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Abstract
Clustering validation is one of the most important and challenging parts of clustering analysis, as there is no ground truth 
knowledge to compare the results with. Up till now, the evaluation methods for clustering algorithms have been used for 
determining the optimal number of clusters in the data, assessing the quality of clustering results through various validity 
criteria, comparison of results with other clustering schemes, etc. It is also often practically important to build a model on a 
large amount of training data and then apply the model repeatedly to smaller amounts of new data. This is similar to assign-
ing new data points to existing clusters which are constructed on the training set. However, very little practical guidance 
is available to measure the prediction strength of the constructed model to predict cluster labels for new samples. In this 
study, we proposed an extension of the cross-validation procedure to evaluate the quality of the clustering model in predict-
ing cluster membership for new data points. The performance score was measured in terms of the root mean squared error 
based on the information from multiple labels of the training and testing samples. The principal component analysis (PCA) 
followed by k-means clustering algorithm was used to evaluate the proposed method. The clustering model was tested using 
three benchmark multi-label datasets and has shown promising results with overall RMSE of less than 0.075 and MAPE of 
less than 12.5% in three datasets.
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Introduction

Overview of Unsupervised Learning

Unsupervised learning aims to find the underlying structure 
or the distribution of data. It is an important area in the 
domain of machine learning, where the labels for the data 
examples are not necessarily required for model building. 

The main tasks in unsupervised learning include cluster 
analysis [40, 42], building self-organizing maps (SOM) [21], 
representation learning [2], and density estimation [31]. 
Cluster analysis, the main focus of this study, is a central 
task for grouping heterogeneous data points into a number of 
more homogenous subgroups based on distance, or naturally 
occurring trends, patterns, and relationships in the data. The 
formation of homogenous or heterogeneous grouping (or 
clustering) structure from a complex dataset requires a meas-
ure of ‘closeness’ or ‘similarity’. In clustering, the definition 
of similarity is highly dependent on the applied distance 
function between the data objects. The choice of similarity 
measure can be considered based on the type of the variable 
used to cluster objects (continuous, discrete, binary), the 
type of measurements (nominal, ordinal, ratio, interval), and 
subject matter knowledge. The most commonly used dis-
tance measure in most clustering algorithm is the Euclidian 
distance [9]. Other measures include Minkowski’s distance 
[6], Cosine distance [29], S-distance [5], etc.

The clustering problem has a clear goal of finding distinct 
groups or ‘clusters’ within the dataset. However, the notion 
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of a ‘cluster’ has not been precisely defined, which has con-
tributed to the rise of different clustering algorithms [11]. 
The existence of different types of clustering algorithms 
poses difficulties to select the best algorithm for a particular 
task. Independent of the type of algorithm used, Kleinberg 
[17] proposes three properties that an ideal clustering algo-
rithm should have so that it can be considered good: scale 
invariance, consistency and richness. Scale invariance indi-
cates that the clustering algorithm does not change its results 
when all distances between points are scaled by a constant 
factor. A clustering process is considered to be consistent 
when the clustering results do not change if the distances 
within clusters decreases and/or the distance between clus-
ters increase. The richness criteria mean that the clustering 
function must be flexible enough to potentially produce any 
arbitrary partitions of the input dataset. According to Klein-
berg’s impossibility theorem [17], no clustering algorithm 
satisfies all three requirements simultaneously. This implies 
that it has been very difficult to develop a unified framework 
for validation of clustering methods and to reason about it 
at a technical level.

