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Abstract
The weighted MAX k-CUT problem consists of finding a k-partition of a given weighted undirected graph G(V, E), such 
that the sum of the weights of the crossing edges is maximized. The problem is of particular interest as it has a multitude of 
practical applications. We present a formulation of the weighted MAX k-CUT suitable for running the quantum approximate 
optimization algorithm (QAOA) on noisy intermediate scale quantum (NISQ) devices to get approximate solutions. The new 
formulation uses a binary encoding that requires only |V| log2 k qubits. The contributions of this paper are as follows: (i) a 
novel decomposition of the phase-separation operator based on the binary encoding into basis gates is provided for the MAX 
k-CUT problem for k > 2 . (ii) Numerical simulations on a suite of test cases comparing different encodings are performed. 
(iii) An analysis of the resources (number of qubits, CX gates) of the different encodings is presented. (iv) Formulations and 
simulations are extended to the case of weighted graphs. For small k and with further improvements when k is not a power 
of two, our algorithm is a possible candidate to show quantum advantage on NISQ devices.

Keywords  Quantum computing · Quantum approximate optimization algorithm (QAOA) · MAX k-CUT​ · MAX-CUT​ · 
Quantum algorithms

Introduction and Related Work

The search for quantum algorithms of practical interest has 
intensified since the announcement of quantum suprem-
acy in [2]. For the foreseeable future, quantum hardware 
will limit the depth (length of the computation) and width 
(number of qubits) of the algorithms that can be run. Hybrid 

quantum-classical algorithms based on the variational prin-
ciple are a promising approach to achieve an advantage 
over purely classical algorithms. The variational quantum 
eigensolver (VQE) [22]/quantum approximate optimiza-
tion algorithm (QAOA) [8] is such a hybrid algorithm for 
approximately finding the solution of a problem encoded 
as the ground state of a Hamiltonian. In this early stage, 
even small reductions of the depth and/or width of an algo-
rithm can make the difference between success and failure. 
In light of this, we investigate in this article how QAOA can 
be used to approximately solve the MAX k-CUT problem. 
The problem has interesting applications that make it prac-
tically relevant. These range from placement of television 
commercials in program breaks, placement of containers on 
a ship with k bays, partition a set of items (e.g., books sold 
by an online shop) into k subsets, design of product modules, 
frequency assignment problems, scheduling problems, and 
pattern matching [1, 10].

The problem discussed in this paper falls within the class 
of Ising models. An Ising model is a mathematical model of 
ferromagnetism in statistical mechanics, consisting of dis-
crete variables si that represent atomic “spins” that can be in 
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one of the two states ±1 . The objective function of an Ising 
model is given by:

where hi are the biases and Ji,j the coupling strengths. Using 
the transformation si = 2xi − 1 , this can be transformed into 
a quadratic unconstrained binary optimization problem 
(QUBO) which is given by:

where the matrix Q is an upper diagonal N × N real matrix. 
In this way, the Ising model without an external field is 
equivalently formulated as a MAX (2-)CUT problem. For 
an overview of other Ising-type formulations of NP prob-
lems, we refer to [20], which includes a discussion of graph 
coloring, but not of MAX k-CUT. A generalization of the 
Ising model is given by the Potts model, where the spin 
takes one of k possible values, see [25]. The MAX k-CUT 
problem is connected to the search for a ground state in the 
anti-ferromagnetic k-state Potts model [24]. Using Eq. (1) 
and replacing the terms si with Pauli-Z operators, one arrives 
at an Ising Hamiltonian, which ground states, i.e., solutions 
of the original problem, can be found (approximatively) by 
the QAOA. The QAOA consists of the following main steps: 
 

	(S1)	 The solution of a problem is formulated as the ground 
state of a Hamiltonian HP that encodes a cost function 
f to be optimized. It acts diagonally on the computa-
tional states, i.e., HP�z⟩ = f (z)�z⟩.

	(S2)	 A  q u a n t u m  p r o c e s s o r  p r e -
p a r e s  a  p a r a m et e r i z e d  qu a n t u m  s t a t e 
�Ψ(�)⟩ = UM(�2p)UP(�2p−1)⋯UM(�2)UP(�1)�Φ0⟩ , by 
alternatingly applying phase separation ( UP ) and mix-
ing ( UM ) operators on an easy to prepare initial state 
�Φ0⟩.

	(S3)	 Through repeated measurement, one obtains an esti-
mate of E(�) = ⟨HP⟩�Ψ(�)⟩ ∈ ℝ as well as a candidate 
solution y with probability �⟨y��Ψ(�)⟩�2.

