Skip to main content
Log in

Design and Development of a Cyber Security Framework for National Time Dissemination

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Coordinated Universal Time (UTC) is based on the biggest possible number of atomic clocks of various categories, to be found in various regions of the world and connected through a network which allows precise time comparisons amid remote sites. In India, UTC system is followed and cyber security issues are a concern. This research explains the security problems faced with UTC (k) system and describes how enhancement rectifies such problem. There is necessity for single time scale for whole nation. This research adopted qualitative approach and experimental design for carrying out investigation. Data are collected from National Physical Laboratory and National measurement institute of India. Proposed Software to be used in this particular research for implementing the framework is archimate open source. The aim of intention of this research is to design and develop cyber physical security framework for national time dissemination. Security problems are rectified with developed cyber physical security framework. The developed cyber security framework achieves traceability and synchronization in cyber security environment. This research would be helpful for practitioners, academicians, policy-makers, capitalists to understand the need for developing a framework for national time dissemination in cyber-secure environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arias EF, Guinot B. Coordinated Universal Time UTC: historical background and perspectives. 2005. https://pdfs.semanticscholar.org/5051/a2f8fc9144f012a909195d52ed15d892f414.pdf. Retrieved 16 Apr 2020.

  2. Cook S (2019) What is the Time Zone in India? https://www.tripsavvy.com/what-is-the-india-time-zone-1539421. Retrieved 18 Aug 2020

  3. Sharma L, Kandpal SDP, Olaniya MP, Yadav S, Bhardwaj T, Thorat P, Panja S, Arora P, Sharma N, Agarwal A, Senguttuvan TD, Ojha VN, Aswal DK. Necessity of ‘two time zones: IST-I (UTC + 5: 30 h) and IST-II (UTC + 6: 30 h)’ in India and its implementation. Curr Sci. 2018;115(7):1252–61.

    Article  Google Scholar 

  4. Ahuja DR, Gupta DP, Agrawal VK. Energy savings from advancing the indian standard time by half an hour. Curr Sci. 2007;93(3):00113891.

    Google Scholar 

  5. Panfilo G, Arias F. The Coordinated Universal Time (UTC). Metrologia. 2019;56:1–27.

    Article  Google Scholar 

  6. Lokhorst T. Why “Always use UTC” is bad advice. 2019. https://engineering.q42.nl/why-always-use-utc-is-bad-advice/. Retrieved 18 Aug 2020.

  7. Mizrahi T. Time synchronization security using IPsec and MACsec 2011. In: International IEEE Symposium on Precision Clock Synchronization for Measurement Control and Communication (ISPCS) 12–16 September; 2011, pp. 38–43.

  8. Lisova E. Monitoring for securing clock synchronization. Mälardalen Univ Press Diss. 2018;256:1–186.

    Google Scholar 

  9. Qin J, Li M, Shi L, Yu X. Optimal denial-of-service attack scheduling with energy constraint over packet-dropping networks. IEEE Trans Autom Control. 2017. https://doi.org/10.1109/TAC.2017.2756259.

    Article  MATH  Google Scholar 

  10. Li Y, Shi L, Cheng P, Chen J, Quevedo DE. Jamming attacks on remote state estimation in cyber-physical systems: a game-theoretic approach. IEEE Trans Autom Control. 2015;60(10):2831–6.

    Article  MathSciNet  Google Scholar 

  11. Mo Y, Sinopoli B. Secure control against replay attacks. In: 47th Annual Allerton Conference on Communication, Control, and Computing; 2009, pp. 911–8.

  12. Guo Z, Shi D, Johansson KH, Shi L. Optimal linear cyberattack on remote state estimation. IEEE Trans Control of Netw Syst. 2017;4(1):4–13.

    Article  MathSciNet  Google Scholar 

  13. Liu Y, Ning P, Reiter MK. False data injection attacks against state estimation in electric power grids. ACM Trans Inform Syst Secur. 2011;14(1):13.