Multi‑Label Data

Several types of research in machine learning deal with the 
analysis of single-label data, where training instances are 
associated with a single label λ from a set of disjoint labels 
L. However, training samples in several application domains 
are often associated with a set of labels Y ⊆ L. Such data-
sets are called multi-label data. Multi-label datasets have 
been popular in various domains, such as protein function 
classification, medical diagnosis, emotion recognition, text 
classification, etc. For instance, a medical patient may be 
affected by more than one chronic disease: diabetes, hyper-
tension, and fatty liver. We can cluster the patients into dis-
tinct groups each with specific characteristics, and then the 
burden of these unwanted outcomes (diabetes, hypertension, 
fatty liver, etc.) can be identified to provide tailored interven-
tions in each cluster. One of the common trends for solving 
supervised learning through the use of multi-label data is 
decomposing the multi-label problem into binary classifi-
cation problems [34, 35]. In unsupervised learning, we can 
use the labels information of the multi-label data for evalu-
ation of the clustering algorithm. In this study, we used fea-
tures for forming clusters and class labels for performance 
evaluation.

Cluster Validation

Cluster validation is one of the most important and challeng-
ing parts of cluster analysis, which involves the objective 
and quantitative assessment of clustering results [42]. One 
of the problems in cluster validation is that there is no clear 

notion as to what exactly the ‘prediction error’ is. Because 
of that, clusters are sometimes validated by ad hoc methods 
based on the application area. Due to the absence of the 
ground truth and the nature of the problem, cluster validation 
has not been well developed [33]. As a result, evaluating the 
performance of a clustering algorithm is not an easy task. 
Commonly, the evaluation process depends on the algorithm 
used to obtain clustering results, which resulted in the devel-
opment of multiple evaluation techniques. Various methods 
have been suggested in the literature for cluster validation, 
including external validation, internal validation, relative 
criteria and stability-based approaches.

External Clustering Validity Methods External valida-
tion index uses prior knowledge, such as externally provided 
class labels, to evaluate results of cluster analysis. External 
clustering validity approaches, such as Rand Index [26] and 
normalized mutual information [38] are used to measure 
the quality of clustering results by comparing the gener-
ated cluster labels with the pre-existing clustering (refer-
ence labels) structure, i.e. ground truth solution. If the result 
is in some way similar to the reference, the final output is 
regarded as a “good” clustering. The external validation is 
straightforward when the closeness between two clusterings 
is well-defined. However, it has a basic caveat that the ref-
erence result is not given in most real-world applications. 
Therefore, external evaluation is generally used for synthetic 
data and for tuning clustering algorithms [27].

Internal Cluster Validity Methods These are used to 
assess the goodness of clustering structure without refer-
ence to the external information, using only the data them-
selves. Internal clustering validity methods measure the 
quality of clustering-based solely on information intrinsic 
to the data; as a result, they have great practical application 
and numerous criteria have been proposed in the literature, 
such as Silhouette analyses [28], Calinski–Harabasz index 
[3], Davies–Bouldin [7]. The internal criteria are the most 
commonly used evaluation methods designed to compute 
the ratio of within-cluster scattering (compactness) and to 
between-cluster separation. Measures that grouped under 
this category have been designed for the validation of con-
vex-shaped clusters (such as globular clusters), and fail when 
applied to validate non-convex clusters [22].

The Relative Approach is performed by comparing two 
sets of clusters (usually built with similar algorithms but 
with different parameter settings) to determine which one 
is better. It is generally used for determining the optimal 
number of clusters.

Clustering Stability Approach Clustering stability meas-
ure is a slightly different approach used to assess the simi-
larity of clustering solutions obtained by applying the same 
clustering algorithm on multiple independent and identically 
distributed samples. The intuitive idea behind the stability 
approach is that if we repeatedly sample data points from 
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the population and apply the candidate clustering algorithm, 
then a good algorithm should produce clusterings that do not 
vary much from one sample to another [25]. In other words, 
the algorithm is stable with respect to input randomization. 
There are several studies to validate clusters by stability cri-
teria [1]36, 39]. In general, the existing validation criteria 
are useful for such tasks as determining the correct num-
ber of clusters in the dataset, verifying whether the clusters 
obtained are meaningful or are just an artefact produced by 
the algorithms, justifying why we choose some algorithms 
instead of others or assessing the quality of clustering solu-
tions. However, in the literature, there is still a lack of meth-
ods to measure the ability of the clustering algorithm to 
predict cluster memberships for new data points.

