Skip to main content
Log in

Parallel and automatic isotropic tetrahedral mesh generation of misaligned assemblies

  • Regular Paper
  • Published:
CCF Transactions on High Performance Computing Aims and scope Submit manuscript

Abstract

Mesh generation is a challenge for high-performance numerical simulation, one reason is the complex geometry representing solution domain makes pre-processing difficult, especially for those assembly model containing hundreds and thousands of components involving misaligned interfaces between neighboring parts, and no state-of-art meshing tools could provide automatic functions for processing such complex model, another reason is hundreds of millions or even billions meshes should be generated quickly, which also exceeds the capabilities of available tools. In this paper, a novel parallel and automatic mesh generation method is proposed. Firstly, a surface imprinting algorithm based on the hybrid representation of discrete and continuous surfaces is proposed to process misaligned assembly model automatically. Then, the repaired assembly model is used as an input for a carefully designed mesh generation pipeline which connects the procedures of mesh sizing control, and three-level parallel tetrahedral mesh generation in order. This proposed method could produce hundreds of millions consistent mesh qualified for high-performance numerical simulation based on thousands of geometry components. Numerical experiments on a giant dam model and an integrated circuit board model demonstrates the effectiveness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Baker, T.J.: Mesh generation: art or science? Prog. Aerosp. Sci. 41(1), 29–63 (2005)

    Article  Google Scholar 

  • Chen, J., Cao, B., Zheng, Y., Xie, L., Li, C., Xiao, Z.: Automatic surface repairing, defeaturing and meshing algorithms based on an extended B-rep. Adv. Eng. Softw. 86, 55–69 (2015)

    Article  Google Scholar 

  • Chen, J., Zhao, D., Huang, D., Zheng, Y., Wang, D.: Improvements in the reliability and element quality of parallel tetrahedral mesh generation. Int. J. Numer. Methods Eng. 92, 671–693 (2012)

    Article  MathSciNet  Google Scholar 

  • Chen, J., Zhao, D., Zheng, Y., Xu, Y., Li, C., Zheng, J.: Domain decomposition approach for parallel improvement of tetrahedral meshes. J. Parallel Distrib. Comput. 107, 101–113 (2017)

    Article  Google Scholar 

  • Chen, J., Xiao, Z., Zheng, Y., et al.: Scalable generation of large-scale unstructured meshes by a novel domain decomposition approach. Adv. Eng. Softw. 121, 131–146 (2018)

    Article  Google Scholar 

  • Chrisochoides, N.: Parallel mesh generation. In: Bruaset, A.M., Tveito, A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Computers, Lecture Notes in Computational Science and Engineering, vol. 51, pp. 237–264. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Chrisochoides, N.: Telescopic approach for extreme-scale parallel mesh generation for CFD applications. AIAA (2016). https://doi.org/10.2514/6.2016-3181

    Article  Google Scholar 

  • Chrisochoides, N., Nave, D.: Parallel Delaunay mesh generation kernel. Int. J. Numer. Methods Eng. 58, 161–176 (2003)

    Article  Google Scholar 

  • Cougny, H.L., Shephard, M.S.: Parallel refinement and coarsening of tetrahedral meshes. Int. J. Numer. Methods Eng. 46, 1101–1125 (1999)

    Article  MathSciNet  Google Scholar 

  • Dannenhoffer, J., Haimes, R.: Quilts: a technique for improving boundary representations for CFD. AIAA (2003). https://doi.org/10.2514/6.2003-4131

    Article  Google Scholar 

  • Deister, F., Udo, T., Oubay, H., Nigel, P.W.: Fully automatic and fast mesh size specification for unstructured mesh generation. Eng. Comput. 20(3), 237–248 (2004)

    Article  Google Scholar 

  • Foteinos, P., Chrisochoides, N.: Dynamic parallel 3D Delaunay triangulation. In: Quadros, W.R. (eds.) Proceedings of the 20th International Meshing Roundtable. Springer, Heidelberg (2011)

  • Foucault, G., Cuillière, J., François, V., Léon, J., Maranzana, R.: Adaptation of CAD model topology for finite element analysis. Comput. Aided Des. 40, 176–196 (2008)

    Article  Google Scholar 

  • Freitas, M., Wawrzynek, P., Cavalcante-Neto, J., Vidal, C., Martha, L., Ingraffea, A.: A distributed-memory parallel technique for two-dimensional mesh generation for arbitrary domains. Adv. Eng. Softw. 59, 38–52 (2013)

    Article  Google Scholar 

  • Inoue, K., Itoh, T., Yamada, A., Furuhata, T., Shimada, K.: Face clustering of a large-scale CAD model for surface mesh generation. Comput. Aided Des. 33(3), 251–261 (2001)

