v) must be 
eliminated since it will result in O(p) execution time, even 
when the message size is very small, and should be replaced 
with communications with execution time at the maximum 
O(p1∕d) or ideally O(1).

In terms of the number of particles integrated per second, 
we have achieved 5.5 × 1011 particles per second on Taihu-
light, which is more than 10 times faster than the results of 
previous works on K computer (Ishiyama et al. 2012) or 
ORNL Titan (Bédorf et al. 2014). The number of particles 
used is similar to that used on K computer (Ishiyama et al. 
2012), and that means the calculation time per one timestep 
is reduced by more than a factor of 10.

Table  4 shows the calculation time per timestep for 
the cold collapse calculation with 4M particles on single 
NVIDIA V100 card with Intel Xeon E5-2670 v3 host CPU. 
Here, “GPU without index” denote the use of interaction list 
with physical quantities of particles in the list. Thus, com-
munication cost is large. With “GPU with index” algorithm, 
the data of particles are sent only once per timestep. Thus, 
the communication time is reduced, but the calculation time 
becomes somewhat longer. With reusing, however, the cal-
culation time becomes much shorter. The number of reusing 
in this case is 16. In this case, the effect of reusing is not the 
reduction of the communication cost but mostly the reduc-
tion in the calculation cost of operations still done on CPU. 

Table 2   Optimizations used

Taihulight GYOUKOU V100

O(p1∕d) domain decomposition Yes Yes Yes
Higher-level tree* Yes Yes –
LET exchange without alltoallv Yes Yes (Yes)
Accelerator for all calculations Yes Yes No
Interaction list reuse Yes Yes Yes

Table 3   Breakdown of calculation time

System No. of processes Interaction Comm. Others

TaihuLight 160,000 2.31 0.090 0.476
Gyoukou 8192 0.453 0.147 0.222
Shoubu B 512 0.360 0.030 0.135

Table 4   GPGPU performance Algorithm Time per 
timesteps 
(s)

CPU only 0.98
GPU without index 0.36
GPU with index 0.42
GPU with reuse 0.095
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The achieved performance is around 40M particles update 
per second. Currently, we are sending particles for tree data 
(x, y, z and mass) and particles which receive force (x, y, z 
only) all in single precision. Thus, the data sent per particle 
is 40 bytes. The data sent to GPU in one second is only 
1.6 GB, while the bandwidth of CPU-GPU connection is 
close to 15 GB/s.

5 � Summary and future directions

5.1 � Lessons learned

In this paper, we overviewed the current status of our effort 
to make large-scale modern HPC platforms usable for large-
scale particle-based simulations. The difficulties include 
extremely large number of cores and MPI processes, small 
memory bandwidth, and even smaller network bandwidth. 
Also, in the case of accelerator architectures and/or het-
erogeneous many-core architectures, additional difficulties 
are very large ratio of performance of accelerator cores and 
general-purpose cores, and small host-accelerator commu-
nication bandwidth.

What we have observed is that it is not impossible to 
design the framework, not a specific application, for particle-
based simulations so that the applications developed using 
that framework can achieve high efficiency on modern HPC 
platforms.

In order to deal with the extremely large number of cores, it 
is the most important to eliminate global communications, in 
particular those with the O(p) term in the communication cost. 
Examples of such communications are MPI_alltoall(v) and 
MPI_allgather(v). This means no single process should com-
municate with all other processes, even if it is the rank-0 node.

In our case, such O(p) communications were origi-
nally used in domain decomposition, particle exchange 
and LET exchange. We have replaced them with O(p1∕d) 
communications.

Compared to mesh-based simulations, where the memory 
bandwidth tends to be the bottleneck, particle-based simu-
lations do not require very high memory bandwidth, since 
the calculation cost of particle–particle interaction is large 
and thus calculation is not very memory intensive. Even so, 
with B/F numbers of 0.01 or less, we need new approaches 
including the interaction list reuse. With the reuse algorithm, 
the number of memory access per particle per timestep is 
still of the order of ten. On the other hand, the lower bound 
of the main memory access is one read and one write per 
timestep. Therefore, it is at least theoretically possible to 
reduce the necessary memory bandwidth by another factor 
of 10, so that we can use machines with B/F ∼ 0.001.

To reduce the necessary communication bandwidth 
is also quite important. The necessary communication 

bandwidth, however, depends strongly on the target physical 
systems and difficult to provide universal solutions. Solu-
tions specific to physical systems and also to network archi-
tecture of the machine will be necessary.

First let us consider the communication due to migration 
of particles. For a nearly uniform distribution of particles, 
we can expect that particles move a small fraction of the 
average interparticle distance in one timestep. Thus, the 
number of particles which migrate from one subdomain to 
other (usually neighboring) subdomains is O(p2∕3) with rela-
tively small coefficient, and that means the required network 
bandwidth is much smaller than the required main memory 
bandwidth. However, in many astrophysical simulations the 
situation is quite different.

For example, systems like planetary rings, protoplanetary 
disks, disk galaxies have the nature that the global rotation 
velocity is much larger than the local velocity dispersion. 
Thus, if we have the domain geometry fixed to the inertial 
frame, particles moves the distance much larger than the 
typical interparticle distance, and with very large number 
of domains, it can occur that all particles in one domain 
moves to other domains at every timestep. It is clear that 
the network bandwidth would limit the scalability. In our 
simulation of planetary rings discussed in Sect. 4, we intro-
duced rotating reference frame so that the circular motion of 
particles do not cause migration of particles. In addition, we 
adopted the domain geometries defined in cylindrical coor-
dinates. This approach is quite effective for narrow rings, 
where the range of the angular velocity is small. However, 
for wider rings or disks, this strategy does not work since 
the angular velocity can be quite different. If the topology 
of the interprocessor network is mesh, there is no simply 
way to reduce the communication. However, in the case of 
networks with fat-tree or similar topologies, we can reduce 
the communication by let each ring of domains rotate at their 
local rotation velocities. In the case of the fat-tree network, 
it is possible to maintain the bandwidth of communication 
between two rings of domains with different rotation speeds, 
by assigning low-level trees to rings.

The communication for interaction calculation is cur-
rently more expensive than that for the migration of parti-
cles. However, here problem-independent strategies such as 
data compression will be quite effective.

5.2 � Future directions

As we have summarized in the previous subsection, in order 
to realize particle-based simulations with high efficiency on 
future machines, we will have to further reduce the neces-
sary bandwidths of main memory and inter-node network. 
For the main memory bandwidth, more efficient use of the 
on-chip memory (either cache or local memory) will become 
more and more important. For network bandwidth, it will 
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be necessary to investigate problem- and network-specific 
strategies.
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