Skip to main content
Log in

A hardware architecture for the Walsh–Hadamard transform toward fast simulation of quantum algorithms

  • Regular Paper
  • Published:
CCF Transactions on High Performance Computing Aims and scope Submit manuscript

Abstract

Quantum computers are based on quantum physics, and can exploit quantum effects to boost its computation. However, analysis of quantum algorithms are often hard since quantum algorithms are, in some sense, parallel algorithms (called quantum parallelism) and its behavior is unintuitive. In order to analyze the performance of quantum algorithms, simulation can be a good approach. Especially, for quantum heuristic algorithms, analysis based on simulation is the only approach. However, simulation of quantum algorithms is a computationally demanding task since it needs exponential size of memory and frequent read/write access to the memory. Thus, it is important to develop memory efficient simulation algorithms and architectures. In this paper, we propose a fast hardware simulator architecture for the Walsh–Hadamard transform since the Walsh–Hadamard transform is a core of many quantum algorithms including quantum heuristic algorithms. We developed a method to divide the whole computation of the Walsh–Hadamard transform into pieces and process them in a pipelined manner. By arranging data flow and using well designed address computation, it runs without a pipeline stall. The proposed method is also efficient in memory size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aminian, M., Saeedi, M., Zamani, M., Sedighi, M.: FPGA-based circuit model emulation of quantum algorithms. In: IEEE Computer Society Annual Symposium on VLSI, ISVLSI ’08, pp. 399–404 (2008). https://doi.org/10.1109/ISVLSI.2008.43

  • Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Google Scholar 

  • De Raedt, K., Michielsen, K., De Raedt, H., Trieu, B., Arnold, G., Richter, M., Lippert, T., Watanabe, H., Ito, N.: Massively parallel quantum computer simulator. Comput. Phys. Commun. 176(2), 121–136 (2007). https://doi.org/10.1016/j.cpc.2006.08.007

    Article  MATH  Google Scholar 

  • Fabrikant, A., Hogg, T.: Graph coloring with quantum heuristics. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence, July 28–August 1, 2002, Edmonton, Alberta, Canada, pp. 22–27 (2002)

  • Fino, A.: Unified matrix treatment of the fast Walsh–Hadamard transform. IEEE Trans. Comput. C–25(11), 1142–1146 (1976). https://doi.org/10.1109/TC.1976.1674569

    Article  MathSciNet  MATH  Google Scholar 

  • Frank, M.P., Meyer-Baese, U.H., Chiorescu, I., Oniciuc, L., van Engelen, R.A.: Space-efficient simulation of quantum computers. In: Proceedings of the 47th Annual Southeast Regional Conference, ACM-SE 47, pp. 83:1–83:6. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1566445.1566554

  • Frank, M.P., Oniciuc, L., Meyer-Baese, U.H., Chiorescu, I.: A space-efficient quantum computer simulator suitable for high-speed FPGA implementation. In: Proceedings of SPIE, pp. 7342–03–12 (2009)

  • Fujishima, M.: FPGA-based high-speed emulator of quantum computing. In: Proceedings of IEEE International Conference on Field-Programmable Technology, FPT 2003, pp. 21–26 (2003). https://doi.org/10.1109/FPT.2003.1275727

  • Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC f96, pp. 212–219. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/237814.237866

  • Gutierrez, E., Romero, S., Trenas, M.A., Zapata, E.L.: Improving quantum gate simulation using a gpu. In: American Institute of Physics Conference Series, pp. 293–297 (2008). https://doi.org/10.1063/1.3037076

  • Gutierrez, E., Romero, S., Trenas, M.A., Zapata, E.L.: Parallel quantum computer simulation on the cuda architecture. In: Proceedings of the 8th International Conference on Computational Science, Part I, ICCS ’08, pp. 700–709 (2008)

  • Hogg, T., Portnov, D.: Quantum optimization. Inf. Sci. 128(3), 181–197 (2000). https://doi.org/10.1016/S0020-0255(00)00052-9

    Article  MathSciNet  MATH  Google Scholar 

  • Khalid, A., Zilic, Z., Radecka, K.: FPGA emulation of quantum circuits. Proc. IEEE Int. Conf. Comput. Des. VLSI Comput. Process. ICCD 2004, 310–315 (2004). https://doi.org/10.1109/ICCD.2004.1347938

    Article  Google Scholar 

  • NAKANISHI, M., MATSUYAMA, M., YOKOO, Y.: A fast quantum computer simulator based on register reordering. IEICE Trans. Inf. Syst. E99.D(2), 332–340 (2016). https://doi.org/10.1587/transinf.2015EDP7260

    Article  Google Scholar 

  • Niwa, J., Matsumoto, K., Imai, H.: General-purpose parallel simulator for quantum computing. In: Proceedings of the Third International Conference on Unconventional Models of Computation, UMC ’02, pp. 230–251 (2002)

  • Obenland, K.M., Despain, A.M.: A parallel quantum computer simulator (1998). Quant-ph/9804039

  • O’uchi, S., Fujishima, M., Hoh, K.: An 8-qubit quantum-circuit processor. In: Proceedings of IEEE International Symposium on Circuits and Systems, ISCAS 2002., pp. 209–212 (2002). https://doi.org/10.1109/ISCAS.2002.1010677

  • Patz, G.: A parallel environment for simulating quantum computation. Ph.D. thesis, MIT (2003)

  • Shibata, A., Nakada, T., Nakanishi, M., Yamashita, S., Nakashima, Y.: A method of reducing communication costs for parallel simulations of quantum computation. IEICE Trans. Inf. Syst. (Jpn. Ed.) 93(3), 253–264 (2010)

    Google Scholar 

  • Tabakin, F., Juliá-Díaz, B.: QCMPI: a parallel environment for quantum computing. Comput. Phys. Commun. 180(6), 948–964 (2009). https://doi.org/10.1016/j.cpc.2008.11.021

    Article  MathSciNet  MATH  Google Scholar 

  • Viamontes, G.F., Markov, I.L., Hayes, J.P.: Improving gate-level simulation of quantum circuits. Quantum Inf. Process. 2(5), 347–380 (2003). https://doi.org/10.1023/B:QINP.0000022725.70000.4a

    Article  MathSciNet  MATH  Google Scholar 

  • Viamontes, G.F., Markov, I.L., Hayes, J.P.: Graph-based simulation of quantum computation in the density matrix representation. Quantum Inf. Comput. 5(2), 113–130 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by KAKENHI no. 19K11816 and YU-COE(C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Nakanishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobori, A., Takahashi, R. & Nakanishi, M. A hardware architecture for the Walsh–Hadamard transform toward fast simulation of quantum algorithms. CCF Trans. HPC 2, 211–220 (2020). https://doi.org/10.1007/s42514-020-00028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42514-020-00028-7

Keywords

Navigation