    Article  Google Scholar 

  • Kania, L., Pirzadeh, S.: Geometrically-derived background function for automated unstructured mesh generation. AIAA (2005). https://doi.org/10.2514/6.2005-5240

    Article  Google Scholar 

  • Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48(1), 96–129 (1998)

    Article  Google Scholar 

  • Larwood, B.G., Weatherill, N.P., Hassan, O., Morganx, K.: Domain decomposition approach for parallel unstructured mesh generation. Int. J. Numer. Methods Eng. 58(2), 177–188 (2005)

    Article  Google Scholar 

  • Laug, P., Guibault, F., Borouchaki, H.: Parallel meshing of surfaces represented by collections of connected regions. Adv. Eng. Softw. 103, 13–20 (2017)

    Article  Google Scholar 

  • Löhner, R.: A 2nd generation parallel advancing front grid generator. In: Jiao, X., Weill, J.C. (eds.) Proceedings of the 21st International Meshing Roundtable. Springer, Heidelberg (2013)

  • Löhner, R.: Recent advances in parallel advancing front grid generation. Arch. Comput. Methods Eng. 21(2), 127–140 (2014)

    Article  MathSciNet  Google Scholar 

  • Loseille, A., Menier, V., Alauzet, F.: Parallel generation of large-size adapted meshes. Procedia Eng. 124, 57–69 (2015)

    Article  Google Scholar 

  • Patel, P.S., Marcum, D.L., Remotigue, M.G.: Automatic CAD model topology generation. Int. J. Numer. Methods Fluids. 52(8), 823–841 (2006)

    Article  Google Scholar 

  • Patel, P.S., Marcum, D.L.: Robust and efficient CAD topology generation using adaptive tolerances. Int. J. Numer. Methods Eng. 75, 355–378 (2008)

    Article  Google Scholar 

  • Pirzadeh, S.Z.: Advanced unstructured grid generation for complex aerodynamic applications. AIAA J. 48(5), 904–915 (2010)

    Article  Google Scholar 

  • Quadros, W.R., Owen, S.J.: Defeaturing CAD models using a geometry-based size field and facet-based reduction operators. Eng. Comput. 28, 301–318 (2009)

    Google Scholar 

  • Quadros, W.R., Vyas, V., Brewer, M., Owen, S.J., Shimada, K.: A computational framework for automating generation of sizing function in assembly meshing via disconnected skeletons. Eng. Comput. 26(3), 231–247 (2010)

    Article  Google Scholar 

  • Sheffer, A.: Model simplification for meshing using face clustering. Comput. Aided Des. 33(13), 925–934 (2000)

    Article  Google Scholar 

  • Sheffer, A., Bercovier, M., Blacker, T., Clements, J.: Virtual topology operators for meshing. Int. J. Comput. Geom. Appl. 10(03), 309–331 (2000)

    Article  Google Scholar 

  • Shimada, K.: Current issues and trends in meshing and geometric processing for computational engineering analyses. J. Comput. Inf. Sci. Eng. 11, 1530–9827 (2011)

    Article  Google Scholar 

  • Smith, B.M., Tautges, T.J., Wilson, P.P.H.: Sealing faceted surfaces to achieve watertight CAD models. In: Shontz, S. (eds.) Proceedings of the 19th International Meshing Roundtable. Springer, Heidelberg (2010)

  • Wang, J., Zhu, C., Chen, J., Zheng, P., Xu, Q.: A multithreaded parallel Delaunay triangulation algorithm based on lock-free atomic operations. Comput. Eng. Sci. 40(05), 773–779 (2018)

    Google Scholar 

  • Weatherill, N.P., Hassan, O., Morgan, K., Jones, J.W., Larwood, B.G., Sorenson, K.: Aerospace simulations on parallel computers using unstructured grids. Int. J. Numer. Methods Fluids 40(1–2), 171–187 (2002)

    Article  Google Scholar 

  • Yilmaz, Y., Ozturan, C.: Using sequential NETGEN as a component for a parallel mesh generator. Adv. Eng. Softw. 84, 3–12 (2015)

    Article  Google Scholar 

  • Zagaris, G., Pirzadeh, S.Z., Chrisochoides, N.: A framework for parallel unstructured grid generation for practical aerodynamic simulations. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting. AIAA-American Institute of Aeronautics and Astronautics (2009). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090007630.pdf

Download references

Acknowledgements

This research was partially supported by Science Challenge Project of China (no. TZ2016002), National key R & D program of the Ministry of science and technology of China (no. 2017YFB0202203), National Natural Science Foundation of China (no. 11801037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zheng or Jianjun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, P., Yang, Y., Liu, Z. et al. Parallel and automatic isotropic tetrahedral mesh generation of misaligned assemblies. CCF Trans. HPC 2, 149–163 (2020). https://doi.org/10.1007/s42514-020-00024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42514-020-00024-x

Keywords

Navigation