    Article  Google Scholar 

  14. Mo Y, Sinopoli B. False data injection attacks in control systems. In: First Workshop on Secure Control Systems, CPS Week, 2010.

  15. Wu S, Ren X, Dey S, Shi L. Optimal scheduling of multiple sensors with packet length constraint. IFAC-Papers Online. 2017;50(1):14430–5.

    Article  Google Scholar 

  16. Zhang Z, Gong S, Dimitrovski DA, Husheng L. Time synchronization attack in smart grid: impact and analysis. IEEE Publ. 2013. https://doi.org/10.1109/TSG.2012.2227342.

    Article  Google Scholar 

  17. Wang K, Chen S, Pan A. Time and position spoofing with open source projects. London: Black Hat Europe; 2015.

    Google Scholar 

  18. Tippenhauer NO, Popper C, Rasmussen KB, Capkun S. On the ¨ requirements for successful GPS spoofing attacks. In: Proceedings of the 18th ACM conference on Computer and communications security; 2011, pp. 75–86.

  19. Zhang Z, Gong S, Dimitrovski AD, Li H. Time synchronization attack in smart grid: Impact and analysis. IEEE Trans Smart Grid. 2013;4(1):87–98.

    Article  Google Scholar 

  20. Khalajmehrabadi A, Gatsis N, Akopian D, Taha AF. Real-time rejection and mitigation of time synchronization attacks on the global positioning system. IEEE Publ. 2018. https://doi.org/10.1109/TIE.2017.2787581.

    Article  Google Scholar 

  21. Wang J, Tu W, Lucas CK, Hui SM, Wang EK. Detecting time synchronization attacks in cyber-physical systems with machine learning techniques. London: IEEE Publications; 2017.

    Book  Google Scholar 

  22. Agarwal A, Olaniya MP, Yadav S, Kandpal P, Arora P, Panja S, Das M, Thorat P, Bharadwaj T, Bharath V, Sharma N, Mamta DM, Ojha VN, Aswal DK. Reduction of uncertainty of Primary Time Scale generating UTC(NPLI) to 2.8 ns. URSI AP-RASC 2019, New Delhi, India, 2019.

  23. Marangos N, Rizomiliotis P, Mitrou L. Time synchronization: pivotal element in cloud forensics. Secur Commun Netw. 2016;9:571–82.

    Article  Google Scholar 

  24. Khediri S, Nasri N, Samet M, Wei A, Kachouri A. Analysis study of time synchronization protocols in wireless sensor networks. 2012. https://arxiv.org/ftp/arxiv/papers/1206/1206.1419.pdf. Retrieved 18 Apr 2020.

  25. Schneider Electric Report (2009) Time Synchronization and Timekeeping. https://www.se.com/ar/library/SCHNEIDER_ELECTRIC/SE_LOCAL/APS/208433_2F12/ION_Time_Synchronization_and_Timekeeping.pdf. Retrieved 17 Apr 2020.

  26. Barreto S. Cyber-attack on packet-based time synchronization protocols: the undetectable delay box. London: IEEE Publications; 2018.

    Google Scholar 

  27. Guo Z, Yuqing N, Wong WS, Ling S (2018) Time synchronization attack and countermeasure for multi-system scheduling in remote estimation. https://arxiv.org/pdf/1903.07036.pdf. Retrieved 17 Apr 2020.

  28. Lisova E. Monitoring for Securing Clock Synchronization. Dissertation, Malardalen University, 2018.

  29. Yang W, Wan Y, He J, Cao Y. Security vulnerabilities and countermeasures for time synchronization in TSCH networks. Hindawi J. 2018. https://doi.org/10.1155/2018/1954121.

    Article  Google Scholar 

  30. Yadav J, Yadav R. Attacks and requirements of time synchronization. Int J Comput Sci Mob Comput. 2014;3(11):598–704.

    Google Scholar 

  31. Kikuya Y, Dibaji SM, Ishii H. Fault tolerant clock synchronization over unreliable channels in wireless sensor networks. In: IEEE Transactions of Control of Network Systems, 2018.