The Focus of This Paper

The primary aim of this paper is to measure the performance 
of a clustering model to predict cluster labels for new data 
points, given that the model is already constructed from the 
training data. For example, we have three existing clusters, 
C1, C2, and C3 and a new data point D1. The clustering 
model should assign D1 to one of the clusters, say C2. In 
this case, we want to know ‘how good is the model on new 
data?’ i.e. to what extent the model has correctly assigned 
D1 into C2.

Cluster validation idea presented in this study is different 
from the existing methods in that it focuses on measuring the 
prediction strength of a clustering algorithm using the cross-
validation procedure. The k-fold cross-validation method is 
used for simulating the situation when we have built the 
clustering model on some previously available data, and then 
we want to assign new data points to the previously built 
clusters. The prediction strength concept presented here, 
similarly, as the stability of the clusters, can be used for 
assessing the performance of a clustering method. Cluster-
ing stability results are mostly obtained based on perturba-
tions introduced to the input data, such as sub-sampling or 
the addition of noise. Unlike in the other studies, the predic-
tion strength of an algorithm introduced here is measured by 
incorporating information from several labels of multi-label 
data. Namely, the probability of occurrence of the labels in 
the training and testing data is calculated for each cluster. If 
label probabilities in the training and testing data are similar, 
the clustering can be considered as a good one. Thus, this 
study assumes that the clusters are already formed from the 
training data, and the aim is to measure how well the cluster-
ing model predicts the corresponding cluster labels for the 
test data based on their membership on the clustering results 
obtained from the training data.

This approach is motivated by medical applications in 
which we would like to assess the probability of various 
health problems in different patient groups. For example, the 

labels for the chronic dataset are diabetes, hypertension, and 
fatty liver, as indicated in Sect. “Cluster Validation”. Once 
the clusters are formed, the probabilities of the occurrence 
of these labels, i.e. diabetes, hypertension, and fatty liver are 
estimated in each cluster and compared between the train-
ing set and the test set. The aim is to measure how well we 
can predict the probabilities of these three outcomes in new 
patients (i.e. in the test data) based on their membership in 
the training clusters. In this paper, the k-fold cross-validation 
procedure is used to simulate such a scenario.

The k-fold cross-validation (CV) is one of the most com-
monly used model evaluation procedures in supervised 
learning. Unfortunately, it is challenging to apply CV to 
unsupervised learning, for example, to clustering valida-
tion. In this study, the k-fold CV procedure is adapted, using 
labels from a multi-label dataset, to be applicable to unsu-
pervised learning (i.e. clustering) for evaluating the perfor-
mance of clustering algorithms. Following the k-fold cross-
validation approach, the input data is randomly divided into 
k parts, of which k-1 parts are used to construct the model, 
and the remaining part is used as an evaluation set. Then, 
the prediction strength is used as a statistic for clustering 
stability. Thus, here we propose the use of the k-fold cross-
validation procedure for evaluating the prediction strength 
of the clustering model using the information acquired from 
multiple labels.

The contributions of this study are: (1) a new cluster 
validity index is proposed that uses the information from 
multiple labels to evaluate the quality of clustering algo-
rithms; (2) the study validates the proposal through the 
cross-validation analysis of some challenging multi-label 
datasets; (3) the root mean squared error (RMSE), which is 
the most frequently used measure of the differences between 
values in regression problem, is exploited and adjusted to 
be used as a cluster validity index; (4) this study shows that 
the proposed method can be used to measure the ability of 
a clustering algorithm to predict the cluster membership for 
new data.