(1)E(�) =

N∑

i=1

N∑

j=i+1

Ji,jsisj +

N∑

i=1

hisi,

(2)min
�∈{0,1}N

�TQ� =

N∑

i≤j

xiQi,jxj, xi ∈ {0, 1},

	(S4)	 The cost function E(�) ≥ Emin serves a classical com-
puter that finds the ground state energy of the cost 
function, i.e., finds the optimal parameter � , such that 
E(�) becomes minimal. This iterative process provides 
candidate solutions, which are typically approximate.

A general overview of hybrid quantum-classical algorithms 
(VQE/QAOA) is provided in, e.g., [21]. The article discusses 
obstacles and how to overcome them to achieve quantum 
advantage on noisy intermediate scale quantum devices. The 
QAOA was introduced by [8] where it was applied to MAX 
(2-)CUT. Solving small problem instances of MAX (2-)CUT 
with when QAOA and classical AKMAXSAT solver, the 
authors in [12] extrapolate to large instances and estimate that 
a quantum speed-up can be obtained with (several) hundreds 
of qubits. It has also been shown numerically that the QAOA 
can achieve solutions of better quality [4] then the best-known 
classical approximation algorithm. The authors in [26] intro-
duce heuristic strategies inspired by quantum annealing to 
generate good initial points for the outer optimization loop for 
the MAX (2-)CUT problem. They show that this leads to large 
improvements in the approximation ratio achieved.

Since its inception, there have been several extensions/
variants of the QAOA proposed. A recent approach, dubbed 
ADAPT-QAOA, presented in [27] is to create an iterative 
version that is problem-tailored and can adapt to specific 

hardware constraints. The method is exemplified on a class 
of MAX (2-)CUT problems, requiring fewer CNOT gates 
as the original method. A non-local version of QAOA is 
proposed in [3]. Dubbed R-QAOA, the algorithm recursively 
removes variables from the Hamiltonian until the remaining 
instance is small enough to be solved classically. Numerical 
evidence is provided that shows this procedure significantly 
outperforms standard QAOA for frustrated Ising models on 
random three-regular graphs for the MAX (2-)CUT prob-
lem. Another recent approach, dubbed WS-QAOA, is using 
the solutions of classical algorithms to improve QAOA, 
see [7]. An example is provided with MAX (2-)CUT, which 
shows numerically that warm-starting QAOA and R-QAOA 
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provide an advantage at low depth, in the form of a system-
atic increase in the size of the obtained cut for fully con-
nected graphs with random weights. Warm-starting results 
in a change of the mixer operator only.

To the best of our knowledge, there are only two papers 
discussing MAX k-CUT for k > 2 . The quantum alternating 
operator ansatz (also abbreviated as QAOA) presented in [13] 
considers general parameterized families of unitaries. The paper 
presents a suite of constrained optimization problems, such 
as maximum independent set, traveling sales person, and the 
unweighted MAX k-CUT. Mixing operators are adapted such 
that the probability of transitioning from a feasible candidate 
to another is non-zero and circuit compilations are described. 
The paper does not provide numerical simulations and the main 
focus is on the design of mixing operators. The one-hot encod-
ing of the MAX k-CUT is further studied numerically in [23] 
Two approaches are presented that tackle the enforcement of the 
hard constraints arising from the encoding scheme. The first is 
to keep the X mixer, but introduce a penalty term in the phase-
separating Hamiltonian and the second is to instead design an 
XY mixer together with consistent Wk-initial states to stay within 
the feasible set of solutions. Both articles [13, 23] present the 
unweighted MAX k-CUT, although it is not hard to generalize.

The main contributions of this article are:

–	 A novel decomposition of the unitary phase-separation 
operator UP based on the binary encoding into basis gates 
is provided for the MAX k-CUT problem for the general 
case k > 2.

–	 Numerical simulations on a suite of test cases comparing 
different encodings are performed.

–	 We present an analysis of the resources (number of 
qubits, CX gates) of the different encodings.

–	 The formulations and simulations are extended to the 
case of weighted graphs.

The main advantages as compared to [13, 23] are that our 
approach is efficient in the number of qubits and does not 
require feasibility constraints to be incorporated into the circuit 
construction of the mixer operator. Similar to [23], we observe 
that the resulting energy landscape of the binary encoding 
might be easier to handle for the outer classical optimization 
loop due to fewer local minima see Table 2. As pointed out 
in [23], the ratio of the size of the feasible subspace, which is 
spanned by states corresponding to n Hamming-weight one bit 
strings, to the size of the full Hilbert space is:

which becomes exponentially small (for k ≥ 1 ) as the graph 
size n grows. In contrast, the binary encoding uses the full 
Hilbert space as feasible space.

(3)
dim(Hfeas)

dim(H)
=
(
k

2k

)n

,

The rest of the article is organized as follows. We describe 
the classical problem and classical algorithms in “The MAX 
k-CUT Problem and Classical Algorithms”. After describing 
and comparing one-hot encoding and the proposed binary 
encoding scheme in “Quantum Algorithms”, we discuss 
implementation and results are presented in “Implementa-
tion and Results”, followed by a conclusion in “Conclusion”.

