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Abstract
Non-linear phase field models are increasingly used for the simulation of fracture propagation problems. The numerical 
simulation of fracture networks of realistic size requires the efficient parallel solution of large coupled non-linear systems. 
Although in principle efficient iterative multi-level methods for these types of problems are available, they are not widely 
used in practice due to the complexity of their parallel implementation. Here, we present Utopia, which is an open-source 
C++ library for parallel non-linear multilevel solution strategies. Utopia provides the advantages of high-level program-
ming interfaces while at the same time a framework to access low-level data-structures without breaking code encapsulation. 
Complex numerical procedures can be expressed with few lines of code, and evaluated by different implementations, librar-
ies, or computing hardware. In this paper, we investigate the parallel performance of our implementation of the recursive 
multilevel trust-region (RMTR) method based on the Utopia library. RMTR is a globally convergent multilevel solution 
strategy designed to solve non-convex constrained minimization problems. In particular, we solve pressure-induced phase-
field fracture propagation in large and complex fracture networks. Solving such problems is deemed challenging even for a 
few fractures, however, here we are considering networks of realistic size with up to 1000 fractures.

Keywords  Parallel implementation · Scientific code · Non-convex minimization · Multilevel methods · Phase-field fracture 
propagation · monolithic solution scheme

1  Introduction

Fractures and fracture networks strongly affect the hydrau-
lic and mechanical response of the underground. This is of 
particular relevance for geothermal technologies, which aim 

at producing electricity from deep geothermal resources 
by enhancing the permeability of a geothermal reservoir 
to obtain a sufficiently large heat flux on interior surfaces 
(Chen et al. 2018; Samin et al. 2019). In numerical simula-
tions, realistic fracture networks are usually challenging to 
represent with a discrete geometry (i.e., a mesh), or even 
impossible at the macro-scale. Phase-field approaches for 
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fracture allow for modelling and simulating the fracture 
initiation, propagation, and interaction without the need 
of explicitly representing the fracture surface (Miehe et al. 
2010b).

The basic idea of this method is to model systems with 
sharp interfaces or fractures using a continuous variable, 
called the phase-field, that allows for incorporating the pres-
ence of fractures into a given system through a smooth tran-
sition between two states, i.e. damaged and not damaged. 
The first numerical implementation of a variational phase-
field approach was presented in Bourdin (2007). Miehe 
et al. (2010b, 2010a) enhanced the underlying mathemati-
cal model and introduced thermodynamically consistent, 
rate-independent formulation. Since then, the phase-field 
approach has become popular and it has been extended in 
many directions, including dynamic models (Bourdin et al. 
2011), generalization to large deformations (Hesch and 
Weinberg 2014; Bilgen et al. 2019), adaptive fourth-order 
models (Goswami et al. 2020), or anisotropic models for a 
fracture of fiber-reinforced matrix composites (Denli et al. 
2020). For further details, we refer the interested reader to 
the review provided in De Lorenzis et al. (2020).

Despite the popularity of the phase-field fracture models 
in recent years, their applicability is fairly limited to the 
small scale problems due the following limitations. 

1.	 First, high-resolution meshes are required to resolve the 
localized damage, which leads to simulations with a 
huge number of degrees of freedom.

2.	 Secondly, solving the resulting problems numerically is 
challenging as the underlying energy functional is non-
convex and therefore the standard solution strategies, 
such as Newton’s method, typically fail to converge.

As a consequence, the design of the large-scale fracture 
simulation framework requires both, highly-scalable finite 
element implementation of the fracture model and the glob-
ally convergent, yet scalable, solution strategy.

The majority of the model implementations in the lit-
erature relies on in-house finite element codes, based for 
example on the environment Matlab (Nguyen et al. 2015, 
2017; Hesch et al. 2017). First commercial implementa-
tions appeared in software such as Abaqus (Liu et al. 2016; 
Molnár and Gravouil 2017; Msekh et al. 2015) and COM-
SOL (Zhou et al. 2018). More recently, several open source 
codes were reported, for example Farrell and Maurini (2017) 
and Li et al. (2016) use the finite element framework FEn-
iCS (Logg 2007) to implement a quasi-static and dynamic 
model for brittle fractures, respectively. The implementa-
tion documented in Heister et al. (2015), and Klinsmann 
et al. (2015) relies on the package Deal II. Bangerth et al. 
(2007) and supports adaptive mesh refinement strategies. 
The MOOSE environment Gaston et al. (2009) served as a 

base for the implementation reported in Chakraborty et al. 
(2016a, 2016b). The results obtained in Kuhn et al. (2015), 
Steinke et al. (2016) were produced using FEAP (Taylor 
2020). Additionally, the JIVE framework (Group research 
2015) was utilized in May et al. (2015), while the pack-
age NUTIL (van Zwieten 2018) was used in Singh et al. 
(2016). A GPU implementation was presented in Ziaei-Rad 
and Shen (2016), where the authors demonstrate a speedup 
factor of 12 for simulations with around 2.5 million degrees 
of freedom (dofs). A thread scalable implementation based 
on the Kokkos library (Edwards et al. 2014) was presented 
in Tupek (2016) for cohesive fracture.

Several aforementioned codes are implemented on the 
top of parallel finite element framework. However, their 
applicability to solve large-scale problems is often limited 
by the convergence and the scaling properties of a utilized 
solution strategy. The widely adopted solution strategy in 
the literature is the alternate minimization (Bourdin et al. 
2011; Farrell and Maurini 2017). The main idea behind this 
method is to minimize the energy functional successively for 
the displacements and phase-field variables. This gives rise 
to two convex minimization sub-problems, which are then 
alternatively solved until convergence is reached. Although 
solving the convex sub-problems is fairly straightforward, 
the overall convergence speed of the method can be erratic 
(Farrell and Maurini 2017). Moreover, the scalability prop-
erties of this approach are also limited, as the number of var-
iables, and consequently, the size, of the two sub-problems 
differs. In this regard, the monolithic approach, where both 
sub-problems are solved simultaneously, can be computa-
tionally more efficient. Several attempts have been made to 
enhance the convergence and the robustness of the method, 
for instance path-following strategies (Singh et al. 2016), 
line-search methods (Gerasimov and Lorenzis 2016), pri-
mal-dual algorithms (Heister et al. 2015), modified Newton’s 
method (Wick 2017), quasi-Newton’s method (Wu et al. 
2020), or fast Fourier transform (FFT) (Chen et al. 2019).

The use of these methods to solve large scale problems 
is mainly limited by the use of direct linear solvers for the 
solution of the arising linear systems. To this aim, multilevel 
strategies have been employed as an inner linear solver, due 
to their optimal complexity. In particular, a geometric mul-
tigrid method was applied in Bilgen et al. (2018) showing 
scalability up to 300 processes, while matrix-free multigrid 
was used in Jodlbauer et al. (2019), demonstrating scalabil-
ity up to 128 cores. Alternative approaches, based on trun-
cated non-smooth non-linear monotone multigrid, were used 
in Kienle et al. (2018), where authors obtained a significant 
improvement in terms of computational time, but the paral-
lel performance was not reported. More recently, nonlinear 
multilevel method based on the trust-region method, called 
Recursive Multilevel trust-region (RMTR) Gratton et al. 
(2008a); Groß and Krause (2009), has been developed in 
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Kopaničáková and Krause (2020). RMTR for phase field 
ensures global convergence and has been shown to scale up 
to 300 processes.

In this work, we provide large scale implementation of 
the phase-field fracture approach. Our simulation framework 
is designed to solve large scale problems inspired by real-
world applications, e.g., pressure induced fracture propaga-
tion in geothermal reservoir (Wick et al. 2016; Yoshioka 
and Bourdin 2016; Mollaali et al. 2019). In particular, moti-
vated by the promising properties of the RMTR method, 
shown in Kopaničáková and Krause (2020), we extended the 
approach to complex scenarios with hundreds of fractures 
in three-dimensions and with thousands of fractures in two-
dimensions. To our knowledge, this is the first time that the 
phase-field approach is employed for such complex, large 
scale scenarios.