Proposed Method

Given a particular clustering result, one can predict cluster 
membership for new data based on a clustering model built 
on training data. This is not always easy for all types of clus-
tering algorithms. For example, it is hard for density-based 
clustering algorithms (e.g. DBSCAN) to predict a cluster for 
the new data points, because the new data points may change 
the underlying clustering structure. For centroid-based clus-
ter algorithms (e.g. k-means clustering), however, prediction 
of a cluster for new data points is relatively easy since it only 
requires finding the minimum distance of a new data from 
all cluster centres and then updating the cluster centre of 
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that cluster. Hence, k-means clustering is employed to test 
the proposed method in this paper. Recently, several tech-
niques have been proposed to improve the standard k-means 
algorithm for high dimensional datasets, such as the Entropy 
Regularized Power k-Means [4], sparse k-means [41] and 
others [24]. The proposed k-Fold CV for unsupervised learn-
ing can also be applied to these modified versions of the 
k-means algorithm.

Assigning new data points to existing clusters that are 
constructed through the training data is considered to be an 
important practical application. However, very little practi-
cal guidance is available to measure the prediction strength 
of the constructed model to predict the cluster membership 
of a new data point. Prediction strength is a global measure 
forcing all clusters to be stable, as it uses the minimum value 
of cluster similarity over all clusters [14]. In this paper, we 
proposed a k-fold cross-validation procedure followed by the 
root mean squared error (RMSE) or the mean absolute per-
centage error (MAPE) to evaluate the prediction strength of 
clustering algorithm. RMSE and MAPE are the most com-
monly used error measurements in statistics. In prediction 
tasks, RMSE indicates the absolute fit of the model to the 
data, i.e., it is used to compare how close the observed data 
points are to the predicted values of the model. MAPE is 
the average magnitude of the difference between predicted 
and actual values in percentages, without considering their 
direction, that is, since absolute percentage errors are used, 
the positive and negative errors are not cancelling each other. 
In clustering validation, these two metrics can be used to 
measure the average distance between the data points and 
their cluster centres [12, 13, 30]. The smaller the RMSE/
MAPE, the better the prediction results.

At each iteration of the k-fold CV procedure, one fold is 
used as the test set and the remaining folds as the training 
set. The training set is presented to a clustering method, giv-
ing a partition as a result (training partition). Then, new data 
points are assigned to the clusters in the training partition 
based on the minimum distance from all the cluster cen-
tres. The CV method allows calculating the quality measure 
expressing the difference between the probability of occur-
rence of the outcomes (i.e. labels) in the training data and in 
the test data assigned to the same cluster. Once the clusters 
are formed using the training part of the data, the probability 
of occurrence of the labels in the training set and in the test-
ing set in each cluster will be assessed and analyzed. This 
is similar to estimating the probability that an outcome will 
occur, given that a sample belongs to a certain cluster, math-
ematically written as P(outcome|cluster). For instance, in the 
chronic disease dataset, one can estimate a probability of the 
risk of having hypertension in each of the generated clusters. 
Below, we describe the k-fold cross-validation procedure 
used to calculate a quality measure for a clustering model.

Let:

L = {λi: i = 1,…, q}: the set of all labels in a multi-label 
dataset.

q = |L| : the number of labels in the multi-label dataset.
k: the number of folds in the cross-validation procedure,
C: the number of clusters generated by the clustering 

algorithm.
Because we calculate label probabilities separately for 

each cluster i in each of the cross-validation folds j we 
denote these probabilities without using the number of the 
cluster nor the number of the fold in order not to clutter the 
equations:

ym , m = 1,…, q: the probability that a sample from the 
training dataset assigned to cluster i has the mth label.

ŷm , m = 1,…, q: the probability that a sample from the 
testing dataset assigned to cluster i has the mth label.