The MAX k‑CUT Problem and Classical 
Algorithms

The MAX k-CUT problem is an extension of the well-known 
MAX (2-)CUT problem (or simply MAX CUT). Given a 
weighted undirected graph G = (V ,E) , MAX k-CUT consists 
of finding a maximum-weight k-cut, that is a partition of the 
vertices into k subsets, such that the sum of the weights of the 
edges that have end points on different subsets is maximized. 
Let wij be the weight assigned to each edge (i, j) ∈ E , and let 
P = P1,… ,Pk be a partition of the vertices in V. Then, the 
cost function for MAX k-CUT can be defined as:

Alternatively, one could assign a label xi ∈ {1,… , k} to each 
vertex i ∈ V  , indicating which partition the vertex belongs 
to. Defining � = (x1,… , x|V|) the optimization problem for 
MAX k-CUT can be written as:

where C(�) is the cost function and [⋅] is the Iverson bracket, 
which is 1 if xi ≠ xj , and 0 otherwise. An example of an 
optimal solution for MAX 3-CUT is given in Fig. 1a.

The MAX k-CUT problem is NP-complete and it has 
been shown that it does not admit any polynomial-time 
approximation scheme, for any k ≥ 2 , unless P=NP [9]. By 
definition, a randomized approximation algorithm for (5) has 
approximation ratio � if:

where �∗ is the optimal solution of (5).
A trivial algorithm that (uniformly) randomly assigns 

vertices to partitions has an approximation ratio of (1 − 1∕k) , 
because each edge has a probability of (1 − 1∕k) of having 
endpoints in different partitions [9]. It has also been shown 
that there can be no polynomial-time approximation scheme 
(PTAS) with approximation ratio 

(

1 −
1

34k

)

 , unless P=NP 
[15]. For MAX 2-CUT, the Goemans–Williamson algo-
rithm [11] exploits the semidefinite programming (SDP) 
relaxation of the integer programming formulation of MAX 
2-CUT to achieve an approximation ratio of 0.878567. The 

(4)max
|P|=k

∑

1≤r<s≤k

∑

i∈Pr ,j∈Ps,(i,j)∈E

wij.

(5)max
�∈{1,…,k}n

C(�), C(�) =
∑

(i,j)∈E

wij[xi ≠ xj],

(6)�[C(�)] ≥ �C(�∗),
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Jerrum–Frieze algorithm [9] extended this result to MAX k
-CUT,  obta in ing  an  approximat ion  ra t io  of (

1 −
1

k
+ (1 + �(k))

2 ln(k)

k2

)

 , where �(k) is a function that 
approaches 0 as k → ∞ . For small k, this approximation ratio 
was ever so slightly improved in [6]. Figure 1b provides an 
overview of selected approximation ratios achieved in [6, 
11].

It is interesting to note that under the unique games con-
jecture, both the 0.878567 approximation ratio of [11] (for 
k = 2 ) and the 

(

1 −
1

k
+

2 ln(k)

k2

)

 approximation ratio of [9] 
(for large k) are optimal [18]. Given that the unique games 
conjecture is not valid when there are entangled provers [16, 
17], it is possible that quantum algorithms may allow for an 
improvement over classical algorithms.

Quantum Algorithms

As a first step, we need to encode the problem described in 
“The MAX k-CUT Problem and Classical Algorithms” in a 
way that is suitable for the QAOA. There are three different 
possibilities (of which the first two are presented in [13], and 
the last is proposed in this article):

–	 Qudit encoding: Expressing the solutions as strings of 
k-dits [as in Eq. (5)] is a natural extension of the MAX 
(2-)CUT problem to k > 2 . The problem can be for-
mulated using |V| qudits. To be practically relevant, it 
requires, however, the realization of a k-level quantum 
system.

–	 One-hot encoding: A second method is to use k bits for 
each vertex, where the single bit that is 1 encodes which 
set/color the vertex belongs to. Using this encoding 

requires k|V| qubits. However, the formulation requires 
the introduction of constraints to prevent solutions where 
a vertex belongs to several sets of a partition or none.

–	 Binary encoding: For a given k, we encode the informa-
tion of a vertex belonging to one of the sets by �i⟩L , which 
requires L = ⌈log2(k)⌉ qubits. Here, ⌈⋅⌉ means rounding 
up to the nearest integer. This formulation can be exe-
cuted on systems using qubits and requires L|V| qubits.