  32. Kadowaki Y, Ishii H. Event-based distributed clock synchronization for wireless sensor networks. IEEE Trans Autom Control. 2015;60(8):2266–71.

    Article  MathSciNet  Google Scholar 

  33. Suzuki A Masutomi K, Ono I, Ishii H Onoda T. CPS-Sim: Co-Simulation for Cyber-Physical Systems with accurate time synchronization, IFAC Papers Online; 2018, pp. 70–5.

  34. Levesque M, Tipper D. A survey of clock synchronization over packet-switched networks. IEEE Commun Surv Tutor. 2016. https://doi.org/10.1109/COMST.2016.2590438.

    Article  Google Scholar 

  35. Kyriakakis E, Spars J, Schoeberl M. Implementing time-triggered communication over a standard ethernet switch. In: Proceedings of the Fog-IoT Workshop 2019. New York: Association for Computing Machinery; 2019.

    Google Scholar 

  36. Marina G, Wilfried S, Radu D, Sasikumar P. Synchronization quality of IEEE 802.1 AS in large-scale industrial automation networks. In: Proceedings of the Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE; 2017, pp. 273–82.

  37. Paul P, Michael LR, Silviu SC, Wilfried S. Design optimisation of cyber-physical distributed systems using IEEE time-sensitive networks. IET Cyber-Phys Syst. 2016;1:86–94.

    Article  Google Scholar 

  38. Babu RG. Research methodology in social sciences. Delhi: Concept Publishing Company; 2008. p. 11.

    Google Scholar 

  39. Blessing LTM, Chakrabarti A. DRM, a design research methodology. Berlin: Springer; 2009. p. 269.

    Book  Google Scholar 

  40. Broman D, Derler P, Eidson JC. Temporal issues in cyber-physical systems. J Indian Inst Sci Multidiscip Rev J. 2013;93(31):1–14.

    Google Scholar 

  41. Griffor ER, Greer C, Wollman DA, Burns MJ. Framework for Cyber-Physical Systems Overview. NIST Special Publication 1500–201, 2017.

  42. Griffor ER, Greer C, Wollman DA, Burns MJ. Framework for Cyber-Physical Systems: Volume 2, Working Group Reports. NIST Special Publication 1500–202, 2017.

  43. Hensahw M. Systems of systems, cyber-physical systems, the internet-of-thing. Whatever Next? OR Insight. 2016;19(3):51–4.

    Google Scholar 

  44. Matsakis D, Levine J, Lombardi MA. Metrological and legal traceability of time signals. In: Conference: Proceedings of 2018 ION Precise Time and Time Interval Meeting (PTTI), Virginia, 2018.

  45. Singh A, Singh R. Why India could do with one more time zone. Univ Toronto. 2018;53(35):1–8.

    Google Scholar 

  46. Baheti R, Gill H. Cyber-hysical Systems. Impact Control Technol. 2011;12:161–6.

    Google Scholar 

  47. Reddy YB. Cloud-based cyber physical systems: design challenges and security needs. In: 10th International Conference on Mobile Ad-hoc and Sensor Networks; 2014, pp. 315–22.

  48. Schneider D, Armengaud E, Schoitsch E. Towards trust assurance and certification in cyber-physical systems. Berlin: Springer; 2014.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amutha Arunachalam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Cyber Security and Privacy in Communication Networks” edited by Rajiv Misra, RK Shyamsunder, Alexiei Dingli, Natalie Denk, Omer Rana, Alexander Pfeiffer, Ashok Patel and Nishtha Kesswani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunachalam, A., Seetharaman, K. & Agarwal, A. Design and Development of a Cyber Security Framework for National Time Dissemination. SN COMPUT. SCI. 2, 77 (2021). https://doi.org/10.1007/s42979-021-00471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00471-5

Keywords

Navigation