1. Shuffle the original dataset randomly
2. Split the original dataset into k parts (folds) # k = 10, for 

tenfold cross-validation.
3. For each fold j = 1,…,k.

a) Take fold j as the test dataset (each fold, in turn, is 
used as the test dataset).

b) Take the remaining folds together as the training 
dataset.

c) apply dimensionality reduction (if needed)
d) apply normalization to dataset (if needed)
e) Generate clusters on the training dataset.
f) Assign data points from the test dataset (selected in 

step ‘a’) into the corresponding clusters obtained in 
step ‘e’.

g) For each cluster i = 1, …, C found in step ’e’:

a. Compute the probabilities ym , m = 1,…, q of the 
occurrence of the labels in cluster i based on the 
samples in the training dataset.

b. Compute the probabilities ŷm , m = 1,…, q of the 
occurrence of the labels in cluster i using the 
assignment of the points from the test dataset to 
the clusters, which was obtained in step ‘f’.

c. Compute the root mean squared error  (RMSEij) 
between the probabilities calculated in steps ‘a.’ 
and ‘b.’. Note down the scores/errors as a quality 
measure for cluster i obtained in fold j.

4. When the loop in step 3 finishes (and so every fold 
served as the test set) take the average over the k folds 
of the recorded scores for each cluster and/or overall the 
clusters (Eq. (3)).

In the context of this study, RMSE and MAPE are pro-
posed to measure the prediction strength of clustering 
techniques. RMSE represents the standard deviation of the 
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difference between the probabilities of occurrence of the 
labels of the training data and the probabilities of occur-
rence of the labels of the test data in clusters. Intuitively, 
the RMSE in this study can be understood as the Euclid-
ean distance between the vector of the observed probability 
scores of labels in the training data and the estimated prob-
ability scores of the labels in the test data for a given cluster, 
averaged by the total number of labels in the data (Eq. 1). 
Similarly, MAPE measures the size of the error between 
the probability scores of the training set and the probability 
scores of the test set in percentage terms (Eq. 2). RMSE and 
MAPE are evaluation methods that can be used together to 
diagnosis the variation in the errors of a clustering algo-
rithm. For cluster i and cross-validation fold j these two 
measures are calculated as follows:

The resulting score obtained through RMSE with k-fold 
cross-validation across all clusters based on the probabil-
ity score information from multiple labels, named CVIM 
in short, can be used as a cluster validity index (i.e. stability 
index). The better the values of the cluster validity index, 
the more stable the outputs of the clustering algorithm. 
High cluster stability is achieved when memberships of the 
clusters are not affected by small changes in the data set. 
The RMSE of the clustering algorithm obtained using the 
k-fold cross-validation can be computed as shown in Eq. (3): 
let RMSEij be the RMSE for the ith cluster obtained in the 
jth fold (Eq. (1)). The average RMSE for the ith clusters 
obtained in k fold with C clusters in each fold, denoted by 
ARMSEi , can be computed as:

Finally, the RMSE-based cluster validity index across all 
clusters is found using Eq. (4). MAPE is also calculated 
in a similar fashion as the RMSE. The architecture of the 
proposed method for calculating RMSE and MAPE for each 
cluster in ten folds of cross-validation is presented in Fig. 1 

(1)RMSEij =

����
∑q

i=1

�
ŷi − yi

�2

q

(2)MAPEij =

(
1

q

∑ ||yi − ŷi
||

||yi||

)
∗ 100

(3)

ARMSE1 = (RMSE11 + RMSE12 + RMSE13 +⋯ + RMSE1k)∕k

ARMSE2 = (RMSE21 + RMSE22 + RMSE23 +⋯ + RMSE2k)∕k

⋮

ARMSEC = (RMSEC1 + RMSEC2 + RMSEC3 +⋯ + RMSECk)∕k

Overall ARMSE =
(
ARMSE1 + ARMSE2+⋯+ARMSEC

)
∕C

(4)Cluster Validity Index (CVIM) =
1

C

C∑

i=1

ARMSEi

for an algorithm generating C = 3 clusters. In the final stage, 
the average RMSE/MAPE of 10 similar clusters is taken 
from each fold of cross-validation.