Binary encoding uses exponentially fewer qubits as com-
pared to one-hot encoding. As an example, for k = 4 , encod-
ing the information of a vertex belonging to one of the four 
sets using one-hot encoding is done through identifying 
color 1, 2, 3, 4 with the bit strings 0001, 0010, 0100, 1000, 
respectively. The binary encoding identifies colors 1, 2, 3, 
4 with the bit strings 00, 01, 10, 11, respectively. Observe 
that, for one-hot encoding, there are 24 − 4 = 12 possible bit 
strings in the space that encode infeasible solutions consist-
ing of multiple colors or no color at all, whereas all possible 
bit strings in the binary encoding are valid encodings, see 
also Eq. (3).

In the following, we describe the problem Hamiltonian 
and unitary evolution for the one-hot encoding as well as the 
proposed binary encoding.

One‑Hot Encoding

Here, we provide a brief description of the one-hot encod-
ing. For details and further discussion, we refer to [13, 23]. 
The one-hot encoding uses k qubits per vertex, which are 
indexed, such that, e.g., �x,y,z

i,a
 applies a Pauli-X,-Y, or -Z gate 

to qubit number ik + a , for a ∈ {1, k} . The definition of the 
approximation ratio (Eq. (6) needs to be adapted to:

(a) An example of an optimal solution for a MAX
3-CUT problem.

k 2 3 4 5
α

k 6 7 8 9
α

.878567 .836008 .857487 .876610

.891543 .903259 .912664 .920367

(b) Approximation guarantees for MAX k-CUT using classical approxima-
tion algorithms, see [11, 6].

Fig. 1   The MAX k-CUT problem and approximation guarantees for classical algorithms with polynomial runtime
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where Pfeas is the projection operator onto the feasible sub-
space. In practice, this means that infeasible solutions are 
assigned zero cost.

Problem Hamiltonian

Up to a global phase, the problem Hamiltonian is given by:

One way to incorporate the constraint that the feasible sub-
space consists of only Hamming-weight 1-bit strings is to 
introduce a quadratic penalty term that results (up to global 
phase) in the Hamiltonian:

Overall, the phase-separating Hamiltonian becomes a 
weighted sum H�

P
= HP + �Hpen , where � should satisfy 

� ≥
|V|

k
 and 𝛽 > k|E| , see [23].

Unitary Evolution

The unitary evolution consists of creating an initial state, 
followed by phase-separating and mixing operators. The uni-
tary evolution of the phase-separating operator given by the 
exponentiation of H′

P
 [see Eqs. (8) and (9)] consists of terms 

that can be realized through the following circuit:

where Rz(�) = e
−i

�

2
�z

 . The standard X-mixing operator is 
given by:

with each individual term realized through Rx(�) = e
−i

�

2
�x

 
gates. The initial state when using the standard mixing oper-
ator is given by �Φ0⟩ = H⊗k�V��0⟩ , where H is the Hadamard 

(7)� =
⟨PfeasHPPfeas⟩

C(�∗)
,

(8)HP =
∑

(i,j)∈E

wi,j

k∑

a=1

𝜎z

i,a
⊗ 𝜎z

j,a
.

(9)Hpen =
1

2

|V|∑

v=1

k∑

a=1

k∑

b=a+1

𝜎z
v,a

⊗ 𝜎z

v,b
.

(10)

(11)e−iHM , where HM =

|V|∑

v=1

k∑

a=1

�x
v,a
,

gate. However, this approach does not incorporate the fea-
sibility constraint.

Incorporating the feasibility constraint into the mixer 
results in the XY mixer for each vertex v ∈ V  based on the 
Hamiltonian:

where K is a set consisting of certain pairs of colors (a, b). In 
this article, we use the parity-partitioned mixer, which can 
be represented as two separate Hamiltonians:

where HXY
(j,k)

= �x
j
�x
j+1

+ �
y

j
�
y

j+1
 . The resulting unitary opera-

tor is easily implemented in terms of two CX and one RX or 
RY operation. A feasible initial state for the one-hot encoding 
consistent with the XY mixer is �Φ0⟩ = �Wk⟩

⊗�V� , where the 
Wk state is given by:

An efficient algorithm for this with logarithmic (in k) time 
complexity is presented in [5].

Binary Encoding

In the following, we describe the problem Hamiltonian for 
the proposed binary encoding, which is given as the sum of 
local terms, that is:

where wi,j is the weight of the edge between vertices i and j 
as well as the resulting unitary evolution.

Problem Hamiltonian

The matrix Hi,j is a diagonal matrix modeling the interaction 
between vertices i and j:

(12)HXY ,v =
1

2

∑

a,b∈K

�x
v,a
�x
v,b

+ �y
v,a
�
y

v,b
,

(13)
Hodd = HXY

(1,2)
+ HXY

(3,4)
+ … + HXY

(k−1,k)

Heven = HXY
(2,3)

+ HXY
(4,5)

+ … + HXY
(k,1)

,

(14)

�Wk⟩ =
1
√
k
(�100… 000⟩ + �010… 000⟩ +… �000… 001⟩).

(15)HP =
∑

(i,j)∈E

wi,jHi,j,
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From this point on, we consider the two diagonal matrices 
HP and A = aI + bHP to be equivalent for all a, b ∈ ℝ, b ≠ 0 . 
The reason for this is that when we compare the unitary 

operators e−i�A and e−i�B , a parameter a ≠ 0 results in apply-
ing a “global phase” which is irrelevant, and b ≠ 0 can be 
combined with the parameter � . As mentioned in [13], “an 
affine transformation of the objective function [...] corre-
sponds simply to a physically irrelevant global phase and a 
rescaling of the parameter”. The cost function can be easily 
evaluated classically, independent of the specific form of HP.

From now on, we will adapt the notation that �m⟩2n is the 
mth basis vector of an n-qubit system. Note that for a basis 
vector, the decomposition �m⟩2n = �l0⟩2n−1 ⊗ �l1⟩2n−1 both 
exists and is unique. The mth entry of the local Hamiltonian 
Hi,j is given by:

(16)Hi,j =

⎛
⎜
⎜
⎝

d0
⋱

d22L−1

⎞
⎟
⎟
⎠

.

(17)

d
m
=

⎧
⎪
⎨
⎪
⎩

−1, if l0 ≠ l1 ∧ ¬(l0 ≥ k − 1 ∧ l1 ≥ k − 1),

where l0, l1 are given by �m⟩2n = �l0⟩2n−1 ⊗ �l1⟩2n−1 ,

+1, otherwise.

This means that eigenvectors of the local Hamiltonian Hi,j 
corresponding to eigenvalues dm = −1 indicate a cut. When k 
is not a power of two the condition ¬(l0 ≥ k − 1 ∧ l1 ≥ k − 1) 
is introduced, such that the sets with number k − 1,… , 2L − 1 
are not distinguished and become the same set. Organizing 
the diagonal entries dm in a matrix of size 2L × 2L , we get a 
particularly simple structure:

where l = 2L − (k − 1) , I is the identity matrix, J is a matrix 
of ones, and Γc,d is a matrix that has a one at entry c, d and is 
zero otherwise. Sub-indices indicate the size of the matrix. 
Observe that D = DT and that the sum involving terms Γ is 
zero if k is a power of two. We can construct the matrix Hi,j 
from D through:

where vec()̇ is a linear transformation which converts a 
matrix into a column vector by stacking the columns on top 
of each other, and diag(v) is a matrix with the entries of the 
vector v along its diagonal.

Next, we will provide a few examples.
MAX (2-)CUT. For k = 2 , we can use L = ⌈log2(2)⌉ = 1 

qubit per vertex, where ⌈⋅⌉ means rounding up to the nearest 
integer. The matrix D and the local Hamiltonian are given 
by:

(18)

(19)Hi,j = diag
(
vec(DT )

)
,

(20)
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MAX 3-CUT. For the case k = 3 , we need L = ⌈log2(3)⌉ = 2 
qubits per vertex. Since two qubits can encode four different 
sets, we need to make two sets indistinguishable. Choosing 
sets 2 and 3 to represent one set, the entries of the matrix D 
and the local Hamiltonian are given by:

MAX 4-CUT. For the case when k = 4 , we need 
L = ⌈log2(4)⌉ = 2 qubits per vertex. The entries of the 
matrix D and the local Hamiltonian are given by:

Unitary Evolution

For the binary encoding, there are no constraints on the 
binary strings to be a valid solution. Therefore, there is no 
need to design special mixers, and the mixing Hamiltonian 
is given by:

This leads to the unitary operator:

(21)

(22)

(23)HM =

�V�L�

j=1

��x
j
, L = ⌈log2(k)⌉.

Each term in the above product can be implemented with 
an Rx-gate.

The unitary operator for phase separation is defined by:

(24)UM = e−i�HM =

|V|L∏

j=1

e
−i��x

j .

where the last equality holds, because the terms Hi,j trivi-
ally commute, as they are diagonal matrices. Furthermore, 
we can use Eq. (18) to further decompose the terms of the 
product:

Again, equality holds, since only diagonal matrices are 
involved. The first term in Eq. (26) can be realized through 
the following circuit:

(25)UP = e−i�HP = e−i�
∑

(i,j)∈E wi,jHi,j =
�

(i,j)∈E

e−i�wi,jHi,j ,

(26)e−i�Hi,j = e−i�diag(vec(2I−J))
2L∏

c,d=k+1,m≠n

e−i2�diag(vec(Γc,d)).

(27)
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The qubits are enumerated, such that qubits q0
i
,⋯ , qL−1

i
 cor-

respond to the label that is assigned to vertex enumerated i. 
The logic behind the circuit shown can be understood from a 
classical point of view. Applying CX-gates on pairs of qubits 
acting on basis states between vertex i and j results in the state 
�q0

i
⟩⋯ �qL−1

i
⟩�q0

j
⊕ q0

i
⟩⋯ �qL

j
⊕ qL

i
⟩ , where the ⊕ operation 

is modulo 2. This means that the state of the qubits belonging 
to j has zero entries if and only if all qubits have the same 

basis state. Negating the state and applying a multi-controlled 
�U3(0,�, 0) gate therefore apply a phase if the original (basis) 
states �q0

i
⟩⋯ �qL−1

i
⟩ and �q0

j
⟩⋯ �qL

j
⟩ differ. After this, one can 

uncompute by applying X and CX-gates in reversed order, 
such that the overall change is that of applying a phase.

The remaining terms in Eq. (26) (which vanish if k is a 
power of 2) can be implemented, e.g., with the help of two 
ancillary qubits, a0, a1 , in the following way:

(28)

MAX 4-CUT apply phase for |2〉2 ⊗ |3〉2 apply phase for |3〉2 ⊗ |2〉2

q0i X X

q1i

q0j X X X X

q1j X U3(0,−γwi,j , 0) X U3(0,−γwi,j , 0) U3(0,−γwi,j , 0)

a0

a1

Fig. 2   Implementation of the phase operator for the edge (i, j) for MAX 3-CUT, which consists of the circuit for MAX 4-CUT plus two extra 
circuits
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The gates N1,N2 in Eq. (28) are of the form U0 ⊗⋯⊗ UL−1 , 
where Ui ∈ {I,X} are chosen, such that N1�0⟩L = �c⟩L , and 
N2�0⟩L = �d⟩L . The logic behind this circuit is that multi-
controlled NOT gates are used to set two ancillary qubits 
to the state one if qi = �c⟩L , and qj = �d⟩L . Of both ancillary 
qubits are one, a multi-controlled U3(0,�, 0)-gate is applied 
to change the phase, followed by a uncomputation steps. The 
ancillary qubits can be reused for all other pairs (i, j) ∈ E . An 
example for MAX 3-CUT is shown in Fig. 2.

Resource Analysis of One‑Hot and Binary Encoding

We will give a short analysis of the number of gates required 
to decompose the basic building blocks of the phase operator 
UP , the mixing operator UM , and the preparation of the initial 
state for the two different encoding schemes. To be execut-
able on, e.g., one of IBM’s quantum devices, all terms need 
to be decomposed using gates from the set of basis gates 
{U3,CX} , where:

Note that U3(0,�, 0) = diag(1, ei�) . Throughout, we assume 
full connectivity of the qubits, i.e., a CX gate can be executed 
directly on any pair of qubits, without the need for applying 
SWAP or Bridge-gates [14]. Furthermore, (multi-)controlled 
U3(0,�, 0) operations can be implemented in terms of its 
square root V = U3(0,�∕2, 0) , and V† , using polynomially 
many CX-gates, see, e.g., [19]. To implement the circuit 
shown in Eq. (27), one needs 2L CX-gates, 2L X-gates, and 
1 (multi-)controlled U3-gate. When k is not a power of two, 
we need to additionally execute the circuits of the form, 
as shown in Eq. (28). This requires 2L CLX-gates, 2 CLU3

-gates, and L X-gates. In general, these need to be applied 
2(2L − k) times. In the worst case, when k = 2n + 1 , we need 
to apply these gates 2(2n − 1) times. Overall, Table 1 shows 
the width (number of qubits) and depth requirements of the 

(29)

U3(�,�, �) =

�
cos(�∕2) − ei� sin(�∕2)

ei� sin(�∕2) ei(�+�) cos(�∕2)

�

, CX =

⎛
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟
⎟
⎟
⎠

.

Table 1   Number of CX 
operations per layer and 
number of qubits of the QAOA 
circuit for a graph G = (V ,E) 
depending on k 

One-hot encoding requires the use of a more-complicated XY mixer and the preparation of W
k
 states

k 2 3 4 5 6 7 8

Binary
 #qubits 1|V| 2|V|+2 2|V| 3|V|+2 3|V|+2 3|V|+2 3|V|
 #CX for �Φ0⟩ 0 0 0 0 0 0 0
 #CX for U

M
0 0 0 0 0 0 0

 #CX for U
P

2E 70|E| 6|E| 206|E| 142|E| 78|E| 14|E|
One-hot XY
 #qubits 1|V| 3|V| 4|V| 5|V| 6|V| 7|V| 8|V|
 #CX for �Φ0⟩ 2|V| 4|V| 6|V| 8|V| 10|V| 12|V| 14|V|
 #CX for U

M
8|V| 12|V| 16|V| 20|V| 24|V| 28|V| 32|V|

 #CX for U
P

4|E| 6|E| 8|E| 10|E| 12|E| 14|E| 16|E|

Fig. 3   Initial guess (dotted lines with x marker) and locally optimal 
(solid lines with round marker) parameters � , � for the graph shown 
in Fig. 5 using the interpolation-based heuristic described in the text. 

The results indicate a correlation of the parameters between different 
depths p making this a useful heuristic to avoid global optimization
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(a) “Barbell” graph.

binary one-hot X one-hot penalty X one-hot XY
k α1 α2 α3 α1 α2 α3 α1 α2 α3 α1 α2 α3
2 1.000 1.000 1.000 0.508 0.515 0.517 0.552 0.969 0.868 1.000 1.000 1.000
3 0.961 0.996 0.999 0.117 0.119 0.119 0.207 0.227 0.311 0.998 0.998 0.997
4 1.000 1.000 1.000 0.052 0.052 0.055 0.179 0.175 0.185 1.000 1.000 1.000
5 0.931 0.999 0.998 0.026 0.023 0.027 0.159 0.185 0.193 1.000 1.000 1.000
6 0.981 0.994 1.000 0.013 0.013 0.014 0.056 0.080 0.098 1.000 1.000 1.000
7 0.996 0.999 0.999 0.007 0.007 0.007 0.116 0.185 0.076 1.000 1.000 1.000
8 1.000 1.000 1.000 0.004 0.002 0.002 0.062 0.166 0.168 1.000 1.000 1.000

(b) Approximation ratio for 8192 shots. αp is the approximation ratio for depth p.

Fig. 4   Results for a graph with two vertices connected by an edge. 
Using one-hot encoding, the XY mixer together with Wk initial states 
achieves equally good results as the binary encoding. The one-hot 

encoding with the standard X mixer gets slightly improved by the 
penalty term. The low values are due to an exponentially small space 
of feasible solutions. The energy landscapes are shown in Table 2

(a) Graph instance.

rand GW binary one-hot XY
k α α #q #CX α1 α2 α3 #q #CX α1 α2 α3
2 0.50 0.88 10 32p 0.77 0.79 0.80 20 164p 0.76 0.79 0.80
3 0.67 0.84 20+2 1120p 0.73 0.75 0.77 30 256p 0.75 0.76 0.77
4 0.75 0.86 20 96p 0.82 0.84 0.84 40 348p − − −
5 0.80 0.88 30+2 3296p 0.81 0.85 0.87 50 440p x x x
6 0.83 0.89 30+2 2272p 0.87 0.89 0.90 60 532p x x x
7 0.86 0.90 30+2 1248p 0.90 0.91 0.91 70 624p x x x
8 0.88 0.91 30 224p 0.92 0.93 0.93 80 716p x x x

(b) Approximation ratios achieved for graph shown in (a) using 8192 shots.

(c) Graph instance.

rand GW binary one-hot XY
k α α #q #CX α1 α2 α3 #q #CX α1 α2 α3
2 0.50 0.88 10 48p 0.73 0.75 0.76 20 196p 0.73 0.75 0.75
3 0.67 0.84 20+2 1680p 0.74 0.77 0.79 30 304p 0.76 0.78 0.80
4 0.75 0.86 20 144p 0.82 0.85 0.86 40 412p − − −
5 0.80 0.88 30+2 4944p 0.82 0.86 0.89 50 520p x x x
6 0.83 0.89 30+2 3408p 0.87 0.90 0.92 60 628p x x x
7 0.86 0.90 30+2 1872p 0.91 0.93 0.94 70 736p x x x
8 0.88 0.91 30 336p 0.93 0.95 0.95 80 844p x x x

(d) Approximation ratios achieved for graph shown in (c) using 8192 shots.

Fig. 5   The results for an unweighted Erdös–Rényi with |V| = 10 
vertices and |E| = 16 edges and a weighted Barabási–Albert with 
|V| = 10 vertices and |E| = 24 edges. �p is the approximation ratio 
for depth p. #q is the number of qubits required. The number of CX-
gates is per layer p. Here, − indicates that it is in principle possible 
to simulate classically (but we only have access to simulator with 

up to 32 qubits), whereas x indicates that it is infeasible to simulate 
even on a supercomputer (as 50 qubits are considered the threshold 
for that). Approximation ratios for random and Goemans–Williamson 
algorithm are shown as reference. The energy landscapes are shown 
in Table 3

complete circuit for MAX k-CUT. We can see that low depth 
and width are achieved when k is a power of two.

The analysis shows that one-hot encoding has a strong 
limitation when it comes to the requirement of number of 
qubits. In addition, preparation of Wk and XY mixers is more 

costly than the standard X mixer sufficient for binary encod-
ing. Furthermore, when the number of qubits is limited to 
a few hundred or thousand, only one-hot encoding for the 
cases k = 2, 4 and possibly k = 3 will be of practical interest 
when quantum advantage is to be achieved.
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Implementation and Results

In this section, we showcase numerical simulations on dif-
ferent types of graphs. We start by briefly describing the 
heuristic we employ for the classical outer optimization 
loop. Sampling high-dimensional target functions uniformly 
quickly becomes intractable for depth p > 1 . To get a good 

initial guess of the parameters (�p, �p) at level p for the local 
optimization procedure, we employ the interpolation-based 
heuristic described in [26], which is given by the following 
recursion:

(30)

[
�0
(p+1)

]

i
=

i − 1

p

[
�L
(p)

]

i−1
+

p − i + 1

p

[
�L
(p)

]

i
, i = 1, 2,… , p + 1.

Energy landscapes for the “Barbel” graph shown in Fig. 4

Generally, the binary encoding seems to generates easier optimization problems
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In above formula, the superscript refers to either the initial 
parameter (superscript 0), or the local optimum (superscript 
L). The same formula holds for � . For depth p = 1 , the 
expectation value is sampled on an n × m Cartesian grid over 
the domain [0, �max] × [0, �max] . The initial parameters 
(
�0
1
, �0

1

)
 are then given by identifying a pair of parameters 

which achieves the lowest expectation value on the grid. 
Using the starting point 

(

�0
p
, �0

p

)

 , a local optimization algo-

rithm, e.g., Nelder-Mead or COBYLA, is used to find the 
local minimum with 

(

�L
p
, �L

p

)

 . Figure 3 shows that optimal 
parameters are strongly correlated between different depths 
p, also for non-regular graphs.

The first example is a graph with two vertices connected 
by an edge. Using an ideal simulator, we compare the results 
for the binary encoding with standard X mixer, the binary 

Table 3   Energy landscapes for the Erdös–Rányi and Barabási–Albert graphs shown in Fig. 5

The missing pictures required 40 qubits and more to generate and are therefore missing. Generally, the binary encoding seems to generates easier 
optimization problems
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encoding with the penalty term and the standard X mixer, as 
well as the XY mixer without penalty term and the Wk ini-
tial state. The results, shown in Fig. 4, show that the binary 
encoding as well as the one-hot encoding with the XY mixer 
have approximation ratios close to one for all cases. The pure 
one-hot encoding becomes increasingly worse for increas-
ing k, which is related to the exponentially small feasible 
subspace, see Eq. (3). Even adding a penalty term does not 
improve the situation noteworthy. The expectation value 
E(�) = ⟨HP⟩�Ψ(� ,�)⟩ for different parameters, often referred 
to as the energy landscape for all cases k ∈ 2,… , 8 , is given 
in Table 2, which seems to indicate that the binary encoding 
generates optimization problems with fewer (local) minima.

The final two examples show numerical examples of 
larger instances of graphs: an unweighted Erdös–Rényi 
graph and a weighted Barabási–Albert graph with ten ver-
tices, as presented in Fig. 5. For higher depth, we employ 
the interpolation-based heuristic. In all cases, the average 
approximation ratio achieved is considerably higher than the 
approximation ratio of randomly drawn a solution or the 
guarantees of the Goemans–Williamson, which is given as 
a reference. Furthermore, the average approximation ratio 
increases with increasing depth. One-hot encoding in the 
case of MAX 4-CUT would already require 40 qubits, which 
quickly becomes prohibitive for a simulator.

Availability of Data and Code

All data, e.g., graphs, and the python/jupyter notebook 
source code of the MAX k-CUT implementation using 
QAOA for reproducing the results obtained in this article are 
available at https​://githu​b.com/OpenQ​uantu​mComp​uting​.

Conclusion

In this article, we provide numerical evidence that NISQ 
device can be used to (approximately) solve the weighted 
MAX k-CUT. The analysis of the proposed binary encoding 
shows an exponential improvement of the number of qubits 
with respect to previously known results. In addition, our 
results indicate that the optimization problem for the one-hot 
encoding seems to contain many local optima, making it a 
more demanding problem to solve, see also the discussion 
in [23]. The circuit depth required is very low when k is a 
power of two. When this is not the case, we provide a proof 
of principle implementation, which requires an exponen-
tial number of CX gates with respect to k. Future research 
directions are, therefore, to investigate more efficient ways 
of decomposing the phase-separation operators. Another 
possibility might be to introduce penalty terms in the mix-
ing operator, similar to the case of one-hot encoding, such 

that the number of possible sets is limited to k, instead of 
implementing the circuits, as shown in Eq. (28). Applying 
and testing R-QAOA and WS-QAOA to our formulation 
provide another future path for investigation. Finally, the 
performance of the proposed algorithms could be tested on 
simulated noise models and real machines. Another factor 
is to analyze the balance between number of qubits and cir-
cuit depth with respect to extra auxiliary qubits that can be 
introduced to minimize the number of SWAP/Bridge-gates 
on hardware without full qubit connectivity.
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