The biggest challenge in designing the long lasting simu-
lation code is to keep up with constantly changing technol-
ogy, which gives rise to new programming paradigms and 
new languages. For example, the advent of GPGPU induced 
languages such as Cuda (Nickolls et al. 2008) and OpenCL 
(Khronos OpenCL Working Group 2008), which led to the 
creation of new software libraries such as CuBLAS (Nvidia 
2008) and ViennaCL (Rupp et al. 2016). With such new 
developments, scientific-computing software libraries need 
to be constantly updated or rewritten. In order to avoid 
changes in high-level algorithms, such as non-linear solu-
tion strategies, or finite element analysis, several application 
codes are developed on top of a portable interface that fits 
many current and possibly future requirements [e.g., PETSc 
(Balay et al. 1997, 2019), Trilinos (Heroux et al. 2003), and 
Kokkos (Edwards et al. 2014)]. Software libraries such as 
Deal.II (Bangerth et al. 2007), LibMesh (Kirk et al. 2006), 
Dune (Blatt et al. 2016), and MOOSE (Gaston et al. 2009) 
rely on high level abstractions on top of existing linear 
algebra and non-linear solution strategies codes, and allow 
choosing, to some degree, the underlying implementation.

However, a clear separation of frontend programming and 
the backend implementation would help in keeping up with 
even new technologies or upcoming and yet unknown para-
digm shifts. A best-case scenario allows us to never touch 
the frontend code and implement new backends based on 
these new technological advancements.

To this end, a possible solution is to exploit scripting 
facilities for completely decoupling the application behav-
ior from its actual implementation. This solution has the 
advantage of hiding the complexity of parallel software to 
which the average, casual, or opportunistic (Brandt et al. 
2008) user is not supposed to be exposed. The idea is that 
the scripting code is translated to behavior which is imple-
mented in another lower-level language. This enables users 
to write a few lines of very powerful code without the over-
head of learning how to use new complex parallel scientific 

codes. A very specific form of scripting language is usually 
referred to as domain specific language (DSL). This speci-
ficity, while reaching the aforementioned objectives, has a 
twofold advantage. First, it enables a simple description of 
a specific problem since most implementation details can be 
hidden. Second, it allows exploiting complex functionalities 
and performance critical optimizations. Notable examples 
related to finite element software, are FEniCS’ unified form 
language (Logg 2007; Rathgeber et al. 2016), FreeFEM 
(Hecht 2012), and Liszt (DeVito et al. 2011).

In DSLs lower-level abstractions are purposefully inac-
cessible because the actual algorithms are implemented 
in a different language, such as C++. This is a problem 
when a DSL misses a functionality, since adding it would 
require accessing the underlying back-end which may be 
either closed source or very complex. In contrast, embedded 
domain-specific languages (eDSL) [e.g., CULA (Humphrey 
et al. 2010), Feel++ (Prud’homme et al. 2020), OpenFOAM 
(Weller et al. 1998), Sundance (Long et al. 2010)] use the 
same language and compiler for both the “scripting” layer 
and the implementation of the back-end. For this reason, 
eDSLs have the opportunity to provide the right balance 
between abstraction and direct access to the back-end data-
types and algorithms.

In this work, we introduce the open-source C++ library 
Utopia (Zulian et al. 2016), which currently provides a 
eDSL-like uniform interface to the PETSc algebra, and 
Tpetra from the Trilinos library. The main goal of Utopia 
is to achieve a set of high-level interfaces with will allow 
to never fully commit to particular software/hardware and 
adapt to the ever-evolving HPC technologies. Unfortunately, 
it is the case that specificity is required for achieving perfor-
mance in certain applications. Hence, while the largest part 
of the code is designed to be generic, certain routines are 
implemented ad-hoc. Here, we present our implementation 
of the phase-field fracture simulation framework, its port-
able components as well as the ad-hoc ones targeting CPU 
architectures.

The five main contributions of this article are: 

1.	 the first introduction of the open-source C++ library 
Utopia (Zulian et al. 2016);

2.	 efficient open-source finite element code for phase-field 
fracture simulations;

3.	 the only parallel open-source code of the RMTR method, 
an efficient globally convergent nonlinear multilevel 
solution strategy for non-convex constrained minimiza-
tion problems;

4.	 large scale simulations of pressure-induced fracture 
propagation of stochastic fracture networks, consider-
ing realistic and complex scenarios up to 1000 fractures;

5.	 strong and weak scaling studies up to 9216 MPI pro-
cesses and 1.9 × 108 degrees-of-freedom of the proposed 
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algorithmic framework and its CPU-tailored implemen-
tation using Utopia.

We start by describing the pressure-induced phase-field 
fracture model (Sect. 2), and the recursive multilevel trust-
region strategy (Sect. 3), adopted to solve the arising nonlin-
ear systems. Next, we provide an overview of our software 
library and a detailed description of the developed code 
(Sect. 4). Then, we validate the implementation of the phase-
field fracture model and present numerical experiments with 
complex fracture networks for applications in geoscience 
(Sect. 5). Furthermore, we demonstrate the strong and weak 
scaling performance properties of our code using the Piz 
Daint super-computing machine (Sect. 6). Finally, we pro-
vide concluding remarks and describe future work (Sect. 7).

2 � Pressure induced phase‑field fracture 
model

In this section, we briefly review pressure-induced fracture 
processes modeled using the second-order phase-field for-
mulation for brittle fracture. Our presentation focuses on 
the quasi-static time-discrete setting. A pseudo-time step 
t = 1,… , T  , is used to index the deformation state in the 
loading process. We denote the computational domain by 
� ∈ ℝ

d, d = 2, 3 , representing a d-dimensional solid with 
internal fracture C ⊂ ℝ

d−1 , which evolves during the loading 
process. The boundary �� of the domain � is decomposed 
into two non-overlapping parts, �D , �N , where Dirichlet and 
Neumann boundary conditions are prescribed, respectively. 
Additionally, we set ��N = �N ∪ �C.

In this work, we assume that the body � shows linear 
elastic behaviour, with the strain energy density function 
defined as: �e(�(�)) ∶= 0.5 �(tr(�(�)))2 + ��(�) ∶ �(�) , 
where �, � are the Lamè parameters, � ∶ � → ℝ

d represents 
the displacement vector field and �(�) ∶= sym(∇�) is the 
strain tensor. Furthermore, we prescribe a given pressure 
p ∶ � → ℝ , over the domain � to only induce fracture prop-
agation. We remark, that this work focuses only on fracture 
propagation, i.e. we assume that pressure p is given a priori. 
The reliability of the phase-field fracture model could be 
improved by incorporating the poroelasticity equations such 
as Biot’s equations (Mikelić et al. 2015a). This would allow 
for simulating induced hydraulic fracturing in a poroelastic 
medium rather than in an elastic medium.

2.1 � Variational approach to fracture

The variational approach proposed by Francfort and Marigo 
(1998) formulates brittle fracture as a minimization problem 
for an energy functional consisting of the elastic energy of 

the cracked solid, the energy dissipated in the fracture, and 
the traction forces; thus

where Gc > 0 denotes fracture toughness and �̄ stands for 
the traction forces. The symbol Sd−1(C) in (1) denotes the 
Hausdorff surface measure of fracture set C, i.e. Sd−1(C) rep-
resent length or the surface area of fracture C, when d = 2, 3 , 
respectively. Note, that the traction forces �̄ constitute of two 
parts

where �̄𝛺 is traction force applied at the domain boundary �N 
and � is unit vector normal to the fracture surface. The last 
term in (2) represents a force introduced by the pressure p 
inside of the fracture, which is applied on a surface.

The direct minimization of the energy functional (1) is 
computationally prohibitive, as the fracture surface, C is 
not known a priori. To overcome this difficulty, Bourdin 
(2007) propose to utilize a regularization strategy initially 
developed by Ambrosio and Tortorelli (1992) for image-seg-
mentation. The regularization strategy introduces a smooth 
scalar field, called phase-field c ∶ � → [0, 1] , which char-
acterizes the material state of the domain � . In particular, 
the value c = 0 indicates an intact solid, c = 1 denotes the 
fractured or broken state, while c ∈ (0, 1) constitute smooth 
transition zones between the two limit states. Using the 
phase-field c, we can replace the fracture energy in (1) by 
its volumetric approximation, i.e.,

where the length-scale parameter ls controls the thickness 
of the transition zone between the material states. The func-
tion w defines a decaying profile of the phase-field c, while 
cw ∶= 4 ∫ 1

0

√
w(c) dc is an induced normalization constant. 

Taking into account (3), we can reformulate (1) as

where g is a degradation function, which accounts for the 
loss of stiffness in the fracture.

Several choices of g, w and cw are used in the literature, 
leading to various phase-field fracture formulations (Kuhn 

(1)

E(�,C, p) ∶= ∫
𝛺⧵C

𝜓e(�(�)) d𝛺

+ GcS
d−1(C) − ∫

𝜕N𝛺

�̄ ⋅ � ds,

(2)∫
𝜕N𝛺

�̄ ⋅ � ds = ∫
𝛤N

�̄𝛺 ⋅ � ds − ∫
𝜕C

p � ⋅ � ds,

(3)GcS
d−1(� ) ≈

Gc

cw

(
w(c)

ls
+ ls|∇c|2

)
d�,

(4)

E(�, c, p) ∶= ∫
𝛺

g(c) 𝜓e(�(�)) +
Gc

cw

(
w(c)

ls
+ ls|∇c|2

)
d𝛺

− ∫
𝜕N𝛺

�̄ ⋅ � ds,
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et al. 2015; Sargado et al. 2018). In this work, we follow 
Bourdin et al. (2000), Miehe et al. (2010b) and employ 
g(c) ∶= (1 − c)2 , w(c) = c2 and cw = 2 , resulting in the 
widely used AT-2 phase-field fracture model proposed in 
Ambrosio and Tortorelli (1990). Given these particular 
choices, it is possible to asymptotically show via � -conver-
gence, that the minimizer of (4) tends to a minimizer of (1), 
as ls → 0 , see Giacomini (2005).

In the next step, we reformulate the fracture surface 
integral from (2), into a computationally acceptable form, 
which does not include �C . We follow Mikelic et al. (2014), 
Mikelić et al. (2015a, 2015b) and employ Gauss’ divergence 
theorem for extending the pressure p to the entire domain, 
thus

Here, the degradation function g(c) ensures that the integra-
tion is performed only over the intact part of the domain 
� . Finally, the energy functional (1) can be recast into the 
following form:

which can be employed in practical algorithms.

2.2 � Minimization problem

The state of the system, defined by the displacement � and 
the phase-field c, is characterized at each loading step as 
minimizer of the following minimization problem: find 
(�, c) ∈ �t

u
× Vc , such that

where the energy functional E(�, c, p) is as defined 
in  (5). The admissible space for the displacement field 
is defined as �t

u
∶= {� ∈ �1(�) | � = �t on �D} . Here, 

�1(�) ∶= [H1(�)]d , with H1 denoting the standard Sobolev 
space of weakly differentiable functions in L2 with one weak 
derivative also in L2 . We remark that the definition of the 
space �t

u
 incorporates the time-dependent Dirichlet bound-

ary condition �t . The admissible space for the phase-field is 
defined as the following convex cone:

∫
�C

p � ⋅ � ds = ∫
�

g(c)∇ ⋅ (p �) d� − ∫
��N

p � ⋅ � ds.

(5)

E(�, c, p) ∶= ∫
𝛺

g(c) 𝜓e(�(�)) +
Gc

cw

(
w(c)

ls
+ ls|∇c|2

)
d𝛺

− ∫
𝛤N

�̄𝛺 ⋅ � ds − ∫
𝛺

g(c)∇ ⋅ (p�) d𝛺

+ ∫
𝜕𝛤N

p� ⋅ � ds,

(6)(�, c) ∈ arg min E(�, c, p),

(7)Vc ∶=
{
c ∈ H1(�) ∶ ct−1 ≤ c ≤ 1 a.e. in �

}
,

where ct−1 represents phase-field obtained in the previous 
time-step. The box constraint ct−1 ≤ c ≤ 1 from (7) ensures 
the irreversibility condition and prevents the crack from 
self-healing.

We discretize our problem using the first-order Lagran-
gian finite elements. In the remainder of this work, we focus 
on the numerical solution of (6). This task is numerically 
challenging and computationally demanding as we have to 
solve a large-scale, non-convex, constrained, ill-conditioned 
minimization problem for every loading time-step t.

3 � Multilevel trust‑region method

The minimization problem (6) can be expressed in the fol-
lowing abstract form:

where f ∶ ℝ
n
→ ℝ denotes the non-convex coupled 

energy functional  (5) after finite element discretization. 
The solution vector � ∈ ℝ

n represents the combined dis-
placement and phase-field coefficients. The feasible set 
F ∶= {� ∈ ℝ

n | � ≤ �} is defined such that irreversibility 
condition from (7) is satisfied.

We minimize (8) using the recursive multilevel trust-
region method (RMTR) (Gratton et al. 2008a, b; Groß and 
Krause 2009). In particular, we employ the variant proposed 
in Kopaničáková and Krause (2020), which was specially 
designed to solve minimization problems arising from phase-
field fracture simulations. By design, the RMTR employs 
a hierarchy of L levels. Each level l, where l = 1,… , L , is 
associated with the minimization of some level-dependent 
objective function hl ∶ ℝ

nl
→ ℝ , where nl+1 ≥ nl . The trans-

fer of data between subsequent levels of the multilevel hier-
archy is achieved using three transfer operators. The prolon-
gation operator �l ∶ ℝ

nl
→ ℝ

nl+1 interpolates the corrections 
from level l to level l + 1 . Its adjoint, the restriction operator 
�l ∶= (�l)T , transfers the gradients to the subsequent coarser 
level. Following Groß and Krause (2009), we additionally 
employ a projection operator �l ∶ ℝ

nl+1
→ ℝ

nl for transfer-
ring iterates from level l + 1 to level l.

3.1 � RMTR algorithm

The RMTR algorithm is considered in its standard V-cycle 
form. Through the following paragraphs, we use subscripts 
and superscripts to specify the iteration number and the 
given level, respectively. For instance, the symbol �l

i
 denotes 

the solution vector on level l during iteration i.

(8)
min
x∈ℝn

f (�),

such that � ∈ F,
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Each V-cycle consists of a downward and an upward 
phase. The downward phase starts on the finest level, 
l = L , with an initial iterate �L

0
 and passes through all levels 

of the multilevel hierarchy until the coarsest level, l = 1 , 
is reached. On each level, the algorithm performs a pre-
smoothing step to improve the current iterate �l

0
 . This is 

done by minimizing the level-dependent minimization 
problem, see Sect. 3.2. The minimization on a given level 
is performed only approximately, by employing �1 itera-
tions of the trust-region method. The obtained approxi-
mate minimizer, �L

�1
 , is then used to initialize the solution 

vector on the next coarser level, i.e., �L−1
0

∶= �L−1�L
�1

 . We 
repeat this process recursively until the coarsest level is 
reached.

Once the coarsest level is reached, we again approxi-
mately minimize the level-dependent minimization prob-
lem to obtain an updated coarse grid iterate �1

�1
 . After 

obtaining an updated iterate �1
�1

 , the RMTR algorithm ini-
tiates the upward phase of the V-cycle. An upward phase 
is associated with the return to the finest level of the mul-
tilevel hierarchy while passing through all intermediate 
levels. Starting on the coarsest level, we compute each 
coarse grid correction as the difference between the initial 
and final iterate on the given level, thus as �l−1

�l−1
− �l−1

0
 . This 

coarse grid correction is then prolongated to the subse-
quent finer level, e.g. �l

�1+1
∶= �l−1(�l−1

�l−1
− �l−1

0
) . As com-

mon in the trust-region algorithms, the quality of the pro-
longated coarse grid correction, �l

�1+1
 , has to be assessed 

before it is accepted. To this aim, we define a multilevel 
trust-region ratio as

where �l collectively denotes a sum of all iterations taken on 
a given level l. The positive values of �l imply a decrease in 
the fine level objective function hl , therefore it is safe to 
accept �l

�1+1
 . In contrast, small or negative values of �l sug-

gest that there is no good agreement between fine and coarse 
level models, therefore �l

�1+1
 has to be rejected.

To this end, the RMTR algorithm performs �2 smoothing 
steps to improve the current solution on a given level l. This 
process is again repeated on every level of the multilevel 
hierarchy until we reach the finest level. The outlined pro-
cess is summarized in Algorithm 1.

(9)�l ∶=
hl(�l

�1
) − hl(�l

�1
+ �l

�1
)

hl−1(�l−1
0

) − hl−1(�l−1
�l−1

)
,

3.2 � Level‑dependent minimization problems

On each level l, the RMTR method minimizes some level-
dependent minimization problem (LDMP). On the finest 
level, the LDMP is identical with (8), while on all other 
levels ( l < L ), the LDMP is constructed as follows:

where hl and Fl denote the level-dependent objective func-
tion and feasible set, respectively. The role of level-depend-
ent feasible set Fl is two-fold. On the one hand, it ensures 
that the iterates produced by the RMTR method satisfy the 
variable bounds. On the other hand, the definition of Fl also 
controls the size of all corrections taken on a given level l, 
which is necessary to ensure global convergence (Gratton 
et al. 2008a). The rigorous details about how to construct Fl 
can be found in Gratton et al. (2008a), Kornhuber (1994), 
and Kopaničáková and Krause (2020).

The definition of the function hl consists of three 
terms. The first term, f̃ l(�l) , expresses the modified 
energy functional (4). This modification was suggested in 
Kopaničáková and Krause (2020) for capturing fine-level 
fracture on the coarser levels. In this work, we discre-
tize the problem using the finite element method. There-
fore, the numerical evaluation of f̃ l(�l) and its derivatives 
requires the computation of the numerical quadrature.

The terms �� ∈ ℝ
nl and �� ∈ ℝ

nl×nl in (10) are defined 
as following

and ensure that the first and second order behavior of the hl 
and hl+1 is similar in the neighborhood of �l

0
 and �l+1

�1
 . 

Although the terms �� and �� are evaluated only once dur-
ing the V-cycle, their computation is costly. In particular, the 
evaluation of the �� term requires evaluation of the Hessian 
on level l and l + 1 . We can decrease the amount of the Hes-
sian assembly calls by incorporating the lagging strategies 
into our implementation. In particular, we evaluate the �� 
term from (11) restricting the Hessian evaluated during the 
pre-smoothing step, i.e., 𝛿� ∶= �l∇2hl+1(�l+1

𝜇
1
−1
) �l − ∇2 f̃ l(�l

0
) . 

We note, that this modification slightly worsens the conver-
gence rate of the RMTR method, but offers speed-up in 
terms of the computational time.

(10)
min
�l∈ℝnl

hl(�l + �l) ∶= f̃ l(�l) + ⟨𝛿�, �l⟩ + 0.5⟨�l, 𝛿��l⟩,

subject to �l + �l ∈ F
l,

(11)
𝛿� ∶= �l∇hl+1(�l+1

𝜇1
) − ∇f̃ l(�l

0
),

𝛿� ∶= �l∇2hl+1(�l+1
𝜇1

) �l − ∇2 f̃ l(�l
0
)
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Algorithm 1 V-cycle of RMTR ( l, hl, xl
0, F l, ∆l

0)

Require: l ∈ R, hl : Rnl → R,xl
0 ∈ Rnl

,F l, ∆l
0 ∈ R

Constants: µ1, µ2 ∈ N, η1, η2, γ1, γ2 ∈ R, where 0 < η1 ≤ η2 ≤ 1 and 0 < γ1 ≤ 1 ≤ γ2
[xl

µ1
, ∆l

µ1
] = Trust region solve(hl, xl

0, F l, ∆l
0, µ1)

Construct coarse objective function hl−1 and feasible set F l−1 as described in Section 3.2
if l == 2 then

[xl−1
∗ ] = Trust region solve(hl−1, Pl−1xl

µ1
, F l−1, ∆l

µ1
, µ1)

else
[xl−1

∗ ] = RMTR(l − 1, hl−1, Pl−1xl
µ1

, F l−1, ∆l
µ1

)
end if
Evaluate ρl by means of (9)
if ρl > η1 then

xl
µ1+1 = xl

µ1
+ Il(xl−1

∗ −Pl−1xl
µ1

)
else

xl
µ1+1 = xl

µ1
end if

∆l
µ1+1 =






γ1∆l
µ1

, ρl < η1
∆l

µ1
, ρl ∈ [η1, η2]

γ2∆l
µ1

, ρl > η2

[xl
∗, ∆l

∗] = Trust region solve(hl, xl
µ1+1, F l, ∆l

µ1+1, µ2)
return xl

∗,∆
l
∗

3.2.1 � Smoothing and coarse grid solve (trust‑region 
method)

We minimize the level-dependent minimization problem (10) 
using a trust-region method Conn et al. (2000). The following 
exposition omits using superscript related to a given level l, as 
all quantities are considered to be on the same level. At each 
iteration i, the trust-region method approximates the objec-
tive function h by quadratic model mi , defined around current 
iterate �i . The model mi is considered to be an adequate repre-
sentation of h only in a certain region, called the trust-region 
Bi ∶= {�i + � ∈ ℝ

n � ‖�‖∞ ≤ �i} , defined by the trust-region 
radius 𝛥i > 0 . The search direction �i is then determined by 
solving the trust-region sub-problem:

The first constraint in (12) ensures the feasibility of the 
iterates through the solution process, while the second con-
straint controls the size of the search direction �i . Before the 
obtained search direction �i is used to update the current iter-
ate �i , we need to assess its quality. The convergence control 
is performed using the trust-region ratio

which describes the agreement between the actual reduc-
tion in the objective function and the predicted reduction 
obtained by the quadratic model mi . The value of �i close to 
unity indicates good agreement between fi and the model 
mi . Hence, it is safe to accept �i , i.e. �i+1 = �i + �i , and 
expand the trust-region radius. In contrast, if the value of �i 

(12)
min
�i∈ℝ

n
mi(�i) ∶= h(�i) + ⟨∇h(�i), �i⟩ +

1

2
⟨�i,∇2h(�i) �i⟩,

such that �i + �i ∈ F, ‖�i‖∞ ≤ �i.

(13)�i =
h(�i) − h(�i + �i)

mi(0) − mi(�i)
,

is negative or close to zero, we must reject �i , i.e. �i+1 = �i , 
and shrink the trust-region.

Solution of trust-region subproblem Each iteration of the 
TR method requires solution of the constrained quadratic 
minimization (QP) problem (12). The arising QP problems 
can be solved approximately, as long as the obtained mini-
mizer satisfies the so-called sufficient decrease condition 
(Conn et al. 2000). Our choice of QP solver varies for dif-
ferent levels of the multilevel hierarchy. In particular, on 
the coarsest level, we minimize (12) using modified propor-
tioning with reduced gradient projection (MPRGP) method 
Dostál (2016).

On all the other levels, we employ only few steps of the 
projected Gauss–Seidel (PGS) method, as it is known to have 
good smoothing properties (Briggs et al. 2000; Hackbusch 
1985). Since the Gauss–Seidel method is naturally a sequen-
tial algorithm, we employ its parallel variant, the hybrid Jac-
obi projected-Gauss–Seidel (HJPGS) method (Adams et al. 
2003). More specifically, we use the symmetric version of 
the HJPGS where both forward and backward substitution 
are performed. Our implementation of the HJPGS utilizes a 
copy of diagonal and off-diagonal entries of the local Hes-
sian block into separate arrays. This is mainly done in order 
to avoid checking if the current row is equal to the current 
column. We achieve around 2× speed-up compared to the 
version without a copy. In addition, we perform local itera-
tions of the smoother without synchronization in order to 
reduce the ratio between computation and communication.
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4 � Parallel implementation with Utopia

4.1 � Hardware portability and software 
maintainability

The first goal of Utopia is the separation of model and com-
putation (similar to DSLs) and its main purpose is advanced 
parallel algebra (linear and non-linear). By exploiting meta-
programming facilities in combination with expression tem-
plates (Iglberger et al. 2012; Veldhuizen 1995), Utopia can 
easily be integrated with any other existing parallel algebra 
library, hence it is mostly independent from technological 
changes. The limit case is the avoidance to commit to any 
specific back-end. This will allow libraries to be unbound by 
the lifetime and support of the their dependencies although 
still take advantage of current development efforts.

The second goal is to provide a uniform interface to 
lower-level technologies [e.g., Kokkos, RAJA (Beckingsale 
et al. 2019), or SyCL (Bader et al. 2019)]. In fact, the Utopia 
library is designed and developed for providing a balance 
between abstraction and low-level access without sacrificing 
performance. It aims at an organic integration with existing 
codes without creating barriers between abstractions and 
implementation. The use of static polymorphism allows the 
mixture of front-end code with decorated parallel device 
code without unnecessarily exposing back-end specific 
primitives or having to write specialized code. High level 
and lower level abstractions, as well as raw data are acces-
sible to the user at any time. This allows users to extend their 
code with possibly missing functionalities by manipulating 
lower-level abstractions and eventually even the low-level 
data (and back-end) directly. The flexible design of Utopia 
allows for adding these features in a straightforward way to 
future releases without changing the high-level interfaces.

The third goal is to reduce the overhead of the front-end 
and allow to exploit available functionalities of the dif-
ferent back-ends as good as possible. To this end, the use 
of static polymorphism allows to avoid the performance-
overhead associated with virtual tables, and specific evalu-
ation routines can be specialized by exploiting partial/full 
specialization.

These design goals in combination with the development 
driven by challenging application codes such as phase-field 
methods for fractures, allows Utopia to converge towards a 
hardware portable and maintainable HPC library.

4.2 � Algebra

Consistent with the general design goal, the Utopia–algebra 
library is divided into two main layers the front-end and the 
back-end. In the front-end every algebraic object, algorithm, 
or operation is described by C++ classes. Tensor objects, 

such as matrices and vectors, are tied to a specific back-end 
at compile time. For instance, PetscMatrix and PetscVector 
are used when the PETSc backend is chosen for our compu-
tations, while TpetraMatrix and TpetraVector are used when 
the Trilinos backend is chosen instead. Expression types are 
generated by means of standard operators such as +, -, *, and 
/. In fact, expressions are evaluated in a lazy way only when 
they are assigned to a concrete tensor type. This allows us to 
independently specialize the evaluation of composite expres-
sions based on the available back-end algorithms.

More complex algorithms are implemented using classes 
and they can be realized either using the front-end or the 
back-end. For instance, the MPRGP and RMTR algorithms 
are implemented using exclusively the front-end.

Certain variants of algorithms or specialized imple-
mentations might be required when certain properties are 
back-end specific. In fact, in this work our node-level imple-
mentation of the Projected Gauss–Seidel (PGS) algorithm 
does not support neither thread-based parallelism nor GPU 
computations. However, we accelerate PGS by exploiting 
SIMD/AVX2 intrinsics. Our implementation is made for 
vector problems of size 4, as required by 3D phase-field 
problems (i.e., 1 component for the phase-field, 3 for the 
displacement). In each PGS sweep we perform operations on 
4 components of the solution simultaneously (e.g., summa-
tions, matrix-vector, products, and checks on the inequality 
constraints).

The design overview of the algebra of our simulator is 
depicted in Fig. 1. Here, the top layer shows the components 
developed and tuned for this work. Such components are 
divided between front-end based, hence hardware portable, 
and specialized PGS component, targeting CPU hardware. 
The PGS component would have to be adapted or substituted 
for using the library with GPU nodes. The middle layer is 
the front-end which consists of interfaces, object oriented 
programming (OOP) abstractions, adapters, and front-end 
based algorithms. The bottom layer is where all the actual 
functionalities are implemented either by means of existing 
library, or ad-hoc extensions.

4.3 � Finite element assembly

Our current implementation of the finite element model 
phase-field fracture model targets CPU architectures. The 
code relies on the Utopia–PETSc tensors for the algebra in 
combination with the PETSc DMDA package for creating 
the hierarchy of structured grids and initializing matrices 
and vectors. The PETSc DMDA is encapsulated and used 
exclusively for steps requiring MPI communication, such as 
local-to-global or global-to-local operations. In this imple-
mentation the hierarchy of grids is generated by uniform 
refinement and the elements are uniform quadrilaterals in 2D 
and hexahedra in 3D. On each level of mutlilevel hierarchy, 
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we discretize the minimization problem (6) using first order 
tensor-product finite elements.

In phase-field for fracture problems, a significant part of 
the computational time is dedicated to performing numeri-
cal quadrature and assembling Hessian matrices. In order to 
reduce the footprint of this routine we performed three steps 
to optimize its computation.

First, since we are exclusively using structured grids, we 
pre-compute several quantities for one element and reuse 
them for all elements. In fact, we pre-compute all quantities 
associated with the model and discretizations that are uni-
form between elements. These include all test-space related 
quantities such as shape-functions, gradients, strains, prin-
cipal strains and stresses, and geometric quantities such as 
Jacobian matrices and determinants.

Second, we ensure that most loops can be unrolled by 
providing the compiler with compile time loop-ranges, such 
as spatial dimension, and number of shape-functions of an 
element.

Third, we developed quadrature routines based on single 
instruction multiple data (SIMD) intrinsics. We integrated 
the Vc library (Kretz and Lindenstruth 2012) for having a 
portable abstraction for different vector instruction sets (e.g, 
AVX, AVX2, and SSE2). Note that in our implementation 
we use double precision floating point numbers on CPUs 
supporting AVX2 instruction sets, which allows us to exploit 
4 SIMD lanes.

We developed small tensor types which are designed to 
be used within assembly kernels and naturally integrate with 
Vc abstractions. With the goal of keeping the code usable 
and readable

we use operator overloading for representing algebraic 
operations. As a consequence, in order to avoid copies we 
implemented in-line operations using expression templates. 
Here, each in-line operation consumes or produces a Vc vec-
tor object.

3D scenarios require a 27-points quadrature rule. This 
allow us to perform quadrature using 7 vectorized quadrature 
points/weights by wasting only one SIMD lane. The vector-
ized version of the quadrature routines displays a speed-up 
of approximately 2.7× with respect to the standard version.

5 � Numerical experiments

We demonstrate the efficiency of the proposed phase-field 
fracture simulation framework using four numerical exam-
ples. First two example are used to validate our code using 
experimental measurements and analytical computations. 
Then, we consider more complicated scenarios of pressure 
induced fracture propagation of stochastic fracture networks, 
inspired by hydraulic simulations performed in enhanced 
geothermal systems.

We prescribe initial fractures by setting c to its transi-
tional state from intact to broken, we check if the nodal posi-
tion � lies inside of a parametric fracture description, then 
we mark the related parts of the domain as broken. This 
is done by setting the nodal coefficient for the phase-field 
variable to be equal to 1. Otherwise, we mark the material 
as intact by prescribing the nodal value of the phase-field 
to be equal to 0. The value of the length-scale parameter ls 

Fig. 1   Layered architectural 
overview of the Utopia based 
algebra with focus on the 
RMTR method. The top layer 
represents the components for 
solving the fracture propaga-
tion problem. The middle layer 
represents the main design 
components which interface 
with the different back-end 
implementation at the bottom
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is set up as ls = 2h , where h denotes the mesh size, for all 
presented numerical examples.

Unless specified differently, we terminate the RMTR 
method, when the following stopping criterium is satisfied:

where �i denotes the current iterate, defined on the fin-
est level. The criticality measure E(�, f ) is defined as 
E(�, f ) ∶= ‖P(� − ∇f (�)) − �)‖ , where P is an orthogonal 
projection onto the feasible set (Gratton et al. 2008a).

The main output data of the experiments can be down-
loaded from the Zenodo online repository (Zulian et al. 
2020).

5.1 � Validation

In this section we describe the numerical simulations per-
formed to validate the proposed software library. First, we 
consider a crack propagation in an asphalt specimen and 
compare the numerical solution with experimental data. Sec-
ond, we present a three-dimensional benchmark to validate 
our code against an analytical solution. Finally, we introduce 
both two-dimensional and three-dimensional scenarios with 
stochastic fracture distributions to demonstrate the capability 
of our code to deal with large-scale simulations.

5.1.1 � Tension test of asphalt specimen

We consider two initial cracks inserted in an asphalt speci-
men. The initial crack length is set equal to a = 5mm , the 
initial width is set equal to w0 = 0.2mm , whereas the rela-
tive positions of the two cracks is defined such that they 
comprise an angle equal to 45 ◦ . The background matrix is 
a two-dimensional rectangle with height equal to 20mm and 
width equal to 40mm . The Lamé parameters of the asphalt are 
� = 2.23N/mm2 and � = 3.35N/mm2 , whereas the fracture 
energy is set equal to Gc = 0.270N/mm in agreement with 
(Hou 2014). Concerning the boundary conditions, we fix the 
left side of the rectangle whereas an incremental displacement 

(14)E(�i, f ) < 10−6 or ‖�i − �i−1‖ < 10−12,

is applied on the right side and defined as u(t) = u0 + �tu0 
with u0 = 3.0mm and �t = 0.01 s.

In Fig. 2 we show the initial and final configuration, 
where the two fractures interact with each other. Here, 
the mean displacement reached on the right side of the 
sample, u = 2.366mm , corresponds to a critical load 
�n
c
= 0.343MPa , in good agreement with the experimental 

result �e
c
= 0.30MPa reported in Hou et al. (2015).

5.1.2 � Sneddon test of pressure induced fracture

Following Sneddon and Lowengrub (2013), Yoshioka and 
Bourdin (2016), we validate our simulation framework by 
considering a horizontal penny-shape fracture embedded 
into domain � ∶= (−10, 10)3 . The penny is centered around 
the origin and has the radius r ∶= 3 . The crack opening dis-
placement (COD) and total crack volume (TCV) of the inter-
nally pressurized fracture can be analytically computed as

where E is a Young’s modulus, � denotes Poisson’s ratio, 
p stands for pressure and � denotes coordinates of a given 
point. In performed experiment, we set E = 1 , � = 0.2 , 
p = 0.1 and Gc = 1 , i.e., TCV equals to 13.824 and value of 
COD at the origin is 0.366. Figure 3 depicts the simulation 
result.

Table 1 depicts the error of the TCV and COD with 
respect to the increasing degree of freedom and decreas-
ing value of the length-scale parameter. Recall, that in the 
numerical simulations, the condition ls > h has to be satis-
fied. As we can see, the phase-field approximation converges 
as h → 0 and ls → 0 . We would also like to highlight, that to 
obtain an accurate solution, simulation with a large number 
of dofs/computational power is required.

COD(�) ∶=
4pr(1 − �2)

�E

�

1 −

�‖�‖
�2

r

�2

TCV ∶=
16�pr3(1 − �2)

3E
,

Fig. 2   Tension test of asphalt specimen: two-dimensional simulation with 2 fractures and 949, 227 degrees of freedom. Color represents dis-
placement field in mm
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5.2 � Pressure induced fracture propagation 
of stochastic fracture networks

In this section, we study the pressure-induced fracture prop-
agation of stochastic fracture networks in two-dimensional 
and three-dimensional scenarios. The problems of this type 
occur in several geoscience applications, e.g. hydraulic frac-
turing Wick et al. (2016). Here, we demonstrate the appli-
cability of the phase-field approach for such scenarios by 

considering large-scale problems with 1000/100 fractures 
in two/three-dimensions, respectively. To our knowledge, 
this is the first time that any phase-field fracture simulation 
framework was employed to handle such complex scenarios.

We generate the pre-existing fracture networks using a 
two-stage process. First, we describe each fracture as a one-
dimensional object with a randomly assigned hypo-center, 
orientation, and length. In particular, we employ a uniform 
distribution to place the hypo-centers over the entire domain 
and assign their orientation to a value between −80◦ and 
80◦ . The fracture length is drawn from a scale-invariant 
power-law distribution (de Dreuzy et al. 2001), defined as 
n(l) = l−a, for l ∈ [lmin,max], where n(l)dl represents a num-
ber of fractures with size belonging to the interval [l, l + dl] , 
and a ∈ [1, 3] is the power-law length exponent. The sym-
bols lmin and lmax denote the minimum and maximum fracture 
length, respectively. Performed experiments employ � = 2.7 , 
lmin = 0.2mm , and lmax = 5mm in two-dimensions. In three 
spatial dimensions, we employ � = 2.7 , lmin = 0.2mm , and 
lmax = 0.7mm . In addition, we consider orientation along 
the third dimension, drawn uniformly from −80◦ to 80◦ , and 
fracture depth, which we set to 0.1.

In the second stage, each fracture is regularized through a 
volumetric representation with artificial width w proportional 
to the mesh size h, where w = 2 h . Hence, the resulting frac-
ture networks consist of smooth rectangle/parallelepipeds 
randomly embedded in the surrounding matrix. The fracture 
network represents the initial datum for the phase-field param-
eter which evolves during the simulation depending on the 
prescribed pressure and the boundary conditions. To ensure, 
that the proposed benchmarks are replicable, the coordinates 
defining the initial fracture networks can be downloaded from 
our Zenodo repository (Zulian et al. 2021).

Fig. 3   Sneddon test: crack opening and displacement (y-direction). 
The red color illustrates the fracture iso-surface for c = 0.9

Table 1   Error of the TVC and COD for Sneddon test as a function of 
degrees of freedom and length-scale parameter ls

# Dofs. ls Err-TCV Err-COD

202,612 1.08 70.08% 20.85%

1,826,132 0.52 17.80% 7.91%

15,479,572 0.25 5.48% 3.19%

127,420,052 0.13 0.34% 0.48%

434,125,332 0.08 0.055% 0.29%

Fig. 4   Two-dimensional simula-
tion with 1000 fractures and 
13,565,475 degrees of freedom. 
The colored overlay represents 
the displacement magnitude 
[0, 1.5] mm from transparent 
blue to opaque red. Top: initial 
fracture network. Bottom: final 
configuration
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Our two-dimensional experiment considers a rectangular 
domain of size 3mm × 10mm . We construct a fracture net-
work by generating 1000 initial fractures. During the whole 
simulation, we apply zero Dirichlet boundary conditions for 
the displacement field on all four sides of the domain. A 
pressure load is linearly increased at each loading step and 
defined as  p(t) = p0 + �tpc , with  p0 = 10−3 GPa , �t = 1 s 
and pc = p0 = 10−3 GPa . The initial setup and the simula-
tion result are depicted in Fig. 4.

Our three-dimensional experiment considers a fracture 
network embedded in cube of size 1mm × 1mm × 1mm . 
The initial set-up of the simulation takes into account 100 
randomly distributed fractures as shown in Fig.  5. We 
apply zero Dirichlet boundary conditions for the dis-
placement field on all sides of the domain. A pressure 
load is linearly increased at each loading step and defined 
as  p(t) = p0 + �tpc , with p0 = 10−5 GPa , �t = 0.05 s and 
pc = 10−3GPa. Figure 5 depicts the evolution of the fracture 
network. For both experiments, we set the critical energy 
release to Gc = 1N/mm , whereas the Lamè parameters are 
set equal to � = 100,000N/mm2 and � = 100,000 N/mm2 , 
respectively, and describe the mechanical response of granite 
material Yu et al. (2018).

6 � Performance and scaling

All experiments have been performed at the Swiss National 
Supercomputing Centre (CSCS) with the Piz Daint super-
computer on XC501 or XC402 compute nodes.

Every experiment uses all 12 cores of a XC50 node and, 
alternatively, all 36 cores of a X40 node, without hyper-
threading. Thus, experiments running on 4 nodes are in fact 
running with 12 × 4 = 48 and 36 × 4 = 144 MPI processes, 
respectively.

We traced the code to understand its parallel behaviour 
using mpiP (Vetter and Chambreau 2014) on XC40 compute 

nodes. Subsequently, we have run a test with a grid of 
40 × 40 × 40 , 4 levels totaling 122.6 Million dofs over 1152 
MPI tasks on the finest grid. Among all MPI calls, 79% of 
the MPI time is due to three calls: AllReduce, Iprobe and 
Test. AllReduce calls are the most demanding. The heaviest 
are called in the calculation of the norms in the QP solv-
ers, they count for 50% of the MPI time and the 16% of the 
overall application’s time. Following the reductions, Iprobe 
and Test calls, which are called by the matrix assembly, are 
noticeable for roughly 7% of the MPI time.

6.1 � Algorithmic scalability

In this section, we investigate the algorithmic scalability of 
the proposed fracture simulation framework based on the 
RMTR method. We focus on the convergence properties of 
the RMTR method with respect to the number of degrees of 
freedom and number of processes. The comparison with the 
single level trust-region method as well as with the stand-
ard alternate minimization can be found in Kopaničáková 
and Krause (2020). As it has been demonstrated, the RMTR 
method can achieve a speedup of factor 2–8, in terms of 
computational time, compared to widely used alternate mini-
mization on standard benchmarks. In addition, the sensitiv-
ity of the method with respect to the choice of the model 
parameters, such as degradation function can be found in 
Bilgen et al. (2019).

We investigate the convergence properties of the RMTR 
method for an increasing number of processors, for problems 
of a fixed size. The algorithmic scalability of the RMTR 
method is restricted by the choice of the trust-region sub-
problem solver (constrained QP-solver) employed on each 

Fig. 5   Large 3D fracture network: four loading steps of a three-
dimensional simulation with 100 randomly distributed fractures and 
242,793,828 degrees of freedom (number of levels is 4). The fracture 

iso-surface is displayed for c = 0.9 . The colored transparent overlay 
represents the displacement magnitude [0, 0.0032] mm from blue to 
red. Snapshots taken at different times t ∈ {0, 0.75, 0.8, 0.9} s

Table 2   Average number of V-cycles over all time-steps as a function 
of number of dofs and length-scale parameter ls

The experiment performed using Asphalt tension test, RMTR setup 
with three levels

# dofs 149, 307 605, 787 2, 440, 347 9, 795, 867

ls 0.25 0.12 0.06 0.03
# V-cycles 79.2 106.4 131.3 149.5

1  A XC50 node consists of one Intel ® Xeon ® E5-2690 v3 @2.60 
GHz (12 cores, 64 GB RAM)
2  A XC40 node consists of two Intel ® Xeon ® E5-2695 v4 @2.10 
GHz ( 2 × 18 cores, 64/128 GB RAM)
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level of the multilevel hierarchy. In this work, we employed 
the HJPGS method, see also Sect. 3.2.1. The convergence 
properties of the HJPGS method deteriorate with an increas-
ing number of processors. This causes an increase in the 
number of V-cycles required by the RMTR method to con-
verge to the desired tolerance, see Table 3. We have investi-
gated the performance of the method using alternative QP-
solvers, such as the projected conjugate gradient method 
(MPRGP, Dostál 2016). In this particular case, the number 
of required V-cycles remains stable with an increased num-
ber of processors. However, the soothing properties of the 
MPRGP method are significantly worse than those of the 
HJPGS. As a consequence, the RMTR method configured 
with the MPRGP solver performed worse, compared to the 
RMTR method configured with the HJPGS smoother.

Furthermore, we study the convergence properties of 
the RMTR method with respect to the increasing number 
of dofs. The conducted experiment considers the Asphalt 
tension test and the RMTR method configured with three 
levels. To mitigate the effects of the scalability of the HJPGS 
method on the obtained results, the experiment was run in 
serial. As we can see from Table 2, the average number of 
V-cycles increases together with the number of dofs. This is 
not surprising, as the value of the length-scale parameter ls , 
tied to the refinement level, determines how accurately we 
can approximate sharp fracture surface. Thus, as we refine, 
we are capable of approximating the sharp fracture surface 
more accurately. However, the non-linearity and ill-condi-
tioning of the underlying problem become more prevalent, 
which causes an increase in the required V-cycles.

6.2 � Scaling measures

We analyze the performance of our code with strong and 
weak scaling measures. In strong scaling experiments the 
size of the problem fixed and the speed-up is measured when 
increasing the number of compute nodes. In particular, the 
parallel efficiency is defined as e = Tbnb

Tnn
 with Tb being the 

base experiment’s runtime and Tn being the experiment’s 
runtime on n nodes. The minimal number of nodes nb is 
chosen in such a way that the experiment fits into the node’s 
RAM.

In weak scaling experiments the global size of the prob-
lem is changed proportionally to the number of compute 

nodes. This is done such that the size of the sub-problem 
assigned to one node is kept fixed. Here, the parallel effi-
ciency is defined as e = Tb∕Tn with Tb being the base experi-
ment’s runtime and Tn being the runtime of the experiment 
on n nodes

For most experiments we analyze one of the reasons for 
the loss in scaling by employing the following measure of 
imbalance:

where T is the computing time with respect to MPI rank r 
and any “method” of interest. The imbalance is measured 
independently for each run. Methods of interest are typically 
the ones with high variance in computing time. In all studies 
we will look at the imbalance of the most intensive routines 
the hybrid Jacobi projected Gauss–Seidel (HJPGS) solver, 
the Hessian local matrix assembly (L), and the Hessian local 
to global routine (G) where the data is communicated for the 
elements at process boundaries.

6.3 � 3D Sneddon test: a scaling study

In this section, we use the Sneddon test introduced in 
Sect. 5.1 for studying the scaling properties of the code. We 
keep the length-scale parameter ls = 1.08 fixed for all runs. 
This test case has the advantage of providing an analytical 
solution, and it is simple enough to be reproduced in future 
studies with different software stacks. Additionally, the 
problem is solved with 6 nonlinear iteration for any parallel 
configuration, hence keeping the required computing budget 
low even for large experiments. These experiments are run 
on the XC40 nodes of Piz Daint with 36 MPI processes per 
node. At every nonlinear iteration, we perform 2 pre- and 
post-smoothing steps.

Strong scaling: We conducted three strong scaling experi-
ments with different grid resolutions.

Figure 6a illustrates how the software performs for a 
small experiment with a coarse grid of size 20 × 20 × 20 . 
Here we use 3 RMTR levels hence having a fine grid of size 
77 × 77 × 77 and a nonlinear problem with 1,826,132 dofs. 
The experiment was performed with 1, 2, 4, 8 nodes, and 
the run time is reduced from over a minute to a few seconds.

I(method) =

(
max

r
T(r, method) −min

r
T(r, method)

)

max
r

T(r, Total)
,

Table 3   Effects of HJPGS 
convergence on performance

Average number of V-cycles over all time-steps as a function of number of nodes. Left: two-dimensional 
experiments performed with 1000 fractures and 28.7 mil. dofs. Right: three-dimensional experiment per-
formed with 100 fractures and 122.7 mil. dofs. The experiments were performed using XC40 nodes

# nodes 4 8 16 32 # nodes 25 50 75 100

# V-cycles 126 135 147 154 # V-cycles 42 44 54 69
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Figure 6b illustrates how the software performs for an 
experiment with an order of magnitude more degrees of 
freedom. Here, we have a coarse grid of size 40 × 40 × 40 , 
3 RMTR levels, a fine grid of size 157 × 157 × 157 , and 
15,479,572 dofs. The runs have been performed on 4, 5, 6
, 7, 8, 12, 16, 2, 24, 28, 32 nodes. Figure 6d illustrates the 
imbalance which reduces the overall parallel efficiency. The 
hierarchy of grids is generated by refinement, hence any ini-
tial slight imbalance in coarse grid distribution is amplified 
each refinement. This difference in workload is particularly 

evident in the routine computing Hessian matrix. This rou-
tine is split into two phases: (1) the “local” assembly (L) 
where numerical quadrature is performed and the entries 
are added in the respective rows of the matrix; (2) the local 
to global routine (G), where entries on the boundary of the 
subdomains that belong to other processes are redistributed. 
The second phase could be avoided by leveraging overlap-
ping decomposition of the grid hence avoiding this com-
munication step. However, this contribution is restricted to 
non-overlapping domain decomposition techniques.

Fig. 6   Sneddon test: small 
(a), medium (b), and large 
(c) experiments for measur-
ing strong scaling efficiency 
and runtimes for the different 
components of our RMTR 
implementation. The horizon-
tal dashed red line marks 80% 
efficiency. Imbalance (d) affect-
ing the scaling efficiency of the 
implementation

1,826,132

15,479,572

81,385,668



421Large scale simulation of pressure induced phase‑field fracture propagation using Utopia﻿	

1 3

Figure 6c illustrates a large experiment with a coarse 
grid of size 35 × 35 × 35 , 4 RMTR levels, a fine grid of 
273 × 273 × 273 , and 81,385,668 dofs. Here, we used 80, 96, 
112, 128, 160, 192, 224, 256 nodes. This experiment differs 
from the previous two, due to the extra level of refinement, 
which reduces the cost of the coarse grid solver but will 
accentuate the imbalance as it can be observed in the meas-
urements illustrated in the right-side area plot in Fig. 6d.

Weak scaling: Figure 7 illustrates the weak-scaling prop-
erties for runs with a relatively small amount of dofs per 
process (approximately 20,000). We ran the experiment on 
1, 2, 4, 8, 16, 32, 64 nodes. The runtime is stable below 20 
seconds and the main routines of interest in our implementa-
tion are stable below 10 seconds. It can be observed that the 
imbalance measures is a quite significant past the base run 
on one node. Except for MPRGP, which solves the coarse 
grid problem with negligible computational time, the scaling 
efficiency fluctuates around 80%

6.4 � Large 3D fracture network: a scaling study

In this section, we study the nonlinear multilevel opera-
tor, when used for solving the three-dimensional pressure-
induced fracture propagation of the stochastic fracture 
network, described in Sect. 5.2. Scaling experiments were 
obtained by performing a single nonlinear solve which 
required a fixed number of V-cycles (10). However, the 
obtained results are conclusive, as the operations performed 
within a V-cycle are called repetitively during the whole 
simulation. The experiments were performed on the XC50 
nodes of Piz Daint with 12 MPI processes per node.

Strong scaling: We conducted two strong scaling experi-
ments one small with a coarse grid of 25 × 25 × 25 , 4 levels 

totalling 28.7 million dofs on the finest grid and one large 
experiment with a coarse grid of 40 × 40 × 40 , 4 levels total-
ling 122.7 million dofs on the finest grid. The small experi-
ment was run on 4, 5, 6, 7, 8, 12, 16, 20, 24, 28, 32 nodes, 
the big one on 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 
224, 256. Moreover, in both the two scenarios we employed 
the Hessian lagging strategy to reduce the numbers of times 
when Hessian matrix is assembled.

In Fig. 8a we analyze the small experiment starting with 
nb = 4 nodes. Here, we depict the total parallel efficiency 
and the total run-time together with the parallel efficiency 
and the run-time of the routines which most affect the overall 
performance of the software library.

In Fig. 8b the same analysis is presented for the large exper-
iment starting with nb = 40 nodes. Both the figures show that 
the total parallel efficiency oscillates depending on the number 
of nodes. This is due to slight imbalances illustrated in Fig. 8c 
which appear to have sometimes a bigger effect on the total 
runtime than with the same coarse grid size but a different 
node count. However, a comparison between the three-dimen-
sional pneumatic scenarios and the 3D Sneddon test reveals 
that the use of the Hessian lagging strategy allows reducing the 
time invested in evaluating the Hessian and reserve it for solv-
ing the QP problem. In Table 4 we report the number of calls 
of the most relevant routines. We can observe that when paral-
lelism is increased the HJPGS convergence effects discussed 
in Sect. 6.1 are sensibly changing the algorithmic behaviour 
of RMTR and affecting the scaling efficiency.

Weak scaling: For weak scaling, we have set up the experi-
ment with a coarse grid of 9 × 9 × 9 on a single node and 
incremented then by doubling the nodes and adapting the 
dimensions to have a similar number of dofs on the coarse 

Fig. 7   Sneddon test: weak 
scaling efficiency, runtimes, and 
imbalance. The size of the grid 
is s × s × s , where 
s =

⌈
(1000 × n)

1

3

⌉
 hence with 

s3 × 4 dofs in the coarse level 
and ((s − 1) × 2

(l−1) + 1)3 at 
each RMTR level l (fine level is 
l = 3 ). The reminder rounded by 
the ceiling operator ⌈⋅⌉ will 
cause some fluctuations in the 
amount of work of each run and 
defects in the efficiency plot. 
The size of smallest run consists 
of 740,772 dofs while the 
largest one consists of 
48,035,956 dofs
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grid. Experiments with a cube number of nodes are exact in 
the sense that the work per node on the coarse grid is the same 
as for the base experiment on one node. In Fig. 9c we can see 
the results for the parallel efficiency where we have a sub-grid 
size of 10 × 10 × 10 on each node. Additionally,we have a 
dashed black line which gives us an upper estimate of the par-
allel efficiency. It is a “corrected” value where we multiply e 
with a constant c = N

Nbn
 with N being the number of dofs on 

the finest grid and Nb being the number of dofs on the finest 
grid for the experiment on one node. This correction factor is 
larger than 1, because doubling each dimension on the coarse 
grid will increase the number of dofs by a factor larger than 8 
on the finest grid. For a setup with 4 levels, the number of dofs 
on the finest grid in x-direction is 8Nx − 7 , similarly in y and 
z-direction, which results in a larger multiplication factor on 
the finest level than the multiplication factor on the coarse 
level. 

Fig. 8   Large 3D fracture 
network: small (a), and large 
(b) experiments for measur-
ing strong scaling efficiency 
and runtimes for the different 
components of our RMTR 
implementation. The horizon-
tal dashed red line marks 80% 
efficiency. Imbalance (c) affect-
ing the scaling efficiency of the 
implementation

28,756,228

122,657,188

Table 4   Large 3D fracture network: large experiment from Fig. 8

Number of calls of routines and algorithms for different node con-
figurations. The convergence rate of HJPGS deteriorates with more 
parallelism and it is affected by the domain decomposition. It can be 
observed that this aspects sensibly affects the number of calls of other 
methods

Nodes Hessian Gradient Energy HJPGS MPRGP

40 39 111 127 65 8
48 36 96 113 59 7
56 37 99 118 62 7
64 37 100 117 61 7
80 42 103 167 95 10
96 42 113 148 80 8
112 40 107 137 73 8
128 39 99 138 76 8
160 43 104 173 99 10
192 43 106 170 96 10
224 38 105 123 63 8
256 44 111 178 100 11
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7 � Conclusion

We presented the first open-source code for numerical mod-
elling of large-scale phase-field fracture simulations using 
the RMTR method. Our implementation of the phase-field 
fracture model employs an expression template-based 
assembler designed for structured grids and 2D/3D tensor-
product finite elements. Our implementation of the RMTR 
method with its different components, such as the quad-
ratic programming solvers, provided in the Utopia software 
library can deal with non-convex and geometrically complex 
problems in an efficient and scalable way. Every aspect of 
the code has been first optimized for single-core CPU per-
formance, then improved for MPI-based parallelism.

All the numerical examples show the capabilities of our 
simulation framework and its suitability for large-scale geo-
science applications, such as hydraulic fracturing of complex 
fracture networks. To this end, our studies show the parallel 
performance by analyzing strong and weak scaling proper-
ties to the limits of the standard PETSc configuration, i.e., 
with 32-bit indices.

We performed two scaling studies with different RMTR 
set-ups where the first, based on the Sneddon test, has a sim-
ple set-up and the second, the large fracture network experi-
ment, is more complex due to a large number of fractures. 
We differentiated the large fracture network experiment by 
using the Hessian lag strategy. Here, we observed how the 
weight of the computation is moved from quadrature to lin-
ear algebra.

The current implementation of both discretization and 
model is tailored towards CPU based computing architec-
tures. However, we point out that most of this code has 
been prepared already with the perspective to be ported to 
GPU based computing architectures. To achieve this goal 

there are however two main challenges. First, the imple-
mentation of the quadrature rules which, due to the limited 
memory available and the GPU work model, requires spe-
cific design measures. Second, the HJPGS algorithm has 
to be either ported to GPU [using independent-set coloring 
(Zhang 1996)], or a more suitable alternative with equivalent 
smoothing properties has to be found. We emphasize that 
for remaining parts of our multilevel solver we can instead 
just switch to the back-end which targets GPUs, the Utopia/
Tpetra backend. Results presented in this work are foreseen 
to be used for comparisons with future GPU accelerated 
versions of this code.

In this work we focused on networks with high fracture 
density, which represent a challenging class of problems 
due to the complex geometry and the non-convexity of the 
underlying minimization problem. Future work shall include 
to port the entire framework to GPU architectures, and the 
integration of adaptive octree data structures [e.g., by using 
DMPlex or P4est (Burstedde et al. 2011)] to efficiently han-
dle the discrete representations of sparse fracture networks.
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Fig. 9   Large 3D fracture 
network: weak scaling 
efficiency, runtimes, and 
imbalance. The size of the grid 
is s × s × s , where 
s =

⌈
(729 × n)

1

3

⌉
 hence with 

s3 × 4 dofs in the coarse level 
and ((s − 1) × 2

(l−1) + 1)3 at 
each RMTR level l (fine level is 
l = 3 ). The reminder rounded by 
the ceiling operator ⌈⋅⌉ will 
cause some fluctuations in the 
amount of work of each run and 
defects in the efficiency plot. 
The size of smallest run consists 
of 1,098,500 dofs while the 
largest has 188,183,524 dofs. 
The dashed black line represents 
the “corrected” efficiency
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