Experiments

In this paper, three public multi-label datasets were used to 
test the proposed method: the chronic diseases dataset [43], 
emotions [37] and Yeast [10] datasets. The chronic diseases 
dataset contains a collection of physical examination records 
for 110,300 patients with 62 features and 3 class labels. All 
the input features were used for forming clusters. The class 
labels (non-clustering variables), which include hyperten-
sion, diabetes and fatty liver, were not used for defining clus-
ters but only for cluster validation. Each record in the data 
may be associated with more than one of the class labels. 
As a result, the probability of occurrence of hypertension, 
diabetes or fatty liver in patients of the test data can be esti-
mated in the corresponding clusters. The chronic disease 
dataset is available online at https ://pinfi sh.cs.usm.edu/dnn/. 
The Yeast dataset is formed by micro-array expression data 
and phylogenetic profiles with 2417 genes. The dataset con-
sists of 103 features with 14 labels, and each gene is associ-
ated with a set of functional labels. The emotions dataset 
contains examples of songs according to people’s emotions. 
The emotions and Yeast datasets were taken from the Mulan 
Library at https ://mulan .sourc eforg e.net/datas ets-mlc.html.

Multi-label datasets, and current data in general, tend to 
be more complex than conventional data and need dimen-
sionality reduction. All three multi-label datasets used in 
this experiment have a large number of features and labels/
outcomes. Taking this problem into account, we applied 
the dimensionality reduction process to convert the data-
set into two-dimensional space. The purpose of reducing 
data into lower-dimensional representation is to visualize 
and interpret the samples so that such visualization can be 
used to obtain insights from the data, e.g. to detect clus-
ters and identify outliers. Moreover, a clustering process 
requires data reduction to obtain an efficient processing 
time while clustering and avoid the curse of dimensional-
ity. For example, k-means clustering algorithm often doesn’t 
work well for high dimensional data [23]. There are different 
techniques proposed in the literature for high dimensional 
features in clustering [16, 19]. In this study, principal com-
ponent analysis (PCA) [32], one of the most commonly used 
technique, was applied as a data dimensionality reduction to 
convert each dataset into a two-dimensional representation. 
Emotions and Yeast datasets have large variations within 
the range of feature values which can affect the quality of 
computed clusters. Therefore, after PCA, we applied nor-
malization technique [8] for Emotions and Yeast datasets 
to ensure that good quality clusters are generated. Then, 

https://pinfish.cs.usm.edu/dnn/
https://mulan.sourceforge.net/datasets-mlc.html


 SN Computer Science (2020) 1:263263 Page 6 of 9

SN Computer Science

k-means clustering [15] was applied to the reduced dataset. 
All the experiments have been implemented using Python 
programming language.

Results and Discussions

With the help of the Calinski–Harabasz index, three clusters 
for emotions dataset, four clusters for chronic disease data-
set and five clusters for yeast dataset were identified using 
the k-means clustering algorithm. A two-dimensional (2D) 
representation of clustering results for each dataset is shown 
in Fig. 2. Colours of the points represent cluster member-
ships of the samples. For each dataset, the probabilities of 
the occurrence of each target variable in each cluster have 
been calculated both in the training and testing part of the 
data during the cross-validation procedure. We first evalu-
ated the quality of the clusters using the existing internal 
validity criteria. Silhouette analysis is one of the most popu-
lar and effective internal measures which allows evaluating 
the appropriateness of the assignment of a data object to a 
cluster by measuring both intra-cluster cohesion and inter-
cluster separation. Clusters within the range of 51 to 70% 
and 71 to 100%, respectively, indicate that a reasonable and 
a strong intra-cluster cohesion and inter-cluster separation 

are found [20]. The silhouette score can take values in the 
interval [− 1, 1]. Negative silhouette values represent wrong 
data placements, while positive silhouette values better data 
assignments. Therefore, we want the scores to be as big as 
possible and close to 1 to have good clusters. In our experi-
ments, the silhouette score has shown good results. The sil-
houette score for clusters found on emotion, chronic disease 
and Yeast datasets were 0.76, 0.82 and 0.69, respectively, 
indicating that the obtained clusterings were good ones.

