
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2021) 3:407–426
https://doi.org/10.1007/s42514-021-00069-6

REGULAR PAPER

Large scale simulation of pressure induced phase‑field fracture
propagation using Utopia

Patrick Zulian1  · Alena Kopaničáková1 · Maria Giuseppina Chiara Nestola1,2 · Andreas Fink3 · Nur Aiman Fadel3 ·
Joost VandeVondele3 · Rolf Krause1

Received: 14 August 2020 / Accepted: 27 May 2021 / Published online: 29 June 2021
© The Author(s) 2021

Abstract
Non-linear phase field models are increasingly used for the simulation of fracture propagation problems. The numerical
simulation of fracture networks of realistic size requires the efficient parallel solution of large coupled non-linear systems.
Although in principle efficient iterative multi-level methods for these types of problems are available, they are not widely
used in practice due to the complexity of their parallel implementation. Here, we present Utopia, which is an open-source
C++ library for parallel non-linear multilevel solution strategies. Utopia provides the advantages of high-level program-
ming interfaces while at the same time a framework to access low-level data-structures without breaking code encapsulation.
Complex numerical procedures can be expressed with few lines of code, and evaluated by different implementations, librar-
ies, or computing hardware. In this paper, we investigate the parallel performance of our implementation of the recursive
multilevel trust-region (RMTR) method based on the Utopia library. RMTR is a globally convergent multilevel solution
strategy designed to solve non-convex constrained minimization problems. In particular, we solve pressure-induced phase-
field fracture propagation in large and complex fracture networks. Solving such problems is deemed challenging even for a
few fractures, however, here we are considering networks of realistic size with up to 1000 fractures.

Keywords  Parallel implementation · Scientific code · Non-convex minimization · Multilevel methods · Phase-field fracture
propagation · monolithic solution scheme

1  Introduction

Fractures and fracture networks strongly affect the hydrau-
lic and mechanical response of the underground. This is of
particular relevance for geothermal technologies, which aim

at producing electricity from deep geothermal resources
by enhancing the permeability of a geothermal reservoir
to obtain a sufficiently large heat flux on interior surfaces
(Chen et al. 2018; Samin et al. 2019). In numerical simula-
tions, realistic fracture networks are usually challenging to
represent with a discrete geometry (i.e., a mesh), or even
impossible at the macro-scale. Phase-field approaches for

Patrick Zulian and Alena Kopaničáková have contributed equally.

 *	 Patrick Zulian
	 patrick.zulian@usi.ch

	 Alena Kopaničáková
	 alena.kopanicakova@usi.ch

	 Maria Giuseppina Chiara Nestola
	 nestom@usi.ch; maria.nestola@erdw.ethz.ch

	 Andreas Fink
	 andreas.fink@cscs.ch

	 Nur Aiman Fadel
	 nur.fadel@cscs.ch

	 Joost VandeVondele
	 joost.vandevondele@cscs.ch

	 Rolf Krause
	 rolf.krause@usi.ch

1	 Euler Institute, Università della Svizzera italiana, Via la
Santa 1, 6962 Lugano‑Viganello, Switzerland

2	 Institute of Geochemistry and Petrology, ETH Zurich,
Clausiusstrasse 25, 8092 Zurich, Switzerland

3	 Swiss National Supercomputing Centre (CSCS), ETH
Zurich, Zurich, Switzerland

http://orcid.org/0000-0002-5822-3288
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-021-00069-6&domain=pdf

408	 P. Zulian et al.

1 3

fracture allow for modelling and simulating the fracture
initiation, propagation, and interaction without the need
of explicitly representing the fracture surface (Miehe et al.
2010b).

The basic idea of this method is to model systems with
sharp interfaces or fractures using a continuous variable,
called the phase-field, that allows for incorporating the pres-
ence of fractures into a given system through a smooth tran-
sition between two states, i.e. damaged and not damaged.
The first numerical implementation of a variational phase-
field approach was presented in Bourdin (2007). Miehe
et al. (2010b, 2010a) enhanced the underlying mathemati-
cal model and introduced thermodynamically consistent,
rate-independent formulation. Since then, the phase-field
approach has become popular and it has been extended in
many directions, including dynamic models (Bourdin et al.
2011), generalization to large deformations (Hesch and
Weinberg 2014; Bilgen et al. 2019), adaptive fourth-order
models (Goswami et al. 2020), or anisotropic models for a
fracture of fiber-reinforced matrix composites (Denli et al.
2020). For further details, we refer the interested reader to
the review provided in De Lorenzis et al. (2020).

Despite the popularity of the phase-field fracture models
in recent years, their applicability is fairly limited to the
small scale problems due the following limitations.

1.	 First, high-resolution meshes are required to resolve the
localized damage, which leads to simulations with a
huge number of degrees of freedom.

2.	 Secondly, solving the resulting problems numerically is
challenging as the underlying energy functional is non-
convex and therefore the standard solution strategies,
such as Newton’s method, typically fail to converge.

As a consequence, the design of the large-scale fracture
simulation framework requires both, highly-scalable finite
element implementation of the fracture model and the glob-
ally convergent, yet scalable, solution strategy.

The majority of the model implementations in the lit-
erature relies on in-house finite element codes, based for
example on the environment Matlab (Nguyen et al. 2015,
2017; Hesch et al. 2017). First commercial implementa-
tions appeared in software such as Abaqus (Liu et al. 2016;
Molnár and Gravouil 2017; Msekh et al. 2015) and COM-
SOL (Zhou et al. 2018). More recently, several open source
codes were reported, for example Farrell and Maurini (2017)
and Li et al. (2016) use the finite element framework FEn-
iCS (Logg 2007) to implement a quasi-static and dynamic
model for brittle fractures, respectively. The implementa-
tion documented in Heister et al. (2015), and Klinsmann
et al. (2015) relies on the package Deal II. Bangerth et al.
(2007) and supports adaptive mesh refinement strategies.
The MOOSE environment Gaston et al. (2009) served as a

base for the implementation reported in Chakraborty et al.
(2016a, 2016b). The results obtained in Kuhn et al. (2015),
Steinke et al. (2016) were produced using FEAP (Taylor
2020). Additionally, the JIVE framework (Group research
2015) was utilized in May et al. (2015), while the pack-
age NUTIL (van Zwieten 2018) was used in Singh et al.
(2016). A GPU implementation was presented in Ziaei-Rad
and Shen (2016), where the authors demonstrate a speedup
factor of 12 for simulations with around 2.5 million degrees
of freedom (dofs). A thread scalable implementation based
on the Kokkos library (Edwards et al. 2014) was presented
in Tupek (2016) for cohesive fracture.

Several aforementioned codes are implemented on the
top of parallel finite element framework. However, their
applicability to solve large-scale problems is often limited
by the convergence and the scaling properties of a utilized
solution strategy. The widely adopted solution strategy in
the literature is the alternate minimization (Bourdin et al.
2011; Farrell and Maurini 2017). The main idea behind this
method is to minimize the energy functional successively for
the displacements and phase-field variables. This gives rise
to two convex minimization sub-problems, which are then
alternatively solved until convergence is reached. Although
solving the convex sub-problems is fairly straightforward,
the overall convergence speed of the method can be erratic
(Farrell and Maurini 2017). Moreover, the scalability prop-
erties of this approach are also limited, as the number of var-
iables, and consequently, the size, of the two sub-problems
differs. In this regard, the monolithic approach, where both
sub-problems are solved simultaneously, can be computa-
tionally more efficient. Several attempts have been made to
enhance the convergence and the robustness of the method,
for instance path-following strategies (Singh et al. 2016),
line-search methods (Gerasimov and Lorenzis 2016), pri-
mal-dual algorithms (Heister et al. 2015), modified Newton’s
method (Wick 2017), quasi-Newton’s method (Wu et al.
2020), or fast Fourier transform (FFT) (Chen et al. 2019).

The use of these methods to solve large scale problems
is mainly limited by the use of direct linear solvers for the
solution of the arising linear systems. To this aim, multilevel
strategies have been employed as an inner linear solver, due
to their optimal complexity. In particular, a geometric mul-
tigrid method was applied in Bilgen et al. (2018) showing
scalability up to 300 processes, while matrix-free multigrid
was used in Jodlbauer et al. (2019), demonstrating scalabil-
ity up to 128 cores. Alternative approaches, based on trun-
cated non-smooth non-linear monotone multigrid, were used
in Kienle et al. (2018), where authors obtained a significant
improvement in terms of computational time, but the paral-
lel performance was not reported. More recently, nonlinear
multilevel method based on the trust-region method, called
Recursive Multilevel trust-region (RMTR) Gratton et al.
(2008a); Groß and Krause (2009), has been developed in

409Large scale simulation of pressure induced phase‑field fracture propagation using Utopia﻿	

1 3

Kopaničáková and Krause (2020). RMTR for phase field
ensures global convergence and has been shown to scale up
to 300 processes.

In this work, we provide large scale implementation of
the phase-field fracture approach. Our simulation framework
is designed to solve large scale problems inspired by real-
world applications, e.g., pressure induced fracture propaga-
tion in geothermal reservoir (Wick et al. 2016; Yoshioka
and Bourdin 2016; Mollaali et al. 2019). In particular, moti-
vated by the promising properties of the RMTR method,
shown in Kopaničáková and Krause (2020), we extended the
approach to complex scenarios with hundreds of fractures
in three-dimensions and with thousands of fractures in two-
dimensions. To our knowledge, this is the first time that the
phase-field approach is employed for such complex, large
scale scenarios.

The biggest challenge in designing the long lasting simu-
lation code is to keep up with constantly changing technol-
ogy, which gives rise to new programming paradigms and
new languages. For example, the advent of GPGPU induced
languages such as Cuda (Nickolls et al. 2008) and OpenCL
(Khronos OpenCL Working Group 2008), which led to the
creation of new software libraries such as CuBLAS (Nvidia
2008) and ViennaCL (Rupp et al. 2016). With such new
developments, scientific-computing software libraries need
to be constantly updated or rewritten. In order to avoid
changes in high-level algorithms, such as non-linear solu-
tion strategies, or finite element analysis, several application
codes are developed on top of a portable interface that fits
many current and possibly future requirements [e.g., PETSc
(Balay et al. 1997, 2019), Trilinos (Heroux et al. 2003), and
Kokkos (Edwards et al. 2014)]. Software libraries such as
Deal.II (Bangerth et al. 2007), LibMesh (Kirk et al. 2006),
Dune (Blatt et al. 2016), and MOOSE (Gaston et al. 2009)
rely on high level abstractions on top of existing linear
algebra and non-linear solution strategies codes, and allow
choosing, to some degree, the underlying implementation.

However, a clear separation of frontend programming and
the backend implementation would help in keeping up with
even new technologies or upcoming and yet unknown para-
digm shifts. A best-case scenario allows us to never touch
the frontend code and implement new backends based on
these new technological advancements.

To this end, a possible solution is to exploit scripting
facilities for completely decoupling the application behav-
ior from its actual implementation. This solution has the
advantage of hiding the complexity of parallel software to
which the average, casual, or opportunistic (Brandt et al.
2008) user is not supposed to be exposed. The idea is that
the scripting code is translated to behavior which is imple-
mented in another lower-level language. This enables users
to write a few lines of very powerful code without the over-
head of learning how to use new complex parallel scientific

codes. A very specific form of scripting language is usually
referred to as domain specific language (DSL). This speci-
ficity, while reaching the aforementioned objectives, has a
twofold advantage. First, it enables a simple description of
a specific problem since most implementation details can be
hidden. Second, it allows exploiting complex functionalities
and performance critical optimizations. Notable examples
related to finite element software, are FEniCS’ unified form
language (Logg 2007; Rathgeber et al. 2016), FreeFEM
(Hecht 2012), and Liszt (DeVito et al. 2011).

In DSLs lower-level abstractions are purposefully inac-
cessible because the actual algorithms are implemented
in a different language, such as C++. This is a problem
when a DSL misses a functionality, since adding it would
require accessing the underlying back-end which may be
either closed source or very complex. In contrast, embedded
domain-specific languages (eDSL) [e.g., CULA (Humphrey
et al. 2010), Feel++ (Prud’homme et al. 2020), OpenFOAM
(Weller et al. 1998), Sundance (Long et al. 2010)] use the
same language and compiler for both the “scripting” layer
and the implementation of the back-end. For this reason,
eDSLs have the opportunity to provide the right balance
between abstraction and direct access to the back-end data-
types and algorithms.

In this work, we introduce the open-source C++ library
Utopia (Zulian et al. 2016), which currently provides a
eDSL-like uniform interface to the PETSc algebra, and
Tpetra from the Trilinos library. The main goal of Utopia
is to achieve a set of high-level interfaces with will allow
to never fully commit to particular software/hardware and
adapt to the ever-evolving HPC technologies. Unfortunately,
it is the case that specificity is required for achieving perfor-
mance in certain applications. Hence, while the largest part
of the code is designed to be generic, certain routines are
implemented ad-hoc. Here, we present our implementation
of the phase-field fracture simulation framework, its port-
able components as well as the ad-hoc ones targeting CPU
architectures.

The five main contributions of this article are:

1.	 the first introduction of the open-source C++ library
Utopia (Zulian et al. 2016);

2.	 efficient open-source finite element code for phase-field
fracture simulations;

3.	 the only parallel open-source code of the RMTR method,
an efficient globally convergent nonlinear multilevel
solution strategy for non-convex constrained minimiza-
tion problems;

4.	 large scale simulations of pressure-induced fracture
propagation of stochastic fracture networks, consider-
ing realistic and complex scenarios up to 1000 fractures;

5.	 strong and weak scaling studies up to 9216 MPI pro-
cesses and 1.9 × 108 degrees-of-freedom of the proposed

410	 P. Zulian et al.

1 3

algorithmic framework and its CPU-tailored implemen-
tation using Utopia.

We start by describing the pressure-induced phase-field
fracture model (Sect. 2), and the recursive multilevel trust-
region strategy (Sect. 3), adopted to solve the arising nonlin-
ear systems. Next, we provide an overview of our software
library and a detailed description of the developed code
(Sect. 4). Then, we validate the implementation of the phase-
field fracture model and present numerical experiments with
complex fracture networks for applications in geoscience
(Sect. 5). Furthermore, we demonstrate the strong and weak
scaling performance properties of our code using the Piz
Daint super-computing machine (Sect. 6). Finally, we pro-
vide concluding remarks and describe future work (Sect. 7).

2 � Pressure induced phase‑field fracture
model

In this section, we briefly review pressure-induced fracture
processes modeled using the second-order phase-field for-
mulation for brittle fracture. Our presentation focuses on
the quasi-static time-discrete setting. A pseudo-time step
t = 1,… , T  , is used to index the deformation state in the
loading process. We denote the computational domain by
� ∈ ℝ

d, d = 2, 3 , representing a d-dimensional solid with
internal fracture C ⊂ ℝ

d−1 , which evolves during the loading
process. The boundary �� of the domain � is decomposed
into two non-overlapping parts, �D , �N , where Dirichlet and
Neumann boundary conditions are prescribed, respectively.
Additionally, we set ��N = �N ∪ �C.

In this work, we assume that the body � shows linear
elastic behaviour, with the strain energy density function
defined as: �e(�(�)) ∶= 0.5 �(tr(�(�)))2 + ��(�) ∶ �(�) ,
where �, � are the Lamè parameters, � ∶ � → ℝ

d represents
the displacement vector field and �(�) ∶= sym(∇�) is the
strain tensor. Furthermore, we prescribe a given pressure
p ∶ � → ℝ , over the domain � to only induce fracture prop-
agation. We remark, that this work focuses only on fracture
propagation, i.e. we assume that pressure p is given a priori.
The reliability of the phase-field fracture model could be
improved by incorporating the poroelasticity equations such
as Biot’s equations (Mikelić et al. 2015a). This would allow
for simulating induced hydraulic fracturing in a poroelastic
medium rather than in an elastic medium.

2.1 � Variational approach to fracture

The variational approach proposed by Francfort and Marigo
(1998) formulates brittle fracture as a minimization problem
for an energy functional consisting of the elastic energy of

the cracked solid, the energy dissipated in the fracture, and
the traction forces; thus

where Gc > 0 denotes fracture toughness and �̄ stands for
the traction forces. The symbol Sd−1(C) in (1) denotes the
Hausdorff surface measure of fracture set C, i.e. Sd−1(C) rep-
resent length or the surface area of fracture C, when d = 2, 3 ,
respectively. Note, that the traction forces �̄ constitute of two
parts

where �̄𝛺 is traction force applied at the domain boundary �N
and � is unit vector normal to the fracture surface. The last
term in (2) represents a force introduced by the pressure p
inside of the fracture, which is applied on a surface.

The direct minimization of the energy functional (1) is
computationally prohibitive, as the fracture surface, C is
not known a priori. To overcome this difficulty, Bourdin
(2007) propose to utilize a regularization strategy initially
developed by Ambrosio and Tortorelli (1992) for image-seg-
mentation. The regularization strategy introduces a smooth
scalar field, called phase-field c ∶ � → [0, 1] , which char-
acterizes the material state of the domain � . In particular,
the value c = 0 indicates an intact solid, c = 1 denotes the
fractured or broken state, while c ∈ (0, 1) constitute smooth
transition zones between the two limit states. Using the
phase-field c, we can replace the fracture energy in (1) by
its volumetric approximation, i.e.,

where the length-scale parameter ls controls the thickness
of the transition zone between the material states. The func-
tion w defines a decaying profile of the phase-field c, while
cw ∶= 4 ∫ 1

0

√
w(c) dc is an induced normalization constant.

Taking into account (3), we can reformulate (1) as

where g is a degradation function, which accounts for the
loss of stiffness in the fracture.

Several choices of g, w and cw are used in the literature,
leading to various phase-field fracture formulations (Kuhn

(1)

E(�,C, p) ∶= ∫
𝛺⧵C

𝜓e(�(�)) d𝛺

+ GcS
d−1(C) − ∫

𝜕N𝛺

�̄ ⋅ � ds,

(2)∫
𝜕N𝛺

�̄ ⋅ � ds = ∫
𝛤N

�̄𝛺 ⋅ � ds − ∫
𝜕C

p � ⋅ � ds,

(3)GcS
d−1(�) ≈

Gc

cw

(
w(c)

ls
+ ls|∇c|2

)
d�,

(4)

E(�, c, p) ∶= ∫
𝛺

g(c) 𝜓e(�(�)) +
Gc

cw

(
w(c)

ls
+ ls|∇c|2

)
d𝛺

− ∫
𝜕N𝛺

�̄ ⋅ � ds,

411Large scale simulation of pressure induced phase‑field fracture propagation using Utopia﻿	

1 3

et al. 2015; Sargado et al. 2018). In this work, we follow
Bourdin et al. (2000), Miehe et al. (2010b) and employ
g(c) ∶= (1 − c)2 , w(c) = c2 and cw = 2 , resulting in the
widely used AT-2 phase-field fracture model proposed in
Ambrosio and Tortorelli (1990). Given these particular
choices, it is possible to asymptotically show via � -conver-
gence, that the minimizer of (4) tends to a minimizer of (1),
as ls → 0 , see Giacomini (2005).

In the next step, we reformulate the fracture surface
integral from (2), into a computationally acceptable form,
which does not include �C . We follow Mikelic et al. (2014),
Mikelić et al. (2015a, 2015b) and employ Gauss’ divergence
theorem for extending the pressure p to the entire domain,
thus

Here, the degradation function g(c) ensures that the integra-
tion is performed only over the intact part of the domain
� . Finally, the energy functional (1) can be recast into the
following form:

which can be employed in practical algorithms.

2.2 � Minimization problem

The state of the system, defined by the displacement � and
the phase-field c, is characterized at each loading step as
minimizer of the following minimization problem: find
(�, c) ∈ �t

u
× Vc , such that

where the energy functional E(�, c, p) is as defined
in (5). The admissible space for the displacement field
is defined as �t

u
∶= {� ∈ �1(�) | � = �t on �D} . Here,

�1(�) ∶= [H1(�)]d , with H1 denoting the standard Sobolev
space of weakly differentiable functions in L2 with one weak
derivative also in L2 . We remark that the definition of the
space �t

u
 incorporates the time-dependent Dirichlet bound-

ary condition �t . The admissible space for the phase-field is
defined as the following convex cone:

∫
�C

p � ⋅ � ds = ∫
�

g(c)∇ ⋅ (p �) d� − ∫
��N

p � ⋅ � ds.

(5)

E(�, c, p) ∶= ∫
𝛺

g(c) 𝜓e(�(�)) +
Gc

cw

(
w(c)

ls
+ ls|∇c|2

)
d𝛺

− ∫
𝛤N

�̄𝛺 ⋅ � ds − ∫
𝛺

g(c)∇ ⋅ (p�) d𝛺

+ ∫
𝜕𝛤N

p� ⋅ � ds,

(6)(�, c) ∈ arg min E(�, c, p),

(7)Vc ∶=
{
c ∈ H1(�) ∶ ct−1 ≤ c ≤ 1 a.e. in �

}
,

where ct−1 represents phase-field obtained in the previous
time-step. The box constraint ct−1 ≤ c ≤ 1 from (7) ensures
the irreversibility condition and prevents the crack from
self-healing.

We discretize our problem using the first-order Lagran-
gian finite elements. In the remainder of this work, we focus
on the numerical solution of (6). This task is numerically
challenging and computationally demanding as we have to
solve a large-scale, non-convex, constrained, ill-conditioned
minimization problem for every loading time-step t.

3 � Multilevel trust‑region method

The minimization problem (6) can be expressed in the fol-
lowing abstract form:

where f ∶ ℝ
n
→ ℝ denotes the non-convex coupled

energy functional (5) after finite element discretization.
The solution vector � ∈ ℝ

n represents the combined dis-
placement and phase-field coefficients. The feasible set
F ∶= {� ∈ ℝ

n | � ≤ �} is defined such that irreversibility
condition from (7) is satisfied.

We minimize (8) using the recursive multilevel trust-
region method (RMTR) (Gratton et al. 2008a, b; Groß and
Krause 2009). In particular, we employ the variant proposed
in Kopaničáková and Krause (2020), which was specially
designed to solve minimization problems arising from phase-
field fracture simulations. By design, the RMTR employs
a hierarchy of L levels. Each level l, where l = 1,… , L , is
associated with the minimization of some level-dependent
objective function hl ∶ ℝ

nl
→ ℝ , where nl+1 ≥ nl . The trans-

fer of data between subsequent levels of the multilevel hier-
archy is achieved using three transfer operators. The prolon-
gation operator �l ∶ ℝ

nl
→ ℝ

nl+1 interpolates the corrections
from level l to level l + 1 . Its adjoint, the restriction operator
�l ∶= (�l)T , transfers the gradients to the subsequent coarser
level. Following Groß and Krause (2009), we additionally
employ a projection operator �l ∶ ℝ

nl+1
→ ℝ

nl for transfer-
ring iterates from level l + 1 to level l.

3.1 � RMTR algorithm

The RMTR algorithm is considered in its standard V-cycle
form. Through the following paragraphs, we use subscripts
and superscripts to specify the iteration number and the
given level, respectively. For instance, the symbol �l

i
 denotes

the solution vector on level l during iteration i.

(8)
min
x∈ℝn

f (�),

such that � ∈ F,

412	 P. Zulian et al.

1 3

Each V-cycle consists of a downward and an upward
phase. The downward phase starts on the finest level,
l = L , with an initial iterate �L

0
 and passes through all levels

of the multilevel hierarchy until the coarsest level, l = 1 ,
is reached. On each level, the algorithm performs a pre-
smoothing step to improve the current iterate �l

0
 . This is

done by minimizing the level-dependent minimization
problem, see Sect. 3.2. The minimization on a given level
is performed only approximately, by employing �1 itera-
tions of the trust-region method. The obtained approxi-
mate minimizer, �L

�1
 , is then used to initialize the solution

vector on the next coarser level, i.e., �L−1
0

∶= �L−1�L
�1

 . We
repeat this process recursively until the coarsest level is
reached.

Once the coarsest level is reached, we again approxi-
mately minimize the level-dependent minimization prob-
lem to obtain an updated coarse grid iterate �1

�1
 . After

obtaining an updated iterate �1
�1

 , the RMTR algorithm ini-
tiates the upward phase of the V-cycle. An upward phase
is associated with the return to the finest level of the mul-
tilevel hierarchy while passing through all intermediate
levels. Starting on the coarsest level, we compute each
coarse grid correction as the difference between the initial
and final iterate on the given level, thus as �l−1

�l−1
− �l−1

0
 . This

coarse grid correction is then prolongated to the subse-
quent finer level, e.g. �l

�1+1
∶= �l−1(�l−1

�l−1
− �l−1

0
) . As com-

mon in the trust-region algorithms, the quality of the pro-
longated coarse grid correction, �l

�1+1
 , has to be assessed

before it is accepted. To this aim, we define a multilevel
trust-region ratio as

where �l collectively denotes a sum of all iterations taken on
a given level l. The positive values of �l imply a decrease in
the fine level objective function hl , therefore it is safe to
accept �l

�1+1
 . In contrast, small or negative values of �l sug-

gest that there is no good agreement between fine and coarse
level models, therefore �l

�1+1
 has to be rejected.

To this end, the RMTR algorithm performs �2 smoothing
steps to improve the current solution on a given level l. This
process is again repeated on every level of the multilevel
hierarchy until we reach the finest level. The outlined pro-
cess is summarized in Algorithm 1.

(9)�l ∶=
hl(�l

�1
) − hl(�l

�1
+ �l

�1
)

hl−1(�l−1
0

) − hl−1(�l−1
�l−1

)
,

3.2 � Level‑dependent minimization problems

On each level l, the RMTR method minimizes some level-
dependent minimization problem (LDMP). On the finest
level, the LDMP is identical with (8), while on all other
levels ( l < L ), the LDMP is constructed as follows:

where hl and Fl denote the level-dependent objective func-
tion and feasible set, respectively. The role of level-depend-
ent feasible set Fl is two-fold. On the one hand, it ensures
that the iterates produced by the RMTR method satisfy the
variable bounds. On the other hand, the definition of Fl also
controls the size of all corrections taken on a given level l,
which is necessary to ensure global convergence (Gratton
et al. 2008a). The rigorous details about how to construct Fl
can be found in Gratton et al. (2008a), Kornhuber (1994),
and Kopaničáková and Krause (2020).

The definition of the function hl consists of three
terms. The first term, f̃ l(�l) , expresses the modified
energy functional (4). This modification was suggested in
Kopaničáková and Krause (2020) for capturing fine-level
fracture on the coarser levels. In this work, we discre-
tize the problem using the finite element method. There-
fore, the numerical evaluation of f̃ l(�l) and its derivatives
requires the computation of the numerical quadrature.

The terms �� ∈ ℝ
nl and �� ∈ ℝ

nl×nl in (10) are defined
as following

and ensure that the first and second order behavior of the hl
and hl+1 is similar in the neighborhood of �l

0
 and �l+1

�1
 .

Although the terms �� and �� are evaluated only once dur-
ing the V-cycle, their computation is costly. In particular, the
evaluation of the �� term requires evaluation of the Hessian
on level l and l + 1 . We can decrease the amount of the Hes-
sian assembly calls by incorporating the lagging strategies
into our implementation. In particular, we evaluate the ��
term from (11) restricting the Hessian evaluated during the
pre-smoothing step, i.e., 𝛿� ∶= �l∇2hl+1(�l+1

𝜇
1
−1
) �l − ∇2 f̃ l(�l

0
) .

We note, that this modification slightly worsens the conver-
gence rate of the RMTR method, but offers speed-up in
terms of the computational time.

(10)
min
�l∈ℝnl

hl(�l + �l) ∶= f̃ l(�l) + ⟨𝛿�, �l⟩ + 0.5⟨�l, 𝛿��l⟩,

subject to �l + �l ∈ F
l,

(11)
𝛿� ∶= �l∇hl+1(�l+1

𝜇1
) − ∇f̃ l(�l

0
),

𝛿� ∶= �l∇2hl+1(�l+1
𝜇1

) �l − ∇2 f̃ l(�l
0
)

413Large scale simulation of pressure induced phase‑field fracture propagation using Utopia﻿	

1 3

Algorithm 1 V-cycle of RMTR (l, hl, xl
0, F l, ∆l

0)

Require: l ∈ R, hl : Rnl → R,xl
0 ∈ Rnl

,F l, ∆l
0 ∈ R

Constants: µ1, µ2 ∈ N, η1, η2, γ1, γ2 ∈ R, where 0 < η1 ≤ η2 ≤ 1 and 0 < γ1 ≤ 1 ≤ γ2
[xl

µ1
, ∆l

µ1
] = Trust region solve(hl, xl

0, F l, ∆l
0, µ1)

Construct coarse objective function hl−1 and feasible set F l−1 as described in Section 3.2
if l == 2 then

[xl−1
∗] = Trust region solve(hl−1, Pl−1xl

µ1
, F l−1, ∆l

µ1
, µ1)

else
[xl−1

∗] = RMTR(l − 1, hl−1, Pl−1xl
µ1

, F l−1, ∆l
µ1

)
end if
Evaluate ρl by means of (9)
if ρl > η1 then

xl
µ1+1 = xl

µ1
+ Il(xl−1

∗ −Pl−1xl
µ1

)
else

xl
µ1+1 = xl

µ1
end if

∆l
µ1+1 =






γ1∆l
µ1

, ρl < η1
∆l

µ1
, ρl ∈ [η1, η2]

γ2∆l
µ1

, ρl > η2

[xl
∗, ∆l

∗] = Trust region solve(hl, xl
µ1+1, F l, ∆l

µ1+1, µ2)
return xl

∗,∆
l
∗

3.2.1 � Smoothing and coarse grid solve (trust‑region
method)

We minimize the level-dependent minimization problem (10)
using a trust-region method Conn et al. (2000). The following
exposition omits using superscript related to a given level l, as
all quantities are considered to be on the same level. At each
iteration i, the trust-region method approximates the objec-
tive function h by quadratic model mi , defined around current
iterate �i . The model mi is considered to be an adequate repre-
sentation of h only in a certain region, called the trust-region
Bi ∶= {�i + � ∈ ℝ

n � ‖�‖∞ ≤ �i} , defined by the trust-region
radius 𝛥i > 0 . The search direction �i is then determined by
solving the trust-region sub-problem:

The first constraint in (12) ensures the feasibility of the
iterates through the solution process, while the second con-
straint controls the size of the search direction �i . Before the
obtained search direction �i is used to update the current iter-
ate �i , we need to assess its quality. The convergence control
is performed using the trust-region ratio

which describes the agreement between the actual reduc-
tion in the objective function and the predicted reduction
obtained by the quadratic model mi . The value of �i close to
unity indicates good agreement between fi and the model
mi . Hence, it is safe to accept �i , i.e. �i+1 = �i + �i , and
expand the trust-region radius. In contrast, if the value of �i

(12)
min
�i∈ℝ

n
mi(�i) ∶= h(�i) + ⟨∇h(�i), �i⟩ +

1

2
⟨�i,∇2h(�i) �i⟩,

such that �i + �i ∈ F, ‖�i‖∞ ≤ �i.

(13)�i =
h(�i) − h(�i + �i)

mi(0) − mi(�i)
,

is negative or close to zero, we must reject �i , i.e. �i+1 = �i ,
and shrink the trust-region.

Solution of trust-region subproblem Each iteration of the
TR method requires solution of the constrained quadratic
minimization (QP) problem (12). The arising QP problems
can be solved approximately, as long as the obtained mini-
mizer satisfies the so-called sufficient decrease condition
(Conn et al. 2000). Our choice of QP solver varies for dif-
ferent levels of the multilevel hierarchy. In particular, on
the coarsest level, we minimize (12) using modified propor-
tioning with reduced gradient projection (MPRGP) method
Dostál (2016).

On all the other levels, we employ only few steps of the
projected Gauss–Seidel (PGS) method, as it is known to have
good smoothing properties (Briggs et al. 2000; Hackbusch
1985). Since the Gauss–Seidel method is naturally a sequen-
tial algorithm, we employ its parallel variant, the hybrid Jac-
obi projected-Gauss–Seidel (HJPGS) method (Adams et al.
2003). More specifically, we use the symmetric version of
the HJPGS where both forward and backward substitution
are performed. Our implementation of the HJPGS utilizes a
copy of diagonal and off-diagonal entries of the local Hes-
sian block into separate arrays. This is mainly done in order
to avoid checking if the current row is equal to the current
column. We achieve around 2× speed-up compared to the
version without a copy. In addition, we perform local itera-
tions of the smoother without synchronization in order to
reduce the ratio between computation and communication.

414	 P. Zulian et al.

1 3

4 � Parallel implementation with Utopia

4.1 � Hardware portability and software
maintainability

The first goal of Utopia is the separation of model and com-
putation (similar to DSLs) and its main purpose is advanced
parallel algebra (linear and non-linear). By exploiting meta-
programming facilities in combination with expression tem-
plates (Iglberger et al. 2012; Veldhuizen 1995), Utopia can
easily be integrated with any other existing parallel algebra
library, hence it is mostly independent from technological
changes. The limit case is the avoidance to commit to any
specific back-end. This will allow libraries to be unbound by
the lifetime and support of the their dependencies although
still take advantage of current development efforts.

The second goal is to provide a uniform interface to
lower-level technologies [e.g., Kokkos, RAJA (Beckingsale
et al. 2019), or SyCL (Bader et al. 2019)]. In fact, the Utopia
library is designed and developed for providing a balance
between abstraction and low-level access without sacrificing
performance. It aims at an organic integration with existing
codes without creating barriers between abstractions and
implementation. The use of static polymorphism allows the
mixture of front-end code with decorated parallel device
code without unnecessarily exposing back-end specific
primitives or having to write specialized code. High level
and lower level abstractions, as well as raw data are acces-
sible to the user at any time. This allows users to extend their
code with possibly missing functionalities by manipulating
lower-level abstractions and eventually even the low-level
data (and back-end) directly. The flexible design of Utopia
allows for adding these features in a straightforward way to
future releases without changing the high-level interfaces.

The third goal is to reduce the overhead of the front-end
and allow to exploit available functionalities of the dif-
ferent back-ends as good as possible. To this end, the use
of static polymorphism allows to avoid the performance-
overhead associated with virtual tables, and specific evalu-
ation routines can be specialized by exploiting partial/full
specialization.

These design goals in combination with the development
driven by challenging application codes such as phase-field
methods for fractures, allows Utopia to converge towards a
hardware portable and maintainable HPC library.

4.2 � Algebra

Consistent with the general design goal, the Utopia–algebra
library is divided into two main layers the front-end and the
back-end. In the front-end every algebraic object, algorithm,
or operation is described by C++ classes. Tensor objects,

such as matrices and vectors, are tied to a specific back-end
at compile time. For instance, PetscMatrix and PetscVector
are used when the PETSc backend is chosen for our compu-
tations, while TpetraMatrix and TpetraVector are used when
the Trilinos backend is chosen instead. Expression types are
generated by means of standard operators such as +, -, *, and
/. In fact, expressions are evaluated in a lazy way only when
they are assigned to a concrete tensor type. This allows us to
independently specialize the evaluation of composite expres-
sions based on the available back-end algorithms.

More complex algorithms are implemented using classes
and they can be realized either using the front-end or the
back-end. For instance, the MPRGP and RMTR algorithms
are implemented using exclusively the front-end.

Certain variants of algorithms or specialized imple-
mentations might be required when certain properties are
back-end specific. In fact, in this work our node-level imple-
mentation of the Projected Gauss–Seidel (PGS) algorithm
does not support neither thread-based parallelism nor GPU
computations. However, we accelerate PGS by exploiting
SIMD/AVX2 intrinsics. Our implementation is made for
vector problems of size 4, as required by 3D phase-field
problems (i.e., 1 component for the phase-field, 3 for the
displacement). In each PGS sweep we perform operations on
4 components of the solution simultaneously (e.g., summa-
tions, matrix-vector, products, and checks on the inequality
constraints).

The design overview of the algebra of our simulator is
depicted in Fig. 1. Here, the top layer shows the components
developed and tuned for this work. Such components are
divided between front-end based, hence hardware portable,
and specialized PGS component, targeting CPU hardware.
The PGS component would have to be adapted or substituted
for using the library with GPU nodes. The middle layer is
the front-end which consists of interfaces, object oriented
programming (OOP) abstractions, adapters, and front-end
based algorithms. The bottom layer is where all the actual
functionalities are implemented either by means of existing
library, or ad-hoc extensions.

4.3 � Finite element assembly

Our current implementation of the finite element model
phase-field fracture model targets CPU architectures. The
code relies on the Utopia–PETSc tensors for the algebra in
combination with the PETSc DMDA package for creating
the hierarchy of structured grids and initializing matrices
and vectors. The PETSc DMDA is encapsulated and used
exclusively for steps requiring MPI communication, such as
local-to-global or global-to-local operations. In this imple-
mentation the hierarchy of grids is generated by uniform
refinement and the elements are uniform quadrilaterals in 2D
and hexahedra in 3D. On each level of mutlilevel hierarchy,

415Large scale simulation of pressure induced phase‑field fracture propagation using Utopia﻿	

1 3

we discretize the minimization problem (6) using first order
tensor-product finite elements.

In phase-field for fracture problems, a significant part of
the computational time is dedicated to performing numeri-
cal quadrature and assembling Hessian matrices. In order to
reduce the footprint of this routine we performed three steps
to optimize its computation.

First, since we are exclusively using structured grids, we
pre-compute several quantities for one element and reuse
them for all elements. In fact, we pre-compute all quantities
associated with the model and discretizations that are uni-
form between elements. These include all test-space related
quantities such as shape-functions, gradients, strains, prin-
cipal strains and stresses, and geometric quantities such as
Jacobian matrices and determinants.

Second, we ensure that most loops can be unrolled by
providing the compiler with compile time loop-ranges, such
as spatial dimension, and number of shape-functions of an
element.

Third, we developed quadrature routines based on single
instruction multiple data (SIMD) intrinsics. We integrated
the Vc library (Kretz and Lindenstruth 2012) for having a
portable abstraction for different vector instruction sets (e.g,
AVX, AVX2, and SSE2). Note that in our implementation
we use double precision floating point numbers on CPUs
supporting AVX2 instruction sets, which allows us to exploit
4 SIMD lanes.

We developed small tensor types which are designed to
be used within assembly kernels and naturally integrate with
Vc abstractions. With the goal of keeping the code usable
and readable

we use operator overloading for representing algebraic
operations. As a consequence, in order to avoid copies we
implemented in-line operations using expression templates.
Here, each in-line operation consumes or produces a Vc vec-
tor object.

3D scenarios require a 27-points quadrature rule. This
allow us to perform quadrature using 7 vectorized quadrature
points/weights by wasting only one SIMD lane. The vector-
ized version of the quadrature routines displays a speed-up
of approximately 2.7× with respect to the standard version.

5 � Numerical experiments

We demonstrate the efficiency of the proposed phase-field
fracture simulation framework using four numerical exam-
ples. First two example are used to validate our code using
experimental measurements and analytical computations.
Then, we consider more complicated scenarios of pressure
induced fracture propagation of stochastic fracture networks,
inspired by hydraulic simulations performed in enhanced
geothermal systems.

We prescribe initial fractures by setting c to its transi-
tional state from intact to broken, we check if the nodal posi-
tion � lies inside of a parametric fracture description, then
we mark the related parts of the domain as broken. This
is done by setting the nodal coefficient for the phase-field
variable to be equal to 1. Otherwise, we mark the material
as intact by prescribing the nodal value of the phase-field
to be equal to 0. The value of the length-scale parameter ls

Fig. 1   Layered architectural
overview of the Utopia based
algebra with focus on the
RMTR method. The top layer
represents the components for
solving the fracture propaga-
tion problem. The middle layer
represents the main design
components which interface
with the different back-end
implementation at the bottom

416	 P. Zulian et al.

1 3

is set up as ls = 2h , where h denotes the mesh size, for all
presented numerical examples.

Unless specified differently, we terminate the RMTR
method, when the following stopping criterium is satisfied:

where �i denotes the current iterate, defined on the fin-
est level. The criticality measure E(�, f) is defined as
E(�, f) ∶= ‖P(� − ∇f (�)) − �)‖ , where P is an orthogonal
projection onto the feasible set (Gratton et al. 2008a).

The main output data of the experiments can be down-
loaded from the Zenodo online repository (Zulian et al.
2020).

5.1 � Validation

In this section we describe the numerical simulations per-
formed to validate the proposed software library. First, we
consider a crack propagation in an asphalt specimen and
compare the numerical solution with experimental data. Sec-
ond, we present a three-dimensional benchmark to validate
our code against an analytical solution. Finally, we introduce
both two-dimensional and three-dimensional scenarios with
stochastic fracture distributions to demonstrate the capability
of our code to deal with large-scale simulations.

5.1.1 � Tension test of asphalt specimen

We consider two initial cracks inserted in an asphalt speci-
men. The initial crack length is set equal to a = 5mm , the
initial width is set equal to w0 = 0.2mm , whereas the rela-
tive positions of the two cracks is defined such that they
comprise an angle equal to 45 ◦ . The background matrix is
a two-dimensional rectangle with height equal to 20mm and
width equal to 40mm . The Lamé parameters of the asphalt are
� = 2.23N/mm2 and � = 3.35N/mm2 , whereas the fracture
energy is set equal to Gc = 0.270N/mm in agreement with
(Hou 2014). Concerning the boundary conditions, we fix the
left side of the rectangle whereas an incremental displacement

(14)E(�i, f) < 10−6 or ‖�i − �i−1‖ < 10−12,

is applied on the right side and defined as u(t) = u0 + �tu0
with u0 = 3.0mm and �t = 0.01 s.

In Fig. 2 we show the initial and final configuration,
where the two fractures interact with each other. Here,
the mean displacement reached on the right side of the
sample, u = 2.366mm , corresponds to a critical load
�n
c
= 0.343MPa , in good agreement with the experimental

result �e
c
= 0.30MPa reported in Hou et al. (2015).

5.1.2 � Sneddon test of pressure induced fracture

Following Sneddon and Lowengrub (2013), Yoshioka and
Bourdin (2016), we validate our simulation framework by
considering a horizontal penny-shape fracture embedded
into domain � ∶= (−10, 10)3 . The penny is centered around
the origin and has the radius r ∶= 3 . The crack opening dis-
placement (COD) and total crack volume (TCV) of the inter-
nally pressurized fracture can be analytically computed as

where E is a Young’s modulus, � denotes Poisson’s ratio,
p stands for pressure and � denotes coordinates of a given
point. In performed experiment, we set E = 1 , � = 0.2 ,
p = 0.1 and Gc = 1 , i.e., TCV equals to 13.824 and value of
COD at the origin is 0.366. Figure 3 depicts the simulation
result.

Table 1 depicts the error of the TCV and COD with
respect to the increasing degree of freedom and decreas-
ing value of the length-scale parameter. Recall, that in the
numerical simulations, the condition ls > h has to be satis-
fied. As we can see, the phase-field approximation converges
as h → 0 and ls → 0 . We would also like to highlight, that to
obtain an accurate solution, simulation with a large number
of dofs/computational power is required.

COD(�) ∶=
4pr(1 − �2)

�E

�

1 −

�‖�‖
�2

r

�2

TCV ∶=
16�pr3(1 − �2)

3E
,

Fig. 2   Tension test of asphalt specimen: two-dimensional simulation with 2 fractures and 949, 227 degrees of freedom. Color represents dis-
placement field in mm

417Large scale simulation of pressure induced phase‑field fracture propagation using Utopia﻿	

1 3

5.2 � Pressure induced fracture propagation
of stochastic fracture networks

In this section, we study the pressure-induced fracture prop-
agation of stochastic fracture networks in two-dimensional
and three-dimensional scenarios. The problems of this type
occur in several geoscience applications, e.g. hydraulic frac-
turing Wick et al. (2016). Here, we demonstrate the appli-
cability of the phase-field approach for such scenarios by

considering large-scale problems with 1000/100 fractures
in two/three-dimensions, respectively. To our knowledge,
this is the first time that any phase-field fracture simulation
framework was employed to handle such complex scenarios.

We generate the pre-existing fracture networks using a
two-stage process. First, we describe each fracture as a one-
dimensional object with a randomly assigned hypo-center,
orientation, and length. In particular, we employ a uniform
distribution to place the hypo-centers over the entire domain
and assign their orientation to a value between −80◦ and
80◦ . The fracture length is drawn from a scale-invariant
power-law distribution (de Dreuzy et al. 2001), defined as
n(l) = l−a, for l ∈ [lmin,max], where n(l)dl represents a num-
ber of fractures with size belonging to the interval [l, l + dl] ,
and a ∈ [1, 3] is the power-law length exponent. The sym-
bols lmin and lmax denote the minimum and maximum fracture
length, respectively. Performed experiments employ � = 2.7 ,
lmin = 0.2mm , and lmax = 5mm in two-dimensions. In three
spatial dimensions, we employ � = 2.7 , lmin = 0.2mm , and
lmax = 0.7mm . In addition, we consider orientation along
the third dimension, drawn uniformly from −80◦ to 80◦ , and
fracture depth, which we set to 0.1.

In the second stage, each fracture is regularized through a
volumetric representation with artificial width w proportional
to the mesh size h, where w = 2 h . Hence, the resulting frac-
ture networks consist of smooth rectangle/parallelepipeds
randomly embedded in the surrounding matrix. The fracture
network represents the initial datum for the phase-field param-
eter which evolves during the simulation depending on the
prescribed pressure and the boundary conditions. To ensure,
that the proposed benchmarks are replicable, the coordinates
defining the initial fracture networks can be downloaded from
our Zenodo repository (Zulian et al. 2021).

Fig. 3   Sneddon test: crack opening and displacement (y-direction).
The red color illustrates the fracture iso-surface for c = 0.9

Table 1   Error of the TVC and COD for Sneddon test as a function of
degrees of freedom and length-scale parameter ls

Dofs. ls Err-TCV Err-COD

202,612 1.08 70.08% 20.85%

1,826,132 0.52 17.80% 7.91%

15,479,572 0.25 5.48% 3.19%

127,420,052 0.13 0.34% 0.48%

434,125,332 0.08 0.055% 0.29%

Fig. 4   Two-dimensional simula-
tion with 1000 fractures and
13,565,475 degrees of freedom.
The colored overlay represents
the displacement magnitude
[0, 1.5] mm from transparent
blue to opaque red. Top: initial
fracture network. Bottom: final
configuration

418	 P. Zulian et al.

1 3

Our two-dimensional experiment considers a rectangular
domain of size 3mm × 10mm . We construct a fracture net-
work by generating 1000 initial fractures. During the whole
simulation, we apply zero Dirichlet boundary conditions for
the displacement field on all four sides of the domain. A
pressure load is linearly increased at each loading step and
defined as p(t) = p0 + �tpc , with p0 = 10−3 GPa , �t = 1 s
and pc = p0 = 10−3 GPa . The initial setup and the simula-
tion result are depicted in Fig. 4.

Our three-dimensional experiment considers a fracture
network embedded in cube of size 1mm × 1mm × 1mm .
The initial set-up of the simulation takes into account 100
randomly distributed fractures as shown in Fig. 5. We
apply zero Dirichlet boundary conditions for the dis-
placement field on all sides of the domain. A pressure
load is linearly increased at each loading step and defined
as p(t) = p0 + �tpc , with p0 = 10−5 GPa , �t = 0.05 s and
pc = 10−3GPa. Figure 5 depicts the evolution of the fracture
network. For both experiments, we set the critical energy
release to Gc = 1N/mm , whereas the Lamè parameters are
set equal to � = 100,000N/mm2 and � = 100,000 N/mm2 ,
respectively, and describe the mechanical response of granite
material Yu et al. (2018).

6 � Performance and scaling

All experiments have been performed at the Swiss National
Supercomputing Centre (CSCS) with the Piz Daint super-
computer on XC501 or XC402 compute nodes.

Every experiment uses all 12 cores of a XC50 node and,
alternatively, all 36 cores of a X40 node, without hyper-
threading. Thus, experiments running on 4 nodes are in fact
running with 12 × 4 = 48 and 36 × 4 = 144 MPI processes,
respectively.

We traced the code to understand its parallel behaviour
using mpiP (Vetter and Chambreau 2014) on XC40 compute

nodes. Subsequently, we have run a test with a grid of
40 × 40 × 40 , 4 levels totaling 122.6 Million dofs over 1152
MPI tasks on the finest grid. Among all MPI calls, 79% of
the MPI time is due to three calls: AllReduce, Iprobe and
Test. AllReduce calls are the most demanding. The heaviest
are called in the calculation of the norms in the QP solv-
ers, they count for 50% of the MPI time and the 16% of the
overall application’s time. Following the reductions, Iprobe
and Test calls, which are called by the matrix assembly, are
noticeable for roughly 7% of the MPI time.

6.1 � Algorithmic scalability

In this section, we investigate the algorithmic scalability of
the proposed fracture simulation framework based on the
RMTR method. We focus on the convergence properties of
the RMTR method with respect to the number of degrees of
freedom and number of processes. The comparison with the
single level trust-region method as well as with the stand-
ard alternate minimization can be found in Kopaničáková
and Krause (2020). As it has been demonstrated, the RMTR
method can achieve a speedup of factor 2–8, in terms of
computational time, compared to widely used alternate mini-
mization on standard benchmarks. In addition, the sensitiv-
ity of the method with respect to the choice of the model
parameters, such as degradation function can be found in
Bilgen et al. (2019).

We investigate the convergence properties of the RMTR
method for an increasing number of processors, for problems
of a fixed size. The algorithmic scalability of the RMTR
method is restricted by the choice of the trust-region sub-
problem solver (constrained QP-solver) employed on each

Fig. 5   Large 3D fracture network: four loading steps of a three-
dimensional simulation with 100 randomly distributed fractures and
242,793,828 degrees of freedom (number of levels is 4). The fracture

iso-surface is displayed for c = 0.9 . The colored transparent overlay
represents the displacement magnitude [0, 0.0032] mm from blue to
red. Snapshots taken at different times t ∈ {0, 0.75, 0.8, 0.9} s

Table 2   Average number of V-cycles over all time-steps as a function
of number of dofs and length-scale parameter ls

The experiment performed using Asphalt tension test, RMTR setup
with three levels

dofs 149, 307 605, 787 2, 440, 347 9, 795, 867

ls 0.25 0.12 0.06 0.03
V-cycles 79.2 106.4 131.3 149.5

1  A XC50 node consists of one Intel ® Xeon ® E5-2690 v3 @2.60
GHz (12 cores, 64 GB RAM)
2  A XC40 node consists of two Intel ® Xeon ® E5-2695 v4 @2.10
GHz ( 2 × 18 cores, 64/128 GB RAM)

419Large scale simulation of pressure induced phase‑field fracture propagation using Utopia﻿	

1 3

level of the multilevel hierarchy. In this work, we employed
the HJPGS method, see also Sect. 3.2.1. The convergence
properties of the HJPGS method deteriorate with an increas-
ing number of processors. This causes an increase in the
number of V-cycles required by the RMTR method to con-
verge to the desired tolerance, see Table 3. We have investi-
gated the performance of the method using alternative QP-
solvers, such as the projected conjugate gradient method
(MPRGP, Dostál 2016). In this particular case, the number
of required V-cycles remains stable with an increased num-
ber of processors. However, the soothing properties of the
MPRGP method are significantly worse than those of the
HJPGS. As a consequence, the RMTR method configured
with the MPRGP solver performed worse, compared to the
RMTR method configured with the HJPGS smoother.

Furthermore, we study the convergence properties of
the RMTR method with respect to the increasing number
of dofs. The conducted experiment considers the Asphalt
tension test and the RMTR method configured with three
levels. To mitigate the effects of the scalability of the HJPGS
method on the obtained results, the experiment was run in
serial. As we can see from Table 2, the average number of
V-cycles increases together with the number of dofs. This is
not surprising, as the value of the length-scale parameter ls ,
tied to the refinement level, determines how accurately we
can approximate sharp fracture surface. Thus, as we refine,
we are capable of approximating the sharp fracture surface
more accurately. However, the non-linearity and ill-condi-
tioning of the underlying problem become more prevalent,
which causes an increase in the required V-cycles.

6.2 � Scaling measures

We analyze the performance of our code with strong and
weak scaling measures. In strong scaling experiments the
size of the problem fixed and the speed-up is measured when
increasing the number of compute nodes. In particular, the
parallel efficiency is defined as e = Tbnb

Tnn
 with Tb being the

base experiment’s runtime and Tn being the experiment’s
runtime on n nodes. The minimal number of nodes nb is
chosen in such a way that the experiment fits into the node’s
RAM.

In weak scaling experiments the global size of the prob-
lem is changed proportionally to the number of compute

nodes. This is done such that the size of the sub-problem
assigned to one node is kept fixed. Here, the parallel effi-
ciency is defined as e = Tb∕Tn with Tb being the base experi-
ment’s runtime and Tn being the runtime of the experiment
on n nodes

For most experiments we analyze one of the reasons for
the loss in scaling by employing the following measure of
imbalance:

where T is the computing time with respect to MPI rank r
and any “method” of interest. The imbalance is measured
independently for each run. Methods of interest are typically
the ones with high variance in computing time. In all studies
we will look at the imbalance of the most intensive routines
the hybrid Jacobi projected Gauss–Seidel (HJPGS) solver,
the Hessian local matrix assembly (L), and the Hessian local
to global routine (G) where the data is communicated for the
elements at process boundaries.

6.3 � 3D Sneddon test: a scaling study

In this section, we use the Sneddon test introduced in
Sect. 5.1 for studying the scaling properties of the code. We
keep the length-scale parameter ls = 1.08 fixed for all runs.
This test case has the advantage of providing an analytical
solution, and it is simple enough to be reproduced in future
studies with different software stacks. Additionally, the
problem is solved with 6 nonlinear iteration for any parallel
configuration, hence keeping the required computing budget
low even for large experiments. These experiments are run
on the XC40 nodes of Piz Daint with 36 MPI processes per
node. At every nonlinear iteration, we perform 2 pre- and
post-smoothing steps.

Strong scaling: We conducted three strong scaling experi-
ments with different grid resolutions.

Figure 6a illustrates how the software performs for a
small experiment with a coarse grid of size 20 × 20 × 20 .
Here we use 3 RMTR levels hence having a fine grid of size
77 × 77 × 77 and a nonlinear problem with 1,826,132 dofs.
The experiment was performed with 1, 2, 4, 8 nodes, and
the run time is reduced from over a minute to a few seconds.

I(method) =

(
max

r
T(r, method) −min

r
T(r, method)

)

max
r

T(r, Total)
,

Table 3   Effects of HJPGS
convergence on performance

Average number of V-cycles over all time-steps as a function of number of nodes. Left: two-dimensional
experiments performed with 1000 fractures and 28.7 mil. dofs. Right: three-dimensional experiment per-
formed with 100 fractures and 122.7 mil. dofs. The experiments were performed using XC40 nodes

nodes 4 8 16 32 # nodes 25 50 75 100

V-cycles 126 135 147 154 # V-cycles 42 44 54 69

420	 P. Zulian et al.

1 3

Figure 6b illustrates how the software performs for an
experiment with an order of magnitude more degrees of
freedom. Here, we have a coarse grid of size 40 × 40 × 40 ,
3 RMTR levels, a fine grid of size 157 × 157 × 157 , and
15,479,572 dofs. The runs have been performed on 4, 5, 6
, 7, 8, 12, 16, 2, 24, 28, 32 nodes. Figure 6d illustrates the
imbalance which reduces the overall parallel efficiency. The
hierarchy of grids is generated by refinement, hence any ini-
tial slight imbalance in coarse grid distribution is amplified
each refinement. This difference in workload is particularly

evident in the routine computing Hessian matrix. This rou-
tine is split into two phases: (1) the “local” assembly (L)
where numerical quadrature is performed and the entries
are added in the respective rows of the matrix; (2) the local
to global routine (G), where entries on the boundary of the
subdomains that belong to other processes are redistributed.
The second phase could be avoided by leveraging overlap-
ping decomposition of the grid hence avoiding this com-
munication step. However, this contribution is restricted to
non-overlapping domain decomposition techniques.

Fig. 6   Sneddon test: small
(a), medium (b), and large
(c) experiments for measur-
ing strong scaling efficiency
and runtimes for the different
components of our RMTR
implementation. The horizon-
tal dashed red line marks 80%
efficiency. Imbalance (d) affect-
ing the scaling efficiency of the
implementation

1,826,132

15,479,572

81,385,668

421Large scale simulation of pressure induced phase‑field fracture propagation using Utopia﻿	

1 3

Figure 6c illustrates a large experiment with a coarse
grid of size 35 × 35 × 35 , 4 RMTR levels, a fine grid of
273 × 273 × 273 , and 81,385,668 dofs. Here, we used 80, 96,
112, 128, 160, 192, 224, 256 nodes. This experiment differs
from the previous two, due to the extra level of refinement,
which reduces the cost of the coarse grid solver but will
accentuate the imbalance as it can be observed in the meas-
urements illustrated in the right-side area plot in Fig. 6d.

Weak scaling: Figure 7 illustrates the weak-scaling prop-
erties for runs with a relatively small amount of dofs per
process (approximately 20,000). We ran the experiment on
1, 2, 4, 8, 16, 32, 64 nodes. The runtime is stable below 20
seconds and the main routines of interest in our implementa-
tion are stable below 10 seconds. It can be observed that the
imbalance measures is a quite significant past the base run
on one node. Except for MPRGP, which solves the coarse
grid problem with negligible computational time, the scaling
efficiency fluctuates around 80%

6.4 � Large 3D fracture network: a scaling study

In this section, we study the nonlinear multilevel opera-
tor, when used for solving the three-dimensional pressure-
induced fracture propagation of the stochastic fracture
network, described in Sect. 5.2. Scaling experiments were
obtained by performing a single nonlinear solve which
required a fixed number of V-cycles (10). However, the
obtained results are conclusive, as the operations performed
within a V-cycle are called repetitively during the whole
simulation. The experiments were performed on the XC50
nodes of Piz Daint with 12 MPI processes per node.

Strong scaling: We conducted two strong scaling experi-
ments one small with a coarse grid of 25 × 25 × 25 , 4 levels

totalling 28.7 million dofs on the finest grid and one large
experiment with a coarse grid of 40 × 40 × 40 , 4 levels total-
ling 122.7 million dofs on the finest grid. The small experi-
ment was run on 4, 5, 6, 7, 8, 12, 16, 20, 24, 28, 32 nodes,
the big one on 40, 48, 56, 64, 80, 96, 112, 128, 160, 192,
224, 256. Moreover, in both the two scenarios we employed
the Hessian lagging strategy to reduce the numbers of times
when Hessian matrix is assembled.

In Fig. 8a we analyze the small experiment starting with
nb = 4 nodes. Here, we depict the total parallel efficiency
and the total run-time together with the parallel efficiency
and the run-time of the routines which most affect the overall
performance of the software library.

In Fig. 8b the same analysis is presented for the large exper-
iment starting with nb = 40 nodes. Both the figures show that
the total parallel efficiency oscillates depending on the number
of nodes. This is due to slight imbalances illustrated in Fig. 8c
which appear to have sometimes a bigger effect on the total
runtime than with the same coarse grid size but a different
node count. However, a comparison between the three-dimen-
sional pneumatic scenarios and the 3D Sneddon test reveals
that the use of the Hessian lagging strategy allows reducing the
time invested in evaluating the Hessian and reserve it for solv-
ing the QP problem. In Table 4 we report the number of calls
of the most relevant routines. We can observe that when paral-
lelism is increased the HJPGS convergence effects discussed
in Sect. 6.1 are sensibly changing the algorithmic behaviour
of RMTR and affecting the scaling efficiency.

Weak scaling: For weak scaling, we have set up the experi-
ment with a coarse grid of 9 × 9 × 9 on a single node and
incremented then by doubling the nodes and adapting the
dimensions to have a similar number of dofs on the coarse

Fig. 7   Sneddon test: weak
scaling efficiency, runtimes, and
imbalance. The size of the grid
is s × s × s , where
s =

⌈
(1000 × n)

1

3

⌉
 hence with

s3 × 4 dofs in the coarse level
and ((s − 1) × 2

(l−1) + 1)3 at
each RMTR level l (fine level is
l = 3 ). The reminder rounded by
the ceiling operator ⌈⋅⌉ will
cause some fluctuations in the
amount of work of each run and
defects in the efficiency plot.
The size of smallest run consists
of 740,772 dofs while the
largest one consists of
48,035,956 dofs

422	 P. Zulian et al.

1 3

grid. Experiments with a cube number of nodes are exact in
the sense that the work per node on the coarse grid is the same
as for the base experiment on one node. In Fig. 9c we can see
the results for the parallel efficiency where we have a sub-grid
size of 10 × 10 × 10 on each node. Additionally,we have a
dashed black line which gives us an upper estimate of the par-
allel efficiency. It is a “corrected” value where we multiply e
with a constant c = N

Nbn
 with N being the number of dofs on

the finest grid and Nb being the number of dofs on the finest
grid for the experiment on one node. This correction factor is
larger than 1, because doubling each dimension on the coarse
grid will increase the number of dofs by a factor larger than 8
on the finest grid. For a setup with 4 levels, the number of dofs
on the finest grid in x-direction is 8Nx − 7 , similarly in y and
z-direction, which results in a larger multiplication factor on
the finest level than the multiplication factor on the coarse
level.

Fig. 8   Large 3D fracture
network: small (a), and large
(b) experiments for measur-
ing strong scaling efficiency
and runtimes for the different
components of our RMTR
implementation. The horizon-
tal dashed red line marks 80%
efficiency. Imbalance (c) affect-
ing the scaling efficiency of the
implementation

28,756,228

122,657,188

Table 4   Large 3D fracture network: large experiment from Fig. 8

Number of calls of routines and algorithms for different node con-
figurations. The convergence rate of HJPGS deteriorates with more
parallelism and it is affected by the domain decomposition. It can be
observed that this aspects sensibly affects the number of calls of other
methods

Nodes Hessian Gradient Energy HJPGS MPRGP

40 39 111 127 65 8
48 36 96 113 59 7
56 37 99 118 62 7
64 37 100 117 61 7
80 42 103 167 95 10
96 42 113 148 80 8
112 40 107 137 73 8
128 39 99 138 76 8
160 43 104 173 99 10
192 43 106 170 96 10
224 38 105 123 63 8
256 44 111 178 100 11

423Large scale simulation of pressure induced phase‑field fracture propagation using Utopia﻿	

1 3

7 � Conclusion

We presented the first open-source code for numerical mod-
elling of large-scale phase-field fracture simulations using
the RMTR method. Our implementation of the phase-field
fracture model employs an expression template-based
assembler designed for structured grids and 2D/3D tensor-
product finite elements. Our implementation of the RMTR
method with its different components, such as the quad-
ratic programming solvers, provided in the Utopia software
library can deal with non-convex and geometrically complex
problems in an efficient and scalable way. Every aspect of
the code has been first optimized for single-core CPU per-
formance, then improved for MPI-based parallelism.

All the numerical examples show the capabilities of our
simulation framework and its suitability for large-scale geo-
science applications, such as hydraulic fracturing of complex
fracture networks. To this end, our studies show the parallel
performance by analyzing strong and weak scaling proper-
ties to the limits of the standard PETSc configuration, i.e.,
with 32-bit indices.

We performed two scaling studies with different RMTR
set-ups where the first, based on the Sneddon test, has a sim-
ple set-up and the second, the large fracture network experi-
ment, is more complex due to a large number of fractures.
We differentiated the large fracture network experiment by
using the Hessian lag strategy. Here, we observed how the
weight of the computation is moved from quadrature to lin-
ear algebra.

The current implementation of both discretization and
model is tailored towards CPU based computing architec-
tures. However, we point out that most of this code has
been prepared already with the perspective to be ported to
GPU based computing architectures. To achieve this goal

there are however two main challenges. First, the imple-
mentation of the quadrature rules which, due to the limited
memory available and the GPU work model, requires spe-
cific design measures. Second, the HJPGS algorithm has
to be either ported to GPU [using independent-set coloring
(Zhang 1996)], or a more suitable alternative with equivalent
smoothing properties has to be found. We emphasize that
for remaining parts of our multilevel solver we can instead
just switch to the back-end which targets GPUs, the Utopia/
Tpetra backend. Results presented in this work are foreseen
to be used for comparisons with future GPU accelerated
versions of this code.

In this work we focused on networks with high fracture
density, which represent a challenging class of problems
due to the complex geometry and the non-convexity of the
underlying minimization problem. Future work shall include
to port the entire framework to GPU architectures, and the
integration of adaptive octree data structures [e.g., by using
DMPlex or P4est (Burstedde et al. 2011)] to efficiently han-
dle the discrete representations of sparse fracture networks.

Funding  Open Access funding provided by Università della Svizzera
italiana. P.Z., M.G.C.N. and R.K. thank the project “Forecasting and
Assessing Seismicity and Thermal Evolution in geothermal Reser-
voirs” (FASTER) founded by Platform for Advanced and Scientific
Computing (PASC). Additionally, this research is part of the activities
of the Swiss Centre for Competence in Energy Research on Supply of
Electricity (SCCER-SoE) and the Future Swiss Electrical Infrastructure
(SCCER-FURIES), which is financially supported by the Swiss Inno-
vation Agency (Innosuisse–SCCER program). A.K. and R.K. thank
the project “Large-scale simulation of pneumatic and hydraulic frac-
ture with a phase-field approach” (No.:154090), founded by the Swiss
National Science Foundation (SNF) and the project “Reliable Simula-
tion Techniques in Solid Mechanics. Development of Non-standard
Discretization Methods, Mechanical and Mathematical Analysis” (No.:
SPP1748) founded by the Deutsche Forschungsgemeinschaf (DFG).

Fig. 9   Large 3D fracture
network: weak scaling
efficiency, runtimes, and
imbalance. The size of the grid
is s × s × s , where
s =

⌈
(729 × n)

1

3

⌉
 hence with

s3 × 4 dofs in the coarse level
and ((s − 1) × 2

(l−1) + 1)3 at
each RMTR level l (fine level is
l = 3 ). The reminder rounded by
the ceiling operator ⌈⋅⌉ will
cause some fluctuations in the
amount of work of each run and
defects in the efficiency plot.
The size of smallest run consists
of 1,098,500 dofs while the
largest has 188,183,524 dofs.
The dashed black line represents
the “corrected” efficiency

424	 P. Zulian et al.

1 3

This work was supported by a grant from the Swiss National Super-
computing Centre (CSCS) under project ID “sm43”.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Adams, M., Brezina, M., Hu, J., Tuminaro, R.: Parallel multigrid
smoothing: polynomial versus Gauss–Seidel. J. Comput. Phys.
188(2), 593–610 (2003)

Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending
on jumps by elliptic functional via �-convergence. Commun. Pure
Appl. Math. 43(8), 999–1036 (1990)

Ambrosio, L., Tortorelli, V.: On the approximation of free discontinuity
problems. Bull. Ital. Math. Union B 6b (1992)

Bader, A., Brodman, J., Kinsner, M.: A sycl compiler and runtime
architecture. In: Proceedings of the International Workshop on
OpenCL, IWOCL’19. Association for Computing Machinery,
New York (2019). https://​doi.​org/​10.​1145/​33181​70.​33181​94

Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient manage-
ment of parallelism in object oriented numerical software librar-
ies. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern
Software Tools in Scientific Computing, pp. 163–202. Birkhäuser
Press (1997)

Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P.,
Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Karpe-
yev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes,
L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F.,
Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Tech.
Rep. ANL-95/11—Revision 3.11, Argonne National Labora-
tory (2019)

Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose
object oriented finite element library. ACM Trans. Math. Softw.
33(4), 241–2427 (2007)

Beckingsale, D., Hornung, R., Scogland, T., Vargas, A.: Performance
portable c++ programming with raja. In: Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming,
PPoPP ’19, pp. 455–456. Association for Computing Machinery,
New York (2019). https://​doi.​org/​10.​1145/​32938​83.​33025​77

Bilgen, C., Kopaničáková, A., Krause, R., Weinberg, K.: A phase-field
approach to conchoidal fracture. Meccanica 53, 1203–19 (2018).
https://​doi.​org/​10.​1007/​s11012-​017-​0740-z

Bilgen, C., Kopaničáková, A., Krause, R., Weinberg, K.: A detailed
investigation of the model influencing parameters of the

phase-field fracture approach. In: GAMM-Mitteilungen, p.
e202000005 (2019)

Blatt, M., Burchardt, A., Dedner, A., Engwer, C., Fahlke, J., Flemisch,
B., Gersbacher, C., Gräser, C., Gruber, F., Grüninger, C., Kempf,
D., Klöfkorn, R., Malkmus, T., Müthing, S., Nolte, M., Piat-
kowski, M., Sander, O.: The distributed and unified numerics
environment, Version 2.4. Arch. Numer. Softw. 4(100), 13–29
(2016). https://​doi.​org/​10.​11588/​ans.​2016.​100.​26526

Bourdin, B.: Numerical implementation of the variational formulation
for quasi-static brittle fracture. Interfaces Free Bound. 9, 411–430
(2007). https://​doi.​org/​10.​4171/​IFB/​171

Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in
revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826
(2000)

Bourdin, B., Larsen, C.J., Richardson, C.L.: A time-discrete model
for dynamic fracture based on crack regularization. Int. J. Fract.
168(2), 133–143 (2011)

Brandt, J., Guo, P.J., Lewenstein, J., Klemmer, S.R.: Opportunistic pro-
gramming: how rapid ideation and prototyping occur in practice.
In: Proceedings of the 4th international workshop on End-user
software engineering, pp. 1–5 (2008)

Briggs, W.L., McCormick, S.F., et al.: A multigrid tutorial. Siam
(2000)

Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms
for parallel adaptive mesh refinement on forests of octrees. SIAM
J. Sci. Comput. 33(3), 1103–1133 (2011). https://​doi.​org/​10.​1137/​
10079​1634

Chakraborty, P., Sabharwall, P., Carroll, M.C.: A phase-field approach
to model multi-axial and microstructure dependent fracture in
nuclear grade graphite. J. Nucl. Mater. 475, 200–208 (2016a)

Chakraborty, P., Zhang, Y., Tonks, M.R.: Multi-scale modeling of
microstructure dependent intergranular brittle fracture using a
quantitative phase-field based method. Comput. Mater. Sci. 113,
38–52 (2016b)

Chen, Y., Ma, G., Wang, H., Li, T.: Evaluation of geothermal develop-
ment in fractured hot dry rock based on three dimensional unified
pipe-network method. Appl. Therm. Eng. 136, 219–228 (2018)

Chen, Y., Vasiukov, D., Gélébart, L., Park, C.H.: A fft solver for vari-
ational phase-field modeling of brittle fracture. Comput. Methods
Appl. Mech. Eng. 349, 167–190 (2019)

Conn, A.R., Gould, N.I., Toint, P.L.: Trust region methods, vol. 1. Siam
(2000)

de Dreuzy, J.R., Davy, P., Bour, O.: Hydraulic properties of two-dimen-
sional random fracture networks following a power law length
distribution: 1. Effective connectivity. Water Resour. Res. 37(8),
2065–2078 (2001)

De Lorenzis, L., Gerasimov, T.: Numerical implementation of phase-
field models of brittle fracture. In: Modeling in Engineering
Using Innovative Numerical Methods for Solids and Fluids, pp.
75–101. Springer (2020)

Denli, F.A., Gültekin, O., Holzapfel, G.A., Dal, H.: A phase-field
model for fracture of unidirectional fiber-reinforced polymer
matrix composites. Comput. Mech. 1–18 (2020)

DeVito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Barri-
entos, M., Elsen, E., Ham, F., Aiken, A., Duraisamy, K., Darve,
E., Alonso, J., Hanrahan, P.: Liszt: a domain specific language
for building portable mesh-based pde solvers. In: Proceedings
of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 9:1–9:12. ACM
(2011)

Dostál, Z.: Mprgp for bound-constrained qp. In: Scalable Algorithms
for Contact Problems, pp. 121–133. Springer (2016)

Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling
manycore performance portability through polymorphic
memory access patterns. J. Parallel Distrib. Comput. 74(12),
3202–3216 (2014). https://​doi.​org/​10.​1016/j.​jpdc.​2014.​07.​

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3318170.3318194
https://doi.org/10.1145/3293883.3302577
https://doi.org/10.1007/s11012-017-0740-z
https://doi.org/10.11588/ans.2016.100.26526
https://doi.org/10.4171/IFB/171
https://doi.org/10.1137/100791634
https://doi.org/10.1137/100791634
https://doi.org/10.1016/j.jpdc.2014.07.003

425Large scale simulation of pressure induced phase‑field fracture propagation using Utopia﻿	

1 3

003(Domain-Specific Languages and High-Level Frame-
works for High-Performance Computing)

Farrell, P., Maurini, C.: Linear and nonlinear solvers for variational
phase-field models of brittle fracture. Int. J. Numer. Methods
Eng. 109(5), 648–667 (2017)

Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy
minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342
(1998)

Gaston, D., Newman, C., Hansen, G., Lebrun-Grandie, D.: MOOSE:
a parallel computational framework for coupled systems of non-
linear equations. Nucl. Eng. Des. 239(10), 1768–1778 (2009)

Gerasimov, T., Lorenzis, L.D.: A line search assisted monolithic
approach for phase-field computing of brittle fracture. Comput.
Methods Appl. Mech. Eng. 312, 276–303 (2016)

Giacomini, A.: Ambrosio–Tortorelli approximation of quasi-static
evolution of brittle fractures. Calc. Var. Partial. Differ. Equ.
22(2), 129–172 (2005)

Goswami, S., Anitescu, C., Rabczuk, T.: Adaptive fourth-order phase
field analysis for brittle fracture. Comput. Methods Appl. Mech.
Eng. 361, 112808 (2020)

Gratton, S., Mouffe, M., Toint, P., Weber Mendonca, M.: A recursive
�∞-trust-region method for bound-constrained nonlinear optimi-
zation. IMA J. Numer. Anal. 28(4), 827–861 (2008a)

Gratton, S., Sartenaer, A., Toint, P.L.: Recursive trust-region meth-
ods for multiscale nonlinear optimization. SIAM J. Optim.
19(1), 414–444 (2008b)

Groß, C., Krause, R.: On the convergence of recursive trust-region
methods for multiscale nonlinear optimization and applications
to nonlinear mechanics. SIAM J. Numer. Anal. 47(4), 3044–
3069 (2009). https://​doi.​org/​10.​1137/​08071​819X

Group research, D.: Software development kit for advanced numeri-
cal simulations (2015). https://​softw​are.​dynaf​low.​com/​jive/

Hackbusch, W.: Multi-gr id Methods and Applications,
vol. 4. Springer, Berlin (1985). https://​doi.​org/​10.​1007/​
978-3-​662-​02427-0

Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4),
251–265 (2012)

Heister, T., Wheeler, M.F., Wick, T.: A primal-dual active set method
and predictor-corrector mesh adaptivity for computing fracture
propagation using a phase-field approach. Comput. Methods Appl.
Mech. Eng. 290, 466–495 (2015)

Heroux, M., Bartlett, R., Hoekstra, V.H.R., Hu, J., Kolda, T., Lehoucq,
R., Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist,
H., Tuminaro, R., Willenbring, J., Williams, A.: An overview of
trilinos. Tech. Rep. SAND2003–2927, Sandia National Labora-
tories (2003)

Hesch, C., Weinberg, K.: Thermodynamically consistent algorithms
for a finite-deformation phase-field approach to fracture. Int. J.
Numer. Methods Eng. 99(12), 906–924 (2014)

Hesch, C., Gil, A., Ortigosa, R., Dittmann, M., Bilgen, C., Betsch,
P., Franke, M., Janz, A., Weinberg, K.: A framework for poly-
convex large strain phase-field methods to fracture. Comput.
Methods Appl. Mech. Eng. (2017)

Hou, Y.: Computational analysis of asphalt binder based on phase
field method. Ph.D. thesis, Virginia Tech (2014)

Hou, Y., Wang, L., Yue, P., Sun, W.: Fracture failure in crack interac-
tion of asphalt binder by using a phase field approach. Mater.
Struct. 48(9), 2997–3008 (2015)

Humphrey, J.R., Price, D.K., Spagnoli, K.E., Paolini, A.L., Kelmelis,
E.J.: Cula: hybrid gpu accelerated linear algebra routines. In:
SPIE defense, security, and sensing, p. 770502 (2010)

Iglberger, K., Hager, G., Treibig, J., Rüde, U.: Expression templates
revisited: a performance analysis of current methodologies.
SIAM J. Sci. Comput. 34(2), C42–C69 (2012)

Jodlbauer, D., Langer, U., Wick, T.: Matrix-free multigrid solvers for
phase-field fracture problems (2019). arXiv:​1902.​08112

Khronos OpenCL Working Group.: The OpenCL Specification, ver-
sion 1.0.29 (2008)

Kienle, D., Gräser, C., Sander, O., Keip, M.A.: Efficient and reli-
able phase-field simulation of brittle fracture using a nonsmooth
multigrid solution scheme. PAMM 18(1), e201800126 (2018)

Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libmesh: a
c++ library for parallel adaptive mesh refinement/coarsening
simulations. Eng. Comput. 22(3–4), 237–254 (2006)

Klinsmann, M., Rosato, D., Kamlah, M., McMeeking, R.M.: An
assessment of the phase field formulation for crack growth.
Comput. Methods Appl. Mech. Eng. 294, 313–330 (2015)

Kopaničáková, A., Krause, R.: A recursive multilevel trust region
method with application to fully monolithic phase-field models
of brittle fracture. Comput. Methods Appl. Mech. Eng. 360,
112720 (2020). https://​doi.​org/​10.​1016/j.​cma.​2019.​112720

Kornhuber, R.: Monotone multigrid methods for elliptic variational
inequalities I. Numer. Math. 69(2), 167–184 (1994). https://​doi.​
org/​10.​1007/​BF033​25426

Kretz, M., Lindenstruth, V.: Vc: A c++ library for explicit vectoriza-
tion. Softw. Pract. Exp. 42(11), 1409–1430 (2012). https://​doi.​
org/​10.​1002/​spe.​1149

Kuhn, C., Schlüter, A., Müller, R.: On degradation functions in phase
field fracture models. Comput. Mater. Sci. 108, 374–384 (2015)

Li, T., Marigo, J.J., Guilbaud, D., Potapov, S.: Gradient damage mod-
eling of brittle fracture in an explicit dynamics context. Int. J.
Numer. Methods Eng. 108(11), 1381–1405 (2016)

Liu, G., Li, Q., Msekh, M.A., Zuo, Z.: Abaqus implementation of
monolithic and staggered schemes for quasi-static and dynamic
fracture phase-field model. Comput. Mater. Sci. 121, 35–47
(2016)

Logg, A.: Automating the finite element method. Arch. Comput. Meth-
ods Eng. 14(2), 93–138 (2007)

Long, K., Kirby, R., van Bloemen Waanders, B.: Unified embedded
parallel finite element computations via software-based fréchet
differentiation. SIAM J. Sci. Comput. 32(6), 3323–3351 (2010)

May, S., Vignollet, J., De. Borst, R.: A numerical assessment of phase-
field models for brittle and cohesive fracture: �-convergence and
stress oscillations. Eur. J. Mech. A/Solids 52, 72–84 (2015)

Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-
independent crack propagation: robust algorithmic implementa-
tion based on operator splits. Comput. Methods Appl. Mech. Eng.
199(45), 2765–2778 (2010a)

Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically con-
sistent phase-field models of fracture: variational principles and
multi-field FE implementations. Int. J. Numer. Methods Eng.
83(10), 1273–1311 (2010b)

Mikelic, A., Wheeler, M.F., Wick, T.: Phase-field modeling of pressur-
ized fractures in a poroelastic medium. ICES Report, pp. 14–18
(2014)

Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of a fluid-
driven fracture in a poroelastic medium. Comput. Geosci. 19(6)
(2015a). https://​doi.​org/​10.​1007/​s10596-​015-​9532-5

Mikelić, A., Wheeler, M.F., Wick, T.: A quasi-static phase-field
approach to pressurized fractures. Nonlinearity 28(5), 1371
(2015b)

Mollaali, M., Ziaei-Rad, V., Shen, Y.: Numerical modeling of Co
2

fracturing by the phase field approach. J. Nat. Gas Sci. Eng. 70,
102905 (2019)

Molnár, G., Gravouil, A.: 2d and 3d abaqus implementation of a robust
staggered phase-field solution for modeling brittle fracture. Finite
Elem. Anal. Des. 130, 27–38 (2017)

Msekh, M.A., Sargado, J.M., Jamshidian, M., Areias, P.M., Rabczuk,
T.: Abaqus implementation of phase-field model for brittle frac-
ture. Comput. Mater. Sci. 96, 472–484 (2015)

Nguyen, T.T., Yvonnet, J., Zhu, Q.Z., Bornert, M., Chateau, C.: A
phase field method to simulate crack nucleation and propagation

https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1137/08071819X
https://software.dynaflow.com/jive/
https://doi.org/10.1007/978-3-662-02427-0
https://doi.org/10.1007/978-3-662-02427-0
http://arxiv.org/abs/1902.08112
https://doi.org/10.1016/j.cma.2019.112720
https://doi.org/10.1007/BF03325426
https://doi.org/10.1007/BF03325426
https://doi.org/10.1002/spe.1149
https://doi.org/10.1002/spe.1149
https://doi.org/10.1007/s10596-015-9532-5

426	 P. Zulian et al.

1 3

in strongly heterogeneous materials from direct imaging of their
microstructure. Eng. Fract. Mech. 139, 18–39 (2015)

Nguyen, T.T., Yvonnet, J., Bornert, M., Chateau, C., Bilteryst, F., Steib,
E.: Large-scale simulations of quasi-brittle microcracking in real-
istic highly heterogeneous microstructures obtained from micro ct
imaging. Extreme Mech. Lett. 17, 50–55 (2017)

Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel pro-
gramming with CUDA. Queue 6(2), 40–53 (2008)

Nvidia, C.: Cublas library (2008)
Prud’homme, C., Chabannes, V., Stephane, V., Ancel, A., Metivet,

T., Daversin-Catty, C., Hild, R., Dollé, G., Tarabay, l., LANTZT,
Doyeux, T., Samake, A., Vanthong, B., Ismail, M., Huber, V.,
Winstone, K., Schenone, P.D., Barbier, D., Veysset, J., Badger,
T.G., Schueller, J., Gwenaël, P.: feelpp/feelpp: Feel++ v0.107
(2020). https://​doi.​org/​10.​5281/​zenodo.​36017​98

Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F.,
McRae, A.T., Bercea, G.T., Markall, G.R., Kelly, P.H.: Firedrake:
automating the finite element method by composing abstractions.
ACM Trans. Math. Softw. (TOMS) 43(3), 1–27 (2016)

Rupp, K., Tillet, P., Rudolf, F., Weinbub, J., Morhammer, A., Grasser,
T., Jüngel, A., Selberherr, S.: Viennacl–linear algebra library for
multi- and many-core architectures. SIAM J. Sci. Comput. 38(5),
S412–S439 (2016). https://​doi.​org/​10.​1137/​15M10​26419

Samin, M.Y., Faramarzi, A., Jefferson, I., Harireche, O.: A hybrid opti-
misation approach to improve long-term performance of enhanced
geothermal system (egs) reservoirs. Renew. Energy 134, 379–389
(2019)

Sargado, J.M., Keilegavlen, E., Berre, I., Nordbotten, J.M.: High-accu-
racy phase-field models for brittle fracture based on a new fam-
ily of degradation functions. J. Mech. Phys. Solids 111, 458–489
(2018)

Singh, N., Verhoosel, C., De. Borst, R., Van Brummelen, E.: A frac-
ture-controlled path-following technique for phase-field modeling
of brittle fracture. Finite Elem. Anal. Des. 113, 14–29 (2016)

Sneddon, I., Lowengrub, M.: Crack problems in the classical theory of
elasticity. In: Developments in Theoretical and Applied Mechan-
ics: Proceedings of the Third Southeastern Conference on Theo-
retical and Applied Mechanics, p. 73. Elsevier (2013)

Steinke, C., Özenç, K., Chinaryan, G., Kaliske, M.: A comparative
study of the r-adaptive material force approach and the phase-field
method in dynamic fracture. Int. J. Fract. 201(1), 97–118 (2016)

Taylor, R.L.: Feap—a finite element analysis program (2020). http://​
proje​cts.​ce.​berke​ley.​edu/​feap/

Tupek, M.R.: Cohesive phase-field fracture and a pde constrained opti-
mization approach to fracture inverse problems. Tech. rep., Sandia
National Lab (SNL-NM), Albuquerque (2016)

van Zwieten, G., van Zwieten, J., Verhoosel, C., Fonn, E., Hoitinga,
W.: Nutils v3. 0 (2018)

Veldhuizen, T.: Expression templates. C++ Report (1995)
Vetter, J., Chambreau, C.: mpip: lightweight, scalable mpi profiling,

version 3.4.1 (2014)
Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to

computational continuum mechanics using object-oriented tech-
niques. Comput. Phys. 12(6), 620–631 (1998)

Wick, T.: Modified Newton methods for solving fully monolithic
phase-field quasi-static brittle fracture propagation. Comput.
Methods Appl. Mech. Eng. 325, 577–611 (2017)

Wick, T., Singh, G., Wheeler, M.F., et al.: Fluid-filled fracture propa-
gation with a phase-field approach and coupling to a reservoir
simulator. SPE J. 21(03), 981–999 (2016)

Wu, J.Y., Huang, Y., Nguyen, V.P.: On the bfgs monolithic algorithm
for the unified phase field damage theory. Comput. Methods Appl.
Mech. Eng. 360, 112704 (2020)

Yoshioka, K., Bourdin, B.: A variational hydraulic fracturing model
coupled to a reservoir simulator. Int. J. Rock Mech. Min. Sci. 88,
137–150 (2016)

Yu, M., Wei, C., Niu, L., Li, S., Yu, Y.: Calculation for tensile strength
and fracture toughness of granite with three kinds of grain sizes
using three-point-bending test. PLoS One 13(3) (2018)

Zhang, J.: Acceleration of five-point red-black Gauss–Seidel in multi-
grid for Poisson equation. Appl. Math. Comput. 80(1), 73 (1996)

Zhou, S., Rabczuk, T., Zhuang, X.: Phase field modeling of quasi-static
and dynamic crack propagation: Comsol implementation and case
studies. Adv. Eng. Softw. 122, 31–49 (2018)

Ziaei-Rad, V., Shen, Y.: Massive parallelization of the phase field
formulation for crack propagation with time adaptivity. Comput.
Methods Appl. Mech. Eng. 312, 224–253 (2016)

Zulian, P., Kopaničáková, A., Nestola, M.C.G., Fink, A., Fadel, N.,
Rigazzi, A., Magri, V., Schneider, T., Botter, E., Mankau, J.,
Krause, R.: Utopia: a C++ embedded domain specific language
for scientific computing. Git repository (2016). https://​bitbu​cket.​
org/​zulia​np/​utopia

Zulian, P., Kopaničáková, A., Nestola, M.G.C., Fink, A., Fadel, N.A.,
VandeVondele, J., Krause, R.: Large scale simulation of pressure
induced phase-field fracture propagation using Utopia (2020).
https://​doi.​org/​10.​5281/​zenodo.​37604​11

Zulian, P., Kopaničáková, A., Nestola, M.G.C., Fink, A., Fadel, N.A.,
VandeVondele, J., Krause, R.: Benchmark: pressure-induced frac-
ture propagation of stochastic fracture networks (initial condition)
(2021). https://​doi.​org/​10.​5281/​zenodo.​45577​51

https://doi.org/10.5281/zenodo.3601798
https://doi.org/10.1137/15M1026419
http://projects.ce.berkeley.edu/feap/
http://projects.ce.berkeley.edu/feap/
https://bitbucket.org/zulianp/utopia
https://bitbucket.org/zulianp/utopia
https://doi.org/10.5281/zenodo.3760411
https://doi.org/10.5281/zenodo.4557751

	Large scale simulation of pressure induced phase-field fracture propagation using Utopia
	Abstract
	1 Introduction
	2 Pressure induced phase-field fracture model
	2.1 Variational approach to fracture
	2.2 Minimization problem

	3 Multilevel trust-region method
	3.1 RMTR algorithm
	3.2 Level-dependent minimization problems
	3.2.1 Smoothing and coarse grid solve (trust-region method)

	4 Parallel implementation with Utopia
	4.1 Hardware portability and software maintainability
	4.2 Algebra
	4.3 Finite element assembly

	5 Numerical experiments
	5.1 Validation
	5.1.1 Tension test of asphalt specimen
	5.1.2 Sneddon test of pressure induced fracture

	5.2 Pressure induced fracture propagation of stochastic fracture networks

	6 Performance and scaling
	6.1 Algorithmic scalability
	6.2 Scaling measures
	6.3 3D Sneddon test: a scaling study
	6.4 Large 3D fracture network: a scaling study

	7 Conclusion
	References