As the main objective of this study is to evaluate the 
prediction performance of the clustering algorithm through 
tenfold cross-validation procedure, the result of prediction 
performance in terms of RMSE and MAPE are presented for 
each cluster and across all clusters (i.e. the CVIM value), as 
shown in Table 1. The results represent the strength of the 
clustering algorithm to predict cluster labels for the test data. 
The obtained RMSE and MAPE scores of the clustering 
results in each cluster of each dataset represent the predic-
tion errors.

Figures  3 and 4 show the RMSE and MAPE of the 
k-means clustering algorithm applied to each dataset, respec-
tively. The smallest RMSE is found in the chronic dataset 
in each cluster, while the highest RMSE was found in the 
Emotions dataset. This also holds true for the total RMSE 
across all the clusters (i.e. the CVIM score) on each dataset. 

Fig. 1  The architecture of the proposed method to evaluate a clustering model through tenfold cross-validation with three clusters at each fold
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Generally, an RMSE close to zero is indicative of the high 
similarity between the training and testing probabilities. 
Similarly, low MAPE values indicate good predictions of 
the occurrence of labels in each cluster across all datasets. 
The smaller the MAPE, the better the forecast, and more 
specifically, Lewis’s [18] interpretation of MAPE is that a 

value of less than 10% indicates highly accurate forecast, 11 
to 20% is a good forecast, 21 to 50% is a reasonable forecast, 
and 51% or more is an inaccurate forecast. Accordingly, a 
highly accurate forecast is found in chronic disease data-
set. The results on emotion and yeast datasets show a good 
prediction.

Fig. 2  2D visualization of clustering results on emotions (a), chronic disease (b) and yeast (c) datasets. Min–Max normalization method has 
been applied to emotions and yeast datasets to eliminate the large variations within the range of features

Table 1  Performance of a 
clustering algorithm in each 
cluster and across the clusters 
(CVIM)

CVIM* RMSE/MAPE-based cluster validity index across all the clusters in each of the three datasets

Dataset Metrics Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 CVIM*

Emotions RMSE 0.021 0.019 0.017 – – 0.019
MAPE 7.88% 18.27% 8.99% – – 0.1171%

Chronic RMSE 0.0361 0.0543 0.0228 0.0282 – 0.0354
MAPE 5.62% 5.92% 7.91% 12.29% – 0.0794%

Yeast RMSE 0.071 0.061 0.066 0.086 0.076 0.0722
MAPE 7.49% 9.36% 11.59% 17.34% 15.34% 12.22%

Fig. 3  RMSE of the clustering algorithm on each cluster in each dataset
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Conclusions

Evaluating the quality of clustering algorithms is an 
important and challenging part of the clustering task. 
In this study, the k-fold cross-validation procedure was 
adapted to the task of evaluating the quality of the clus-
tering algorithms that is, measuring the ability of these 
algorithms to predict cluster membership for new data. 
A new clustering validity index was proposed to measure 
the effectiveness of the clustering algorithm through the 
use of root mean squared error (RMSE) and mean absolute 
percentage error (MAPE) values. The index was devel-
oped using the probability information obtained from sev-
eral labels of multi-label data. This measure is useful for 
evaluating clusterings which can be used for estimating 
the probability of the occurrence of the labels. For exam-
ple, patients can be grouped into several clusters, and the 
occurrence of diseases can be studied separately in each 
group. The results presented in the paper show that the 
proposed method works well for evaluating the quality of 
clusters obtained using the k-means algorithm. Combin-
ing the proposed method with other, for example, density-
based, clustering algorithms require solving additional 
problems such as finding an effective way of assigning 
new data points to previously discovered clusters. There-
fore, combining the proposed method with such clustering 
algorithms was left as